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Executive Summary

We present Validation and Verification (V & V) study of two high-order spectral element
method (SEM) based Computational Fluid Dyanimcs (CFD) codes that we will utilize for work on
turbulence modeling: Nek5000 and SOD2D. While the former solves the incompressible form of
Navier-Stokes equation, the latter works with compressible set of equations and uses an entropy-
viscosity formulation to account for the discontinuities for high Mach number flows. We demonstrate
the accuracy of these codes for two benchmark sub-sonic turbulent flows: periodic channel and pipe
flow, by carrying out first and second order statistical analysis, grid convergence and turbulent
structure analysis using wall-resolved large eddy simulations (WRLES). Later, we report on the
implementation and testing of various wall-modeling strategies for large eddy simulation of turbulent
flows in Nek5000. These include both classical log-law based and decision-tree based machine-
learning models. Accuracy of these closure strategies are analyzed and necessary future work is
outlined.

ii



1 Introduction

In spite of the advances in computing power in the recent decade a resolved study, such as direct
numerical (DNS) or wall-resolved large-eddy simulation (WRLES), of a practical turbulent flow
remains unfeasible [1, 2]. The focus then is to arrive at low resource demanding turbulent modeling
strategies and to work on making them simple, fast and accurate by engineering standards. Wall-
modeled large eddy simulation (WMLES) fits in this category. The basic idea of WMLES is to
circumvent the need to refine the inner region of wall-bounded turbulent flow by using appropriate
boundary condition. Encouraging results have been reported in literature by using the standard
log-law based wall-models [3, 4]. However, since the formulation implicitly assumes an equilibrium
in the turbulence dynamics, the accuracy of log-law based wall-modeling for many flows of practical
applications such as pressure gradient boundary layers and separating flows remains sub-standard.
Incorporating the non-equilibrium effects through the use of wall-models is not trivial. While some
studies [5] consider only a few terms of the Navier-Stokes equations for non-equilibrium effects,
others [6, 7] have pointed the need to either retain or discard all the terms. One approach to capture
turbulence dynamics in wall-models is by the application of machine-learning (ML) strategies
for model development. This circumvents the need to perform a term-by-term analysis of the
Navier-Stokes and instead diverts the focus on model development based on available high-fidelity
data-sets.

With these considerations in mind, we report on our effort to implement and test various
turbulence closure strategies for WMLES. The studies are conducted using open-source Navier-Stokes
(NS) solvers Nek5000/RS, developed at Argonne National Laboratory, and SOD2D, developed at
Barcelona Supercomputing Center. Both of these solvers use high-order spectral element (SE)
discretizations [8]. Furthermore, both SOD2D [9] and NekRS [10] are GPU-accelerated, targeting
application simulations on various acceleration-device based exascale computing platforms [10, 11].

This report is organized as follows: Section 2 discusses the numerical framework used for the
present work. Section 3 presents the results for V & V studies on periodic channel and pipe flows.
Later, in Section 3 we also present preliminary results for the implementation of wall-models in
Nek5000. Finally, we conclude our study in Section 3 by outlining the current limitations and
necessary future work.

2 Methodology

2.1 Nek5000/NekRS

Nek5000 [12] is a spectral element code that is used for a wide range of thermal-fluids applications.
Nek5000 has scaled to millions of MPI ranks using the Nek-based gsLib communication library to
handle all near-neighbor and other stencil type communications [13]. On CPUs, tensor contractions
constitute the principal computational kernel (typically > 90% of the flops). These can be cast as
small dense matrix-matrix products resulting in high performance with a minor amount of tuning.

Nek5000 employs high-order spectral elements (SEs) [14] in which the solution, data, and test
functions are represented as locally structured Nth-order tensor product polynomials on a set of
E globally unstructured curvilinear hexahedral brick elements. The approach yields two principal



benefits. First, for smooth functions such as solutions to the incompressible NS equations, high-
order polynomial expansions yield exponential convergence with approximation order, implying a
significant reduction in the number of unknowns (n ~ EN?) required to reach engineering tolerances.
Second, the locally structured forms permit local lexicographical ordering with minimal indirect
addressing and, crucially, the use of tensor-product sum factorization to yield low O(n) storage
costs and O(nN) work complexities [15]. As we demonstrate, the leading order O(nN) work terms
can be cast as small dense matrix-matrix products (tensor contractions) with favorable O(N)
work-to-storage ratios (computational intensity) [8].

2.1.1 Governing equations

The incompressible form of Navier—Stokes (NS) equations are given by,
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where u; is the ith component of the velocity vector, p is the density, p is the fluid pressure, v is the
fluid kinematic viscosity and S;; = 0.5 (9w foz; 4 9us Jox,) is the velocity strain tensor.

2.1.2 Spatial discretization and temporal integration

Time integration in Nek5000/RS is based on a semi-implicit splitting scheme using kth-order
backward differences (BDFk) to approximate the time derivative coupled with implicit treatment of
the viscous and pressure terms and kth-order extrapolation (EXTk) for the remaining advection
and forcing terms. This approach leads to independent elliptic subproblems comprising a Poisson
equation for the pressure, a coupled system of Helmholtz equations for the three velocity components,
and an additional Helmholtz equation for the potential temperature. The pressure Poisson equation
is obtained by taking the divergence of the momentum equation and forcing ?jj = 0 at time
t"™ = nAt. The velocity and temperature Helmholtz equations are obtained once p” is known:
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where ) is an order-unity constant associated with BDFk [16], S;; is the resolved-scale strain-rate
tensor as described, and ¢", r}', and s" represent the sum of the values from the previous timesteps
for the contributions from BDFk and EXTE. Also included in r}* and s" are eddy-diffusivity terms
coming from the mean-field eddy-diffusivity mentioned above. The fully coupled system of Helmholtz
equations for the three velocity components (4) is used only when the fluctuating (isotropic) part
of the SGS stress tensor is modeled using a Smagorinsky (SMG) model based on the fluctuating



strain rate. When this part is modeled through the use of a high-pass filter (HPF) [17] the resulting
Helmholtz equations for the three velocity components are not coupled.

With the given time-splitting, we recast (3)—(5) into weak form and derive the spatial discretization
by restricting the trial and test spaces to be in the finite-dimensional space spanned by the spectral
element basis. The discretization leads to a sequence of symmetric positive definite linear systems
for pressure, velocity, and temperature. Velocity and temperature are diagonally dominant and
readily addressed with Jacobi-precondition conjugate gradient iteration. The pressure Poisson solve
is treated with GMRES using p-multigrid as a preconditioner. Details of the formulation can be
found in [18, 16, 19].

2.2 SOD2D
2.2.1 Physical model

The Navier-Stokes equations for compressible flow defined on a bounded domain 2 are given by

Zj +V-u = 0 on Qx(t,tf), (6)
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where p is the fluid density, u is the fluid velocity, p is the fluid pressure and 7 are the viscous
stresses. In the above equations, (t,,ty) represents the temporal bounds for the continuous problem.
For compressible fluid, the viscous stresses take the form:

r= ) (Vu+ (V) - 2V -ur). ©

where p is the dynamic viscosity of the fluid. It is a function of temperature (7) of the fluid and we
utilize Sutherland equation:
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In equation (8), E (= p[0.5(u - u) + €]) is the total energy of the system that includes the contribu-
tion from internal energy (pe) as well as the kinetic energy, 0.5(pu - u). We also define the following
relations:

p
EPYCy (1)
p = pRT, (12)
R = Cp—C,, (13)
v o= gi’. (14)



Here equation (12) defines the equation of state (EOS) and C), C,, are the specific heats at constant
pressure and volume respectively. The value of v is fixed as 1.4 in this work, specifying an underlying
assumption of a mono-atomic gas with constant specific heats.

We are using =, y, z (or x1, z2, x3) as the streamwise, vertical and spanwise directions,
respectively. The corresponding filtered pressure and velocity fields are u, v, w (or u; in Einstein
notation) and p. We will also be using subscripts ¢ and n to indicate the velocity components
tangential and normal to the airfoil surface. In most cases the physical quantities are normalized
using the incoming velocity, U,, the density p, and the airfoil chord, ¢. The under-resolved, subfilter-
scale stresses are modelled using models particularly suited to unstructured grids. A brief overview
of two such models used in the present study is given below.

2.2.2 Numerical model

SOD2D utilizes a spectral formulation of the Continuous Galerkin Finite Elements model (SEM)
applied to the spatial terms in the Navier-Stokes system, which we couple with an Entropy Viscosity
stabilization model, an operator split to convective terms, and a 4th order Runge-Kutta (RK) time
integration scheme.

2.2.2.1 Entropy Viscosity stabilization The low-dissipation aspect of the proposed scheme
stems from the use of a modified version of the Entropy Viscosity model proposed by [20]. The
basic idea is that variable viscosity diffusive terms are introduced to the mass, momentum and total
energy equations, with the viscosity being solution-dependent. This dependency is such that, when
shocks and other discontinuities occur, the scheme is reduced to a 1st order upwind equivalent,
while at smooth regimes it retains high order accuracy.

For each spectral element, first the numerical viscosity to be introduced is computed locally at
each node as,

pi = min(B%, Vy) (15)

where ¢ and V¢ are the upwind and entropy-viscosity at element e (and node a) respectively, with
the upwind term being constant over all nodes of an element. Then, we filter viscosity defined by
eqn. 15 using an elemental gaussian-convolution filter (9 points stencil) to get the final smoothed
nodal viscosity. The upwind and entropy-viscosity terms in eqn. 15 are calculated as,

= gl (Vi) e (16)
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where ¢© are the nodal values of the speed of sound. Here, the term R(n)¢ is the entropy-viscosity
residual at node a of an element e, for a given entropy function n. Notice that the denominator in
equation (17) is a normalization term obtained by taking the L! norm of the difference between
global nodal values of the entropy function (1) with its average (n,"?) over the entire discrete



domain. The residual term R(n)¢ is calculated as
R(n)y = My, ' Cyefo, (18)

where the entropy function flux, f = nu, is computed from the updated flow variables. For
compressible flows, it is convenient to use the physical definition of entropy itself by

p p

n=—Lom2), (19)
With the stabilization viscosity computed for each element, associated diffusive terms are added
in discrete form to each transport equation. For example, for the mass transport this equates to
adding (—%fv%e) on the LHS of equation (6). For the momentum and total energy equations,
the existing diffusive terms are modified by adding the new viscosity to the physical and turbulence
modeling ones, should they exist, although taking into account only the non-dilational components
of the shear stress tensor. The total energy transport also includes a temperature diffusion term
based on the entropy-viscosity, using the Prandtl number relation to transform artificial viscosity
into artificial conductivity.

2.3 Alya

Some wall-model large-eddy simulations reported in this study are performed using Alya, a multi-
physics, massively parallelized, unstructured finite-element simulation code developed at Barcelona
Supercomputing Center [21, 22]. It has been widely validated in many turbulent-flow configurations:
[23, 24, 25, 26, 27, 28].

The governing Navier-Stokes equations for incompressible flow (1) and (2) are discretised on a
collocated unstructured grid by means of low dissipation second-order conservative schemes [29].
The same interpolation scheme for velocity (u;) and pressure (p) is used in space. A third order
Runge-Kutta explicit time discretization is used to advance the solution in time, combined with
an eigenvalue-based time-step estimator [30]. A fractional time-step algorithm is used to solve the
resulting system of linear equations [27]. The Poisson equation is solved using a Deflated Conjugate
Gradient[31]; convergence and stopping criteria are based on the lagged algebraic residual. For
exact details on the numerical framework of Alya reader is referred to [27].

2.4 Wall-resolved large-eddy simulation

Large eddy simulation (LES) employs a filtering technique to differentiate the contributions of
different scales. The filtering (of ¢*) is represented mathematically as
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where Ay is the filter width. A spatially filtered resolved-scale formulation for the equations (1)-(2)
can be writted as

ou;
—L =0, 21
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where the extra stress term is given by
7A'ij = U/z-@ — didj. (23)

7;; is referred to as the sub-grid scale stresses (SGS) and needs to be modeled from known flow
quantities.

2.4.1 Vreman model
The Vreman [32] closure for 7;; is given by,
ﬂj = —2Vt§,‘j + Tkkéij/?), (24)

where S“ij = 0.5(0;4; + 0;4;) and d;; is the Kronecker delta function. They propose
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The model constant c is related to the Smagorinsky constant Cy by ¢ = 2.5C2. The choice of Cs,
however, is not straightforward, with studies suggesting different numeric value for different flow
configurations [32, 33]. One of the aims of the present study is to test the dependence of results for
some benchmark turbulent flow problems on the choice of Cs.

2.4.2 High-Pass Filter model

An alternative to the SGS model is the relaxation term (RT) model of Stolz et al. [34]. The
SGS stress terms of equation (21-22) is replaced with a damping factor acting only on the high
wavenumber components of the solution, to arrive at the high-pass-filter (HPF) LES model:
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where Hpy is a high-pass filter that is applied element-by-element. The solutions in the SEM
are locally represented on each element, ¢, e =1,..., F/, as Nth-order tensor-product Lagrange
interpolation polynomials in the reference element, Q= [—1,1]3. This representation can readily be
expressed as a tensor-product of Legendre polynomials, Py (In fact, Py are the bubble functions [35]
built to satisfy the boundary conditions). We can express u(x) = Zgzo Uy Py () for the Nth-order
polynomial approximation on [—1,1] where @y, = ﬁ Z;V:O ujPy(z;). Our low-pass filter with m
modes dampens the top m modes quadratically by defining

N
i(x) = Fyu(z) = Y opiip Py(x), (30)
k=0

with {0} = (mn:i)Q}?;l fork =N —m+iand o = 1 for k < N —m. For example, we have

o6 = (2/3)2, 07 = (1/3)%, and og = 0 when using three modes (m = 3) for N = 8 and o7 = (1/2)?
and og = 0 when using two modes (m = 2) for N = 8.

Our low-pass filter is applied globally once the computation per step is completed. Thus the
filtered velocity is no longer divergence free. On the other hand, our high-pass filter is applied
through the right-hand side as an additional term to ensure stability, mitigate overshoot, and
hold the divergence-free condition. If F' is the matrix operation that applies this one-dimensional
low-pass filter, then the three-dimensional low-pass filter Fn on QO is given by the Kronecker product,
F® F ® F, and the high-pass filter [17, 36] is

Hyvu=u—Fyu=u— (FQF® F)u. (31)

The relaxation term —yxHpy * @; provides the necessary drain of energy out of a coarsely
discretized system and, in the case of constant x, can be interpreted as a secondary filter operation
with the filter Qn * G applied every 1/(xAt) time steps [37] with At being the stepsize of the time
integration. Here we use xy = 5, which drains adequate energy to stabilize the simulations; however,
doubling the relaxation parameter to x = 10 does not significantly affect the results. The high-pass
filter used in polynomial space only affects the last mode in the Legendre spectrum of the solution
(velocity or temperature).

The high-wavenumber relaxation of the HPF model is similar to the approximate deconvolution
approach (ADM) [38]. It is attractive in that it can be tailored to directly act on marginally resolved
modes at the grid scale. Following [17, 36], the approach allows good prediction of transitional and
turbulent flows with minimal sensitivity to model coefficients. Furthermore, the high-pass filters
enable the computation of the structure function in the filtered or HPF structure-function model in
all spatial directions even for inhomogeneous flows, removing the arbitrariness of special treatment
of selected (e.g. wall-normal) directions.

2.5 Wall-modelled large-eddy simulations

In wall-modeled large-eddy simulations the need to resolve the inner layer of wall-turbulence is
bypassed by applying a stress-based boundary condition [39]. The shear-stress to applied on the
boundary is a function of flow dynamics away from the wall, which is still resolved to capture all
the relevant structures. Figure 1 is the pictorial representation of the idea of wall-modeling in LES.
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Figure 1: Illustration of the concept of a wall-modelled large-eddy simulation; y; is the channel
centre-line location; ys is the sampling location for the wall-model.

Following [40], the exact form of the traction boundary condition corresponding to the local
value of the momentum flux for each of the two horizontal components of the tangential velocity
u; = u—n(n-u) and for the case where the normal to the boundary direction is aligned with the
y-direction is obtained as follows:

ty = Twi

u %

where

Tw = U2, (33)
Here 7, to be applied as a boundary condition can be calculated from an appropriate model. These
include algebraic log-law based equilibrium wall models and machine-learning based wall-models.

2.5.1 Equilibrium wall models

The simplest approach of wall-modeling is to neglect all terms in the streamwise momentum
equation (7) except the Reynolds-stress gradient. This implies that the fluid acceleration, the
pressure gradient and viscous effects at the sampling location are negligible. The log-law,

1
B L
Uy K

In(y") + B, (34)

where k is the Von-Kdrman constant, B is constant of proportionality and y* = ¥/s, is the wall
distance (y) in viscous length scale (0, = v/u,), governs the dynamics of wall-attached turbulent
flows under the above mentioned restrictions. In this study we have taken values x = 0.41 and
B = 5.0, which are representative for flow over smooth walls. Two modifications to the above
expression, namely Reichardt’s and Spalding’s wall-models, take the following form,
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where, using ¢ = ku™ in eqn. 36 we arrive at 35.

2.5.2 Data driven gradient-boosted decision tree model

A brief introduction is given about the machine-learning python library used for the present work
termed Extreme Gradient Boosted (XGBoost) decision tree model. The current work is based on
the approach outlined in [41] for Alya. We refer to [42] for further details about XGBoost.

2.5.2.1 Introduction to decision trees ensambles For a given data set with n examples and
m features D = (x;,v;)(|D| = n,z; € R™,y; € R), a tree ensemble model uses K additive functions
to predict the output as

K

gi=>_ felmi), freF, (37)

k=1

where F = {f(z) = wq(w)} (¢ :R™ — T,w € RT) is the space of regression and classification trees
(also termed CARTS). Here g represents the structure of each tree that maps an example to the
corresponding leaf index and T is the number of leaves in the tree. Each fi corresponds to an
independent tree structure g and leaf weights w. Unlike decision trees, each regression tree contains
a continuous score on each of the leaf, we use w; to represent score on ith leaf. For a given example,
we will use the decision rules in the trees (given by ¢) to classify it into the leaves and calculate the
final prediction by summing up the score in the corresponding leaves (given by w). To learn the set
of functions used in the model, we minimize the following reqularized objective

L(o) = 1(y) + > Qfr), (38)
i k
where Q(f) = 4T + %)\HwHQ. (39)

Here [ is a differentiable convex loss function that measures the difference between the prediction g;
and the target y;. The second term 2 penalizes the complexity of the model (i.e., the regression
tree functions). The additional regularization term helps to smooth the final learnt weights to avoid
over-fitting. Intuitively, the regularized objective will tend to select a model employing simple and
predictive functions.

2.5.2.2 Introduction to gradient boosting: X(Boost python library The tree ensemble
model in (38) includes functions as parameters and cannot be optimized using traditional optimization
methods in FEuclidean space. Instead, the model is trained in an additive manner. Formally, let y(t)



be the prediction of the ith instance at the tth iteration, we will need to add f; to minimize the
following objective

£0 =1 (70 + ), ) + S0 “0)

This means we add the f; that most improves our model according to equation (38). In general,
Taylor expansion of the loss function up to the second order is retained, yielding

ey [l (gf‘l),yi) + gife(®i) + ;hiff(mi)} +Q(f1), (41)

)

where g; = Oggtfl)l (g)i(t_l),yi) and h; = 8;§t_1)l (gjgt_l),yo . (42)

After removal of all the constants, the specific objective at step ¢t becomes:

£® = Z [Qift(wi) + ;hifz?(wi)] + Q(f1), (43)

i

This becomes the optimization goal for the new tree. One important advantage of this definition is
that the value of the objective function only depends on g; and h;, such that different loss functions
can be optimized using exactly the same solver that takes g; and h; as input.

2.5.2.3 Integration with Alya and Nek5000 A few challenges remain in order to couple
external machine-learning libraries to efficiently parallelized CFD codes like Alya and Nek5000.
In order to maintain performance, model training for machine learning algorithm cannot be done
every time for a new simulation run. We save the model trained on any data-set and use a coupling
between Alya and Python without much performance degradation. Python objects hierarchy is
converted into a byte stream so that it can be reused like an algebraic model. This coupling, however,
is not direct. First, the simulation data is moved to Python through C. This is done in two stages:

1. C-Foreign Function Interface (CFFI): This python library is used (a) to convert C datatypes
to python datatypes, and (b) to ‘embed’ the python functions to fortran as a ‘dynamic-link
library’ (this is needed because python is not an embedded programming language).

2. allow conversion of fortran datatypes to C datatypes in the main program using ISO_C_BINDING
(an intrinsic library for C interoperability).

Then we compile the fortran program linking the embedded file.

2.5.3 A note on sampling and averaging

The strategy of sampling and the averaging to be performed on the sampled flow velocities (see
Figure 1) are different in Nek5000 to that of SOD2D (and Alya). Utilizing the periodicity of channel
flow, in Nek5000, we first perform spatial averaging of the velocity field in the homogeneous directions
(streamwise and spanwise). Then, we interpolate the space averaged fields on a wall-normal line,

10
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Figure 2: Schematic showing the coupling of communication between Alya’s source code (in Fortran)
and Python’s XGBoost library.

initialized during the pre-processing stage of the simulation, at every time-step. This interpolating
line has 200 data-points from 0 < y/§ < 1, stretched by a hyperbolic tangent relation as

v
it t hgnilwm)) Bm)’ O w

where y}' is the wall-normal coordinate for uniformly distributed grid, NNy is total number of grids
in y-direction and (3, is a stretching parameter (we use f3,, = 2.0). It should be noted that this
kind of interpolation is used only for convenience as it was available for the collection of statistics in
the channel. Interpolated velocity at the chosen sampling location (y = ys in Figure 1) is finally fed
into the wall-model to calculate the wall-shear to be applied as a boundary condition.

In Nek5000, for the channel flow case that has two homogeneous (periodic) directions, WMLES we
use the mean field eddy viscosity approach of [43] as implemented in [44], in which the SGS stress
tensors 7_;]53 and Tgfs are expressed in terms of a non-isotropic, mean-field eddy viscosity (MFEV)
obtained by the horizontally-averaged mean strain rate, and an isotropic, fluctuating part. The law
of the wall is effected through the use of the mean-field eddy viscosity concept and the approach
originally used by [40] is used to convert the horizontally-averaged traction to local values based
on the local slip velocity in each of the horizontal directions. For other cases, e.g. with only one
periodic direction, spatial averaging is performed only in that homogeneous direction and MFEV is
not used. For more complex cases with no homogeneous directions, local instantaneous values of
the velocity are sampled along the slip-wall boundary for the evaluations of wall-shear. However,
this is part of an on-going investigation and is not reported here.

In SOD2D and Alya, on the other hand, we perform only short-window time averaging of the
instantaneous flow velocities to be utilized in the wall-model. Furthermore, the choice of sampling
location is local; each boundary node samples the velocity at a distance that is (pre) determined
by the size of local mesh size. Thus, each boundary node has a unique value of wall-shear that it
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applies as a boundary condition.

The strategy of Nek5000 is simple and fast, such that the sampling location is independent of
underlying mesh used. We observed that the wall-modeling strategy in Nek5000 also shows a faster
rate of convergence of results. It is, however, suited only to periodic box flow configuration. To
make it applicable to a variety of flow problems we will be working on generalizing its sampling
strategy, similar to SOD2D and Alya.

2.6 Averaging operators

Finally, we note the averaging approach employed in our CFD codes. In studies of turbulent flows
it is customary to average the turbulent quantities in both time and the statistically homogeneous
spatial direction(s). Since we will be presenting results both for incompressible and compressible
flows, it is convenient to introduce two averaging operators appropriate for such flow and establish
a connection between them, with the sole purpose of comparing different flow quantities between
the two codes.

For incompressible flow, we follow Reynolds decomposition of a fluctuating quantity ¢ as
p=0+¢, (45)

where () suggests time averaging, with the property that ¢’ = 0. If the problem has homogeneous
spatial directions, averaging will also be performed in those directions to converge to a steady state
solution faster. Spatial averaging in homogeneous directions will be denoted by (-). Naturally, any
quantity ¢ averaged both in time-and-space will be represented by either (-) or a capital letter ®.

Finally, the turbulent stress tensor in an incompressible regime is denoted by u;u;
For compressible flow, on the other hand, we follow the method of density-averaged decomposi-
tion of Reynolds [45], also termed Favre averaging [46]. It is represented by

p=0+¢, (46)

where QNSE po/p. The Favre-averaged decomposition has the property that: (1) Q~5 = <;~5, (2) ¢" =0,
but (3) ¢” # 0. Following Favre averaging simplifies the flow quantities that can be compared with
those of the incompressible flow in a straightforward manner. For example, in compressible flow
the turbulent stress tensor is represented as u;'u;/ In the subsonic regime (M, < 0.2), we will be
referring to both (0 and u, u;

; as “Reynolds stresses”.

3 Results

3.1 Benchmark case I: Periodic channel flow

We now report on the wall-resolved large-eddy simulations of turbulent channel flow using Nek5000
and SOD2D. We will be using the data from [47], who performed DNS at the same flow configuration,
to conduct validation for the results obtained.
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3.1.1 Simulation setup

The simulations were conducted in a box of domain Q = L, x L, x L, = 2§ x 26 x 74, at bulk-flow
Reynolds number, Re, = Uyd /v, which corresponds to friction Reynolds number, Re, = u,d/v = 950.
Impenetrable-wall boundary conditions are imposed on the boundaries in wall-normal direction
(y) on velocity. Periodic boundary condition is utilized both in the streamwise (x) and spanwise
(z) directions. For initial condition, we utilize a velocity profile given by Reichardt’s log-law (35),
superimposed with random fluctuations to achieve a turbulent flow. Flow forcing strategy in the
two codes are somewhat different: while Nek5000 uses instantaneous flow forcing to maintain U, = 1
in the streamwise direction, SOD2D utilized a steady forcing based on apriori knowledge of the
case to achieve a unit bulk velocity. We have tested both the strategies (instantaneous vs steady) to
drive the flow in Nek5000; former strategy results in a reduced time to mitigate the transients of
the flow. The effect on final statistics, however, were found to be minimally impacted.

After initializing the simulations, flow statistics for a minimum of 100 & 25 convective time
units (1 CTU = §/Up) were discarded for Nek5000 and SOD2D. This corresponds to approximately
15 & 5 domain flow through time for Nek5000 and SOD2D, respectively. Then statistics were
collected for a minimum of 500 CTU for Nek5000 & 100 CTU for SOD2D, for the results discussed
here. Together with temporal averaging, we have also averaged the flow in two homogeneous
directions.

Table 1: Grid resolutions used for convergence study for the periodic channel flow at Re, = 950;
Neim, refers to the number of spectral elements used; V), refers to the polynomial order used inside the
spectral elements; Ny, is the total number of degrees of freedom (in million, M); 7, is the geometric
stretching ratio employed for generating the mesh in wall-normal direction; Az, Ay*, Azt denote
spacing in viscous units; €,, is the error in u,/Up, given by equation (47); At is the average
simulation time-step.

Vreman SGS model; Re, = 950

Case Noim Np Ngog(M) 1y Az™ Ay Az ey At
16 x 16 x 16 0.9 1.66 62 (1.8 —64.1) 31.1 -1.9 | 6.6 X 1073
Nek5000 24 x 24 x 24 6 2.9 1.38 40 (1.2 — 45) 20 04 | 51x1073
32 x 32 x 32 7.1 1.28 31 (0.87 —35.3) 155 0.7 | 4.6 x 1073
64 x 64 x 64 56.6 1.125 15 (0.46 — 18.0) 78 145 |24x1073
16 x 16 x 16 0.9 1.66 60.8 (1.8 —61.8) 30 4.1 ]12x10
SOD2D 24 x24x24 6 2.9 1.38 414 (1.28—44.5) 20.7 -0.1 | 9.4 x 107°
32 x 32 x 32 7.1 1.28 304 (0.85—34.5) 152 1.7 | 7.8 x 1079

3.1.2 Results: Grid convergence

A grid convergence study was conducted on four different resolutions: Coarse, Medium, Fine
and Extra-Fine for both Nek5000 and SOD2D. The meshes were generated using the open-source
grid-generation tool Gmsh[48]. Figure 3 shows the different grids used for the convergence study.
We conducted a h-refinement study, whereby the elements themselves are refined for each successive
refinement level, keeping the polynomial order the same. While uniform resolution was used in x
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Figure 3: Longitudinal section of spectral element meshes used for turbulent channel flow simulations
with both the codes; (a,b) Coarse mesh; (c¢,d) Medium mesh; (e,f) Fine mesh and (g,h) Extra-Fine
mesh. The left column shows element boundaries while the right column shows the Gauss-Lobatto-
Legendre (GLL) collocation points for a polynomial order of N = 6. For resolution details refer to
Table 1.

and z directions, grids in wall-normal direction were stretched using geometric progression series.
The stretching ratio (r5) together with other parameters related to the resolution are reported in
Table 1. We note that the Fine grid has a typical resolution (AzT ~ 30; Ayt < 1; Azt ~ 15) for a
wall-resolved LES calculation as mandated by various different studies in literature (see [1, 2]). Apart
from these three resolutions, we also used an over-resolved mesh (termed Extra-Fine) to perform
simulations with NekRS, further matching the resolutions reported by [47] shown in Figure 3(g,h).
However, for SOD2D the simulation on this Extra-Fine resolution becomes quite expensive due
to the acoustic-based CFL condition, yielding much smaller time-steps than Nek5000. Hence, a
converged statistics could not be obtained for inclusion in this report and those calculations would

be reserved for future work.

Figures 4-5 show the statistical results obtained for the grid refinement study for NekRS and
SOD2D, respectively. We notice that the mean streamwise velocity (U/Uy) collapses nicely with the
data of [47], both in the outer (subplot (a)) and inner (subplot (b)) units, for Medium and Fine
grids. Wall-distance in inner scale (or plus units) is defined as y* = u,d/v, where u, = /7, /p is
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the friction velocity, which can be calculated from wall-shear stress (7, = voU/0y|,,.;). Table 1
also shows the error in u, defined as
0, = 100(ul —ulel) furel”, (47)

where uf = u, /Uy is the non-dimensionalized friction velocity and ur’” is the reference value of
friction velocity taken from the data of [47]. Both Medium and Fine grid have less than 2% error in
scaled friction velocity.

Figures 4 and 5(c,d) show the resolved root-mean-square (rms) value of normal Reynolds
fluctuations (u, v, w)yms, and resolved Reynolds-shear stress (RSS) (u/v’). They are defined as

Urms = V u/ul; Urms = V W; Wrms = VW'w'. (48)

Overall, the corroboration between our results and the DNS data is quite good for Medium and Fine
grids. Henceforth, unless otherwise stated, all the results are discussed for the Fine grid resolution.

3.1.3 Flow visualization

Figure 6 shows the instantaneous streamwise velocity for the three mesh resolutions used for the
two CFD codes. We notice that refinement of the resolution results in visibly detailed capturing of
instantaneous structures for both the codes. There are, however, some observable difference between
the results for Nek5000 and SOD2D. For Nek5000 we can clearly see some imprint of the mesh
on structures at the lowest mesh resolution (Figure 6(a)). Such imprints are an artifact of the C°
continuity of the numerical method and have been reported before, most recently by [49]. However,
we also clearly observe that further refinement of the mesh remove these imprints, which has also
been observed in the study of [49]. Although SOD2D is also based on continuous spectral element
method, the mesh imprints are suppressed in the results shown in Figure 6(b,d,f).

Figure 7 shows the distribution of instantaneous entropy-viscosity for SOD2D. As expected, for
low-Mach number (current study uses free-stream Mach, M, = 0.2) flow the values remain small,
with maximum scaled instantaneous values of entropy-viscosity v, ~ O(1072).

Lastly, we discuss and compare the instantaneous structures between the two codes in terms of
low-speed streak spacing. Low-speed streaks are precursors to turbulence generation mechanism as
outlined by various different studies (see [50, 51] among other), and an accurate prediction of such
structures are fundamental to capturing the dynamics of turbulent flows. Figure 8 shows the contours
of streamwise fluctuations at three different 4y locations, representative of the distinct regions
of channel flow based on flow physics: the inner region of maximum TKE production (y* = 11),
the buffer region (y* = 30) and the log-law region (y™ = 60) for Nek5000 (Figure 8(a,c,e)) and
SOD2D (Figure 8(b,d,f)). We observe the streaky-ness of the velocity profiles quite clearly at all
the locations for both the codes. We also note that as we move away from the wall the streaks
becomes wider, a well-know observation made by several other studies [52]. These characteristics
of wall-streaks between Nek5000 and SOD2D looks quite similar and, thus, the resolution seems
adequate for capturing the turbulence dynamics.
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Periodic channel flow at Re, = 19000
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Figure 4: Grid convergence study for channel flow with NekRS at Re, = 950; (a) streamwise
velocity in outer units; (b) streamwise velocity in inner units; (¢) RMS of normal-component of
turbulent stresses; (d) resolved Reynolds stresses.

3.1.4 Results: Flow Statistics

Figure 9 compares the results of Nek5000, NekRS and SOD2D against each other at the Fine grid
resolution mentioned in Table 1. As mentioned previously, since Nek5000 and NekRS use the same
numerical framework, they yield virtually identical results. Henceforth, we will show instantaneous
and statistical results only from NekRS and any conclusions drawn should also be equally applicable
to Nek5000. The results for SOD2D also compare very well with that of Nek5000/RS for all the
statistical quantities tested. We do, however, note a slight over-prediction of u/v/ for SOD2D
when compared to Nek5000/RS. This could be due to smaller time-averaging period for SOD2D as
compared to Nek5000/RS mentioned in the previous section. However, since the differences are
small we find both Nek5000 and SOD2D well benchmarked against each other for channel flow case.
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Periodic channel flow at Re, = 19000
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Figure 5: Grid convergence study for channel flow with SOD2D at Re, = 950; (a) streamwise
velocity in outer units; (b) streamwise velocity in inner units; (¢) RMS of normal-component of
turbulent stresses; (d) resolved Reynolds stresses

3.1.5 Results: GPU performance

We have explored a sequence of PDE-motivated bake-off problems designed to establish best practices
for efficient high-order simulations across a variety of codes and platforms [53, 54]. As part of the
benchmarking process, we are also investigating parallel performance for the two codes, NekRS
and SOD2D. We tested strong-scaling performance on the Argonne Leadership Computing Facility
(ALCF) Polaris, consisting of 560 nodes with 4 NVIDIA A100 GPUs per node.

For NekRS, we used a restart file at time 1000 as an initial condition with fully developed
turbulent profile and ran for 1000 steps. In order to avoid initial transient behavior, we measured
the average (wall) time per step, ts.p, in seconds over steps 901-1000. We used a semi-implicit
scheme (2nd-order backward differencing along the characteristics using 4th-order Runge-Kutta for
the hyperbolic advection part with 1 substep for NekRS [55]), which permits CFL = 1.7 averaged
over steps 901-1000. v; and p; are the average interation numbers per step over 901-1000 steps. For
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Figure 6: Visualization of instantaneous streamwise velocity (u/Up,) on a xy-plane for channel flow
at Re; = 950 for (a,c,e) Nek5000; (b,d,f) SOD2D; (a,b) Coarse resolution; (c,d) Medium resolution;
(e,f) Fine resolution.

Figure 7: Visualization of instantaneous entropy-viscosity (i./f1f) on a zy-plane for channel flow
at Re; = 950 on Fine mesh for SOD2D.

SOD2D, we used a fully explicit Runge-Kutta 4*" order time integration with CFL = 1.5. Starting
from a fully-developed turbulent profile the simulations were ran for 10000 steps, measuring e
every 10" step. Average of last 100 values thus collected were used to calculate the performance of
the code.

Initial timing data is presented in Table 2 for a test case of channel flow with resolution 3843
using 8-36 GPUs. We see that, for the case of 32 GPUs, there is an anomaly in the pressure
iteration counts for NekRS that needs to be investigated, but the parallel behavior of the two codes
is remarkably similar in terms of time per step.
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Figure 8: Visualization of instantaneous streamwise velocity (u/Uy), for channel flow at Re, = 950,
on wall-parallel planes at three different y* locations; (top) y* = 11; (middle) y* = 30; (bottom)
yT = 60; (a,c,e) NekRS; (b,d,f) SOD2D.

3.2 Benchmark Case II: Periodic pipe flow

Next, we discuss our results for the V & V of turbulent pipe flow using Nek5000 and SOD2D using
wall-resolved large-eddy simulations. We will be using the data of [56], who performed DNS at the
same flow configuration, to conduct extensive validation for the results obtained from both the
codes.

3.2.1 Simulation setup

We carried out simulations of turbulent flow in a circular pipe of radius R and an axial flow domain
length L, = 12R. Similar to the channel flow case in the previous section, we used periodic
boundary condition in the axial (z) direction and impenetrable wall boundary conditions are
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Periodic channel flow at Re, = 19000
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Figure 9: Statistics for channel flow at Re, = 950; (a) streamwise velocity in outer units; (b)
streamwise velocity in inner units; (¢) RMS of normal turbulent stresses; (d) resolved Reynolds
stresses.

imposed on the pipe boundaries. These simulations were conducted at a bulk Reynolds number
Rep, = 2RUy /v = 37700, which should yield a friction Reynolds number, Re, = u;R/v = 1000.
Flow statistics were collected for a minimum of 1000 CTU for Nek5000 & 100 CTU for SOD2D,
where (1CTU = 2R/Uy), after reaching the steady-state. Together with temporal averaging, we
have also averaged the flow in spanwise (z) and azimuthal () directions. Since the mesh utilized
(see Figure 10) does not conform in the f-direction, the time-and-span averaged results were first
interpolated on a r — 6 structured mesh. The interpolation mesh utilized contains 97 & 385 points
in 7, 6 directions respectively, and the grid was stretched in r-direction using a hyperbolic relation
(similar to eqn. 44). The interpolation scheme utilized for NekRS and SOD2D, however, are different.
NekRS utilizes a scheme (see [57] for details) that preserves the spectral accuracy of the code during
grid-to-grid interpolation. For SOD2D, on the other hand, we are using only a second order accurate
interpolation. As a consequence of using lower-order interpolation scheme, coupled with smaller
statistics collection time, some loss in accuracy for SOD2D results when compared to NekRS is
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Table 2: Performance of NekRS and SOD2D on Polaris. Tests have been performed for Channel
flow at a resolution of 384 x 384 x 384 with F = 643, N = 6, and the total number of grid points of
56 millions. At = 1.5e-03 (CFL = 1.7) and At = 6.5¢-05 (CFL = 1.5) are used for NekRS and
SOD2D, respectively.

Performance on Polaris

Code nodes GPUs dofs/GPU v; i tstep (s) Py
2 8 7.0779e+06 2.97 2.13 2.3512e-01 100

3 12 4.7186e+06 2.97 2.14 1.7690e-01 88.6

4 16 3.5389%e+06 2.97 2.18 1.4138e-01 &83.1

Nek5000 5 20 2.8312e+06 2.97 2.09 1.2734e-01 73.8
6 24 2.3593e+06 2.97 2.16 1.1305¢-01 69.3

8 32 1.7695e+06 2.97 5.16 1.3139e-01 44.7

9 36 1.5729e4+06 2.97 2.13 9.4724e-02 55.1

2 8 7.0779e+06 - - 3.4603e-01 100

3 12 4.7186e406 - - 2.4769e-01 93.1

4 16 3.5389e+06 - - 1.9941e-01 86.7

SOD2D 5 20 2.8312e+06 - - 1.6249e-01 85.1
6 24 2.3593e+06 - - 1.3526e-01 85.2

8 32 1.7695e4-06 - - 1.0868e-01 79.5

9 36 1.5729¢+06 - - 9.6119e-02 80.0

Table 3: Grid resolutions used for convergence study for the periodic pipe flow at Re,; = 1000;
Ny refers to the number of spectral elements at each cross-plane; N, refers to the polynomial
order used within the spectral elements; Ng,r is the total number of grid points (in million, M);
Art,A(RO)T, Az denote spacings in viscous units; €, is the error in u, /Uy, given by (47); At is
the average simulation time-step.

Vreman SGS model; Re, = 1000

Case  Npy X N. N, Ngoy(M) Art A(RO)T AzT ¢, UpyAt/D
96 x 14 0.4 4.8 56 122 -9.5 [ 85 x 1073

NekRS 352x28 7 3.2 2.1 28 62 -1.5|3.8x1073
1260 x 56 23.8 1.1 13 31 0.1 |21x103

96 x 14 0.35 5.6 65 142 93 [ 27 x 1071

SOD2D 352x28 6 2.1 2.5 33 71 -3.8|13x10°¢
1260 x 56 15.2 1.2 14 35 -14|73x107°

expected. We will be working on utilizing high-order shape functions for interpolation in SOD2D in
the future.

3.2.2 Grid convergence study

Before conducting the production runs a question that we addressed with these pipe flow simulations
regards the optimal value of Smagorinsky parameter (Cs) to be used with the Vreman model. We
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Figure 10: Cross section of spectral element meshes used for turbulent pipe flow simulations; (a,d)
Coarse mesh; (b,e) Medium mesh; and (¢,f) Fine mesh. The top row shows the element boundaries
while the bottom row shows the Gauss-Lobatto-Legendre (GLL) collocation points for a polynomial
order of N = 6. For resolution details refer to Table 3.

Table 4: Effect of Smagorinsky constant in Vreman model on flow statistics. These tests have been
performed on the Medium grid resolution with NekRS for turbulent pipe flow mentioned in Table 3.

Case SGS model ¢, Re,

- HPF -0.8 991
Cy=0.2 Vreman -10.1 891
Cs=0.1 Vreman -3.9 959
Cs =0.065 Vreman -1.4 985
Cs =0.0325 Vreman 0.8 1007
Cs =0.0 Vreman 2.2 1020

tested various different values (listed in Table 4), together with the default setting of Nek5000/RS
which uses a High-Pass Filter (HPF) to account for turbulent dissipation contribution from the
unresolved scales. Figure 11 shows the effect of Cs on flow statistics for a Medium grid resolution.
We clearly notice the strong impact of Smogorinsky parameter and, hence, point to the need to
systematically fix it to an optimal value before the production runs. From Figure 11 we note that
a value of Cs ~ 0.065 yields results that are consistent with the data of Khoury et al. [56], and
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Periodic pipe flow at Rep = 38000
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Figure 11: Effect of Smagorinsky model parameter (Cs) on turbulent pipe flow using NekRS at
Re, =1000; (a) streamwise velocity (U,/Up) in outer units; (b) streamwise velocity in inner units;
(¢) normal stress components; and (d) resolved Reynolds stresses

hence we used this value throughout all the pipe flow simulations with NekRS. The effect of Cj
on WRLES with SOD2D, however, was not conducted and would be a topic of our future work.
It would be interesting to see how changes in C; affects the compressible flow variables within an
entropy-viscosity formulation. For this we use Cs = 0.1 with SOD2D.

Figures 12-13 show the results obtained for the grid refinement study for Nek5000 and SOD2D
respectively. We notice that the mean axial velocity (U, /Uy) collapses nicely with the data of [56],
both in the outer (Figure 12(a)) and inner (Figure 12(b)) units, for Medium and Fine grids for the
two codes. The error in u, is also reported in Table 3. Since we are using much coarser resolution
than channel flow in the previous section, u, errros are more pronounced for both Medium and
Fine grid but still under 5% when compared to DNS.

Figures 12-13(c,d) show the resolved root-mean-square (rms) value of normal Reynolds fluctu-
ations in polar coordinates (uy,ug, u;)rms, and resolved Reynolds-shear stress (RSS) (u,u,.). They
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Periodic pipe flow at Rep = 37700
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Figure 12: Grid convergence study for pipe flow using NekRS at Re; = 1000; (a) streamwise
velocity (U,/Up) in outer units; (b) streamwise velocity in inner units; (¢) normal turbulent stresses;
(d) resolved Reynolds stress.

are defined as

_ / / . _ / ’ . _ / / 49
u"“rms - UTUT7 uerms - u9u97 uzrms - uzuz ( )

Overall, the corroboration between our results and the DNS data is adequate for Medium and Fine
grids and, hence, all the results discussed henceforth are for the Medium grid resolution only.

3.2.3 Flow visualization

Figure 14 shows the instantaneous axial velocity for the two CFD codes utilized in this study, at the
three resolution levels reported in Table 3. Similar to the channel flow case, we observe the mesh
imprints at the Coarse resolution level in NekRS (Figure 14(a)), which is not visible at the Medium
and Fine resolutions(Figure 14 (c,e)). The finer turbulent fluctuations of SOD2D (Figure 14 (b,d,f))
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Periodic pipe flow at Rep = 37700
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Figure 13: Grid convergence study for pipe flow using SOD2D at Re, = 1000; (a) axial velocity
(U./Up) in outer units; (b) axial velocity in inner units; (¢) normal turbulent stresses; (d) resolved
Reynolds stress.

look similar to that of NekRS at all resolution levels.

3.2.4 Flow statistics

Figure 15 compares the statistical results of NekRS and SOD2D for pipe flow Medium grid resolution
mentioned in Table 1. Since we have utilized a coarser resolution at each level for the pipe flow
(when compared to channel flow in Section 3.1.1), we observe some difference in the Medium and the
Fine resolution, particularly for the 2* order statistics which have strict requirements for resolution.
Nonetheless, our aim to perform V & V study at reduced resolution levels are considered met with
these results as the results look more accurate at successive refinement levels for NekRS.

Figure 15 compares the results for SOD2D with Nek5000/RS at the Medium grid resolution
for various statistical quantities. We observed very good match in the first-order statistics. There
are some discrepancies in the 2" order statistics, which seem related to low statistics collection
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Figure 14: Visualization of instantaneous axial velocity (u,/Uy) for pipe flow at Re,; = 1000; (a,c,e)
Nek5000; (b,d,f) SOD2D; (a,b) Coarse resolution; (¢,d) Medium resolution; (e,f) Fine resolution;
mesh resolution are indicated in Table 3.

time for SOD2D as mentioned in the previous section.

26



Periodic pipe flow at Rep = 37700

[ (b)

201
15¢

T
= 10/
5 L

0.2 —NRS o DNSH
- SOD Ol -m=os -

0 05 1
(R—71)/R

Figure 15: Comparison of turbulent pipe flow results between NekRS and SOD2D at Re, = 1000
on the Fine grid resolution; (a) axial velocity (U,/Us) in outer units; (b) axial velocity in inner
units; (¢) normal turbulent stresses; (d) resolved Reynolds stress.

3.3 Implementation and testing of wall-models for LES in Nek5000

In this final section, we report on our initial effort to implement wall-models for large-eddy simulations.
We will be using benchmark problem of periodic channel flow for the validation part. The aim was
to implement both the conventional as well as machine-learning wall-models in Nek5000. For the
conventional wall-modeling, we implemented the standard and Reichardt’s variant of the log-law
models described in detail in Section 2. For the machine-learning part, we followed the approach of
[41], to implement decision-tree based wall-model. One specific aim of this study was to answer the
following question: can machine-learning wall-models trained on the data-set of one CFD code be
used with another CFD code, which might be potentially dissimilar in their numerical formulation?.
Towards that, we will be using the trained decision-tree based ML model from [41], who used a
low-order finite element code Alya (described in detail in Section Section 2), to perform wall-model
validation tests with spectral code Nek5000 on periodic channel flow.
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Results of wall-modeling reported in this section have been achieved by simulating channel
flow in a box of dimension 27 x 20 x w4, similar to one reported for WRLES in Section 3.1.1.
For Nek5000 we use 16 x 16 x 16 elements to discretize the domain, with a polynomial order,
p = 6. Here, there are two main differences from the wall-resolved LES cases. First, the grid in the
wall-normal direction remains uniform. And second, instead of a no-slip boundary condition, we
employ a slip boundary condition on the walls. For more details refer to Section 2. Since Alya uses
basic finite-elements, we use 96 x 96 x 96 quadrilateral elements to discretize the same domain size
mentioned above.

Figure 16 shows the effect of sampling location on the performance of the wall-model for
Nek5000. Here, we are using the standard log-law (with k = 0.4, B = 5.0). We note that the
differences in wall-models results for different sampling locations are apparent in inner scales . For
sampling location too close to the wall (red line in Figure 16(b)), we see the log-law mismatch
clearly. As we sample farther away from the wall, the log-law mismatch decreases significantly (two
tested locations at y™ = 60 and y* = 190 in Figure 16). We finally note that the wall-model results
presented here show enhanced accuracy than the corresponding wall-resolved calculation with the
same grid density (note the grids in wall-resolved calculations are stretched ). This could be due
to the increased resolution of the wall-model case in the centre of the channel as it uses grid with
uniform spacing.

Before presenting the results of machine learning WM for Nek5000, we also carried out a
verification study for Alya with different wall-model and a wall-resolved calculation. The sampling
location for wall-model calculations with Alya is fixed at 3™ grid location (corresponding to y* = 56).
The results are shown in Figure 17(a). We see that both the log-law (Reichardt’s law) and the
ML wall-models yield very good results, and show minimal log-law mismatch. This behavior is
consistent with the recommendation on wall-modeling in literature [39, 3].

Figure 17(b) shows the initial tests performed with ML wall-models in Nek5000, using the
decision tree model trained on the data of Alya. We observe that for low learning parameter
(red-dashed line in the figure) Nek5000 does not predict the correct log-law behaviour of the flow,
whereby the slope of the prediction does not match the correct value. This is in contrast to Alya
which predicts the behavior quite accurately. The predictions of Nek5000 improve as the learning
rate is increased. However, the accuracy of the ML wall-model in Nek5000 saturates with increasing
learning rate and there is still significant log-law mismatch in the results. This is also visible at the
instantaneous level in Figure 18, where we observed significant damping of velocity fluctuations in
Nek5000 when compared to Alya. The streaks are also less pronounced in Nek5000(Figure 18(¢c))
than in Alya (Figure 18(d)). One explanation for this difference in behaviour between Nek5000 and
Alya could be the difference in approach of applying the boundary condition for wall-models for the
two codes. As mentioned previously, the boundary condition in Alya is applied at each boundary
node using the local interpolated value of the velocity. For Nek5000, on the other hand, we apply
the boundary condition using a single interpolated value of interpolated velocity. Decision tree by
there very design work on classification and regression of input data. Hence, it might be worthwhile
to check their performance in Nek5000 if local velocity array, instead of a single value, is input to
the ML model. This will be addressed in our future work.
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WMLES of periodic channel flow at Re, = 19000
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Figure 16: Effect of sampling location on WMLES results for channel flow at Re, = 950 with
Nek5000; (a) streamwise velocity in outer units; (b) streamwise velocity in inner units; (¢) RMS of
normal turbulent stresses; (d) resolved Reynolds stresses

4 Conclusion

This study was aimed at two specific goals: first, to validate and verify two spectral-element based
CFD solvers, Nek5000/RS and SOD2D. Nek5000, and its GPU variant NekRS, is aimed at solving
incompressible flow problems with high accuracy and has been a standard in turbulence research
for many years. SOD2D, on the other hand, focuses on solving compressible fluid flow and uses an
entropy-visocsity formulation to capture flow discontinuities. We performed extensive validation of
the two codes for two benchmark turbulent flow configurations: periodic channel and pipe flows.
We demonstrated the accuracy of these codes through full statistical analysis, grid convergence and
turbulent structure analysis using wall-resolved large eddy simulations (WRLES).

In the second part of the study, we reported on our initial effort to implement and validate wall-
modeling strategies for large-eddy simulations in Nek5000. These included both the conventional,
log-law based wall models as well as decision-tree based machine-learning wall model. The question
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WMLES of periodic channel flow at Re; = 19000
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Figure 17: Comparison of wall-modeled large-eddy results for channel flow at Re, = 950 for (a)
Alya; (b) Nek5000 showing streamwise velocity in inner units; sampling location, yf ~ 60 for both
the codes; DT refers to number of decision tress that the ML model employs for learning.

WMLES of periodic channel flow at Rep; = 19000

Figure 18: visualization of instantaneous streamwise velocity (u/U,) on (a,b) x — y plane; (¢,d)
wall-parallel plane at y™ = 60; (a,c) Nek5000 and (b,d) Alya for ML based wall-model.

of interest for ML model is to check the accuracy of a ML wall-model trained on the data-set of a
low-order finite element based code in Nek5000/RS. We found that the results for the log-law based
wall-model agree very well with the resolved simulations, particularly for sampling locations deep in
the log layer. The results for ML wall-model, however, show significant log-law mismatch and need
further testing. As pointed out, the sampling strategy in Nek5000 might be problematic within the
context of decision-tree based wall modeling, and would be explored in detail in our future studies.
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