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ABSTRACT

Global methods for nonlinear complementarity problems formulate the problem as a system
of nonsmooth nonlinear equations approach, or use continuation to trace a path defined by
a smooth system of nonlinear equations. We formulate the nonlinear complementarity
problem as a bound-constrained nonlinear least squares problem. Algorithms based on this
formulation are applicable to general nonlinear complementarity problems, can be started
from any nonnegative starting point, and each iteration only requires the solution of systems
of linear equations. Convergence to a solution of the nonlinear complementarity problem
is guaranteed under reasonable regularity assumptions. The converge rate is (J-linear, Q-

superlinear, or Q-quadratic, depending on the tolerances used to solve the subproblems.
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Global Methods for Nonlinear Complementarity Problems

Jorge J. Moré

1 Introduction

The solution of economic equilibria has been an important motivation for the develop-
ment of algorithms for nonlinear complementarity problems. The work of Ahn [1] on the
PIES (Project Independence Evaluation System) project, in particular, created much inter-
est in the formulation and solution of economic equilibrium problems as complementarity
problems. In this paper we are concerned only with the complementarity formulation. For
additional information on economic equilibrium problems see the collection of papers edited
by Manne [30] and Nagurney [37]; Dirkse and Ferris [10] provide an interesting collection
of nonlinear complementarity problems.

The aim of current research on the numerical solution of nonlinear complementarity
problems has been to obtain algorithms with global convergence properties. This goal has

proved to be elusive. Global methods for the nonlinear complementarity problem
£>0, f(z)20, zTf(z)=0, (1.1)

specified by a mapping f : R® — R”, either transform (1.1) into a system of nonsmooth
nonlinear equations or use continuation to trace a path that leads, under suitable conditions,
to a solution of the nonlinear complementarity problem.

In the nonsmooth nonlinear equations approach, the nonlinear complementarity problem
is transformed into a system of nonlinear equations A(z) = 0 with a mapping A : R" — R"
that is continuous. but not differentiable everywhere. For example, in the approach studied
by Robinson [41], the nonlinear complementarity problem is formulated as the nonsmooth

system of nonlinear equations
f(I+)+I_ =0, (1.2)

where £y = max{z,0) and z_ = min(z,0). A computation shows that a solution z* of (1.2)
yields a solution z7 of the nonlinear complementarity problem (1.1). Conversely, a solution
x™ of (1.1) yields a solution z* — f(z™) of the nonsmooth system (1.2). This approach has
been pursued. in particular, by Ralph [40], Dirkse and Ferris [9], and Xiao and Harker
[47. 48].

Pang [3%] has also followed a nonsmooth approach. In Pang’s approach the nonlinear

complementarity problem is formulated as the constrained system of nonlinear equations

min(z, f(z)) = 0, z > 0. (1.3)
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Clearly, z* solves (1.3) if and only if z~ is a solution of the nonlinear complementarity
problem. This approach has been developed by Harker and Xiao [19], Pang and Gabriel [39],
Gabriel and Pang {14, 15], and Monteiro, Pang, and Wang [32].

The nonlinear complementarity problem (1.1) can also be formulated as the constrained

system of nonlinear equations

Mz,y)=0, >0, y>0, (1.4)

where h : R?" — R?*" is defined by

h(z,y) = ( f(g;)z’ y ) , | (1.5)

and Y is the diagonal matrix diag(y;). The nonlinear complementarity problem (1.1) is
equivalent to the system (1.4) because if the vector z* solves problem (1.1), then A(z*, y*) =
0 for y* = f(z") > 0, and conversely, if the pair (z*,y*) solves (1.4), then z* solves (1.1)
and y* = f(z™).

In the continuation approach proposed by McLinden [31] and Kojima, Mizuno, and
Noma [24], the nonlinear complementarity problem is transformed into the constrained
system of nonlinear equations

hz(r),y(r) =71 ( Z ) , >0, (z(r),y(r))>0.

Convergence results for this approach show that under suitable conditions there is a so-
lution (z(7),y(7)) that converges to a solution of the nonlinear complementarity problem.
The properties of the path (z(7),y(7)) have been explored in a series of papers by Kojima,
Mizuno, and Noma [25], Kojima, Megiddo, and Noma [23], and Kojima, Megiddo, and
Mizuno [22]. The continuation approach has received considerable attention in the mono-
tone case since it covers linear programming and convex quadratic programming. Indeed,
interior-point methods for linear complementarity problems can be viewed as modified New-
ton methods that follow the continuation path defined by (z(7),y(7)). See, for example,
the discussions in Wright [46] and Kojima, Megiddo, and Mizuno {22]. Recent work on
nonlinear monotone mappings includes Chen and Harker [4], Kojima, Noma, and Yoshise
[26], and Wright [45].

Disadvantages of the continuation approach are that the method breaks down if f does
not satisfy global assumptions that guarantee, in particular, that the solution (z(7), y(7))
of the system (1.4) exists for all 7 > 0 and that a starting point zp with zo > 0 and
f(xo) > 0 is required. The constrained nonsmooth equations approach, on the other hand,

is defined for all mappings f, but is guaranteed to converge to a solution of (1.1) only if the

iterates have a limit point that satisfies certain regularity assumptions. A disadvantage of




the nonsmooth equations approach is that the lack of differentiability invalidates classical
Newton and quasi-Newton methods, and thus it is necessary to device special purpose
methods for solving these systems.

Other approaches to the solution of (1.1) include transformation into a smooth system
of nonlinear equations (Mangasarian [28], Watson [44], Subramanian [43], Kanzow [21]),
and into an optimization problem (Fukushima [13], Mangasarian and Solodov [29], Kanzow
[20], Geiger and Kanzow [17]). For additional approaches, see the paper of Harker and
Pang [18]. Some of these approaches are related to the constrained nonsmooth equations
approach. For example, Fukushima [13] shows that z* solves the nonlinear complementarity
problem (1.1) if and only if z* is a global solution of

win {[| F(2)13 = lle = f(&) = [& = f(@)]4l3: 2 > 0}

Fukushima also shows that a stationary point for this problem is a solution of (1.1) if the
Jacobian matrix is positive definite at the stationary point. Global convergence results for
these approaches are generally weaker than those for the nonsmooth equations approach,
and thus we do not emphasize these results.

We formulate the nonlinear complementarity problem (1.1) as the bound-constrained
nonlinear least squares problem

min {—;—Hh(:cy)ll% x>0, y> 0}. (1.6)

We show that this approach is valid because, under reasonable conditions, stationary points
of (1.6) are solutions to the nonlinear complementarity problem (1.1). Moreover, we show
that our approach is valid under weaker conditions than the nonsmooth equations approach.

We also propose the use of a trust region method for the solution of (1.1). The trust
region method is defined for all differentiable mappings f. Moreover, global and superlinear
convergence to a solution of (1.1) takes place under reasonable conditions. We also point
out that implementation of the trust region method only requires the solution of systems
of linear equations: there is no need to solve either a linear programming problem or a
quadratic programming problem.

We begin the study of the system of equations defined by (1.4) and (1.5) by introduc-
ing the Py- and the P-functions. These two classes of function were introduced by Moré
and Rheinboldt [35] as nonlinear generalizations of the P- and Fp-matrices of Fiedler and
Ptik [11], and were first used for the study of nonlinear complementarity problems by
Moré [33, 34]. The material in Section 2 relates our work to that of Kojima, Megiddo, and
Noma [24, 25] and Kojima, Mizuno, and Noma [23] since their convergence results require
that f be a Fo-function in R}. As we shall see, the convergence results for the nonsmooth

systems approach, and the approach based on (1.6) are also related to the Fy- and the

P-functions.




In Section 3 we introduce a regularity assumption, and show that if z* is regular, then
any stationary point (z”, y*) of (1.6) produces a solution z* of the nonlinear complementarity
problem (1.1). Our objective is to provide conditions that guarantee that any limit point
of a sequence generated by an algorithm for (1.6) is a solution of (1.1). Conditions that
guarantee regularity are explored in Section 4. Qur results are similar to those obtained
by Pang and Gabriel [39], Gabriel and Pang (14, 15], Monteiro, Pang, and Wang [32], and
Xiao and Harker [47, 48], but we do not require any explicit assumptions of nonsingularity.

The global convergence of the trust region method is presented in Section 5, with the rate
of convergence analysis in Section 6. We show that under reasonable regularity assumptions,
the trust region method converges to a solution of the nonlinear complementarity problem
(1.1). The rate of convergence is Q-linear or -superlinear, depending on the choice of tol-
erances for the approximate solution of the subproblems. This analysis is of interest because

the nonlinear least squares problem (1.6) is degenerate from an optimization viewpoint.

In this paper || - || is the Euclidean norm. Vector inequalities apply to each component,
and thus z > 0 if all the components of z are nonnegative. The set R’} consists of all

r € R™ with z > 0, and R} is the set of all z > 0. Given an index set C, the vector z¢
consists of all components z; of z with i € C. For a matrix A € R™®*™, we use the notation

Ac for the principal submatrix of A with elements a;; and 4,7 € C.

2 Global properties

The P- and Pp-matrices of Fiedler and Ptdk [11] play a central role in the study of the
linear complementarity problem since A € R” is a P-matrix if and only if the linear com-
plementarity problem

x>0, Az +¢ >0, tT(Ac+q)=0

has a unique solution for any ¢ € R™. The nonlinear generalization of the P- and Py-matrices
are the P- and Py-functions. In this section we show, in particular, that f: R" — R" is
a Pp-function on R% if and only if the function A : R™ R>" defined by (1.5) is a
Fy-function on lR'i”.

A function f:R™— R"is a P-function in a set  if for each z and y in Q with = # y,

there is an index ¢ such that

(zi = y:)lfi(z) = fily)] > 0.

Similarly, f: R"® — R" is a P,-function in Q if for each z and y in Q with = # y, thereis
an index i such that

T # Ui, (zi — yi)l filz) — fi(y)] > 0.
The P and Fj-functions share many of the properties of P and Fj-matrices. For example,

every P-function is also a Py-function. Moreover, f is a Fp-function if and only if the
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function f. : R™ — R" defined by f.(z) = f(z) + ez is a P-function for all ¢ > 0. For
additional properties of these functions, see Moré and Rheinboldt [35]. ’

Theorem 2.1 The function f : R* — R" is a Py-function on RY if and only if the
function h : R?™ — R?" is a P,y-function on IR'_Z,_".

Proof. If h is a Py-function, then given  # z, there is an index ¢ such that Z; # x; and
(Z; — zi)[hi(Z,0) — hi(z,0)] > 0.
Since f;(z) = hi(z,0) for 1 <7 < n, we obtain that
(Z: — z)[f(2) — fi(z)] = (Zi — 2:)[hi(Z,0) — hi(,0)] > 0,

and thus f is a Py-function.

Assume now that f is a Py-function, and consider two pairs (Z, §) # (z, y). First consider
the case where £ # z. In this case the definition of a Py-function implies that there is an
index ¢ with Z; # z; and

(Z: = z:)[fi(E) - fi(z)] > 0.
If (£; — z;)(7i — ¥:) <0, then

(2 = 2)[i(Z, §) = hilz, y)] = (2i — 2)[fi(F) = ful@)] = (8i = 2:)(§i — z:) 2 0.
If, on the other hand, (%; — x;)(%; — ¥:) > 0, then
(F — ydlizi — yiwe] = (e — wi)l[(B — 9)Ti + (2 — zi)ys] 2 0.
This yields the desired result if £ # z. If £ = z, then
(G — y)lgigi — yizi] = (% — 9:)°2: 2 0
for all indices. This proves that £ is a Py-function. B

For differentiable mappings, Moré and Rheinboldt [35] proved that f is a Fp-function in
a rectangle Q if and only if f/(z) is a Po-matrix for each z € Q. We can combine this result
with Theorem 2.1 to obtain that if f is differentiable on R, then A is a Fp-function on
lRi" if and only if f'(z) is a Pyp-matrix for each z € RY. Stronger results can be obtained

if we restrict attention to RY ..

Theorem 2.2 [f f: R™ — R™ is differentiable at x € R} and f'(z) is a Py-matriz, then
h'(z,y) is a Py-matriz for any y € R. Moreover, if y > 0, then h'(z.y) is nonsingular.




Proof. The proof is along the same lines as that of Theorem 2.1. We need to show that for
any nonzero vector w € R*", there is an index i such that
w0, wlb(z.y)wli> 0 or wA0 ok (z,y)uli 0,

where w = (u,v). Assume that v # 0. Since f’(z) is a Py-matrix there is an index ¢ with
ui # 0 such that w;[f'(z)u]; > 0. If u;v; <0, then

wih'(z, y)wli = wilf'(z)ul; — wiv; > 0.
If, on the other hand, u;v; > 0, then
vi[P (2, Y)wlipn = vilyeus + zivi] = yiwiv; + 707 > 0.
This yields the desired result if w # 0. If u = 0, then
o[ (2, Y)W)ign = T2 > 0
for all indices. This proves that h/(z,y) is a Py-matrix.
Assume now that y > 0 and that A’'(z,y)w = 0. This implies that
fl(2)u = v, yiu; + z;v; = 0.

If w# 0, then there is an index i with u; # 0 such that u;{f’(z)u]; > 0. Hence, u;v; > 0.
This is not possible because y;u; + z;v; = 0, y; > 0, and u; # 0. Hence, we must have u = 0,
and thus v = f’(x)u = 0. This proves that h'(z,y) is nonsingular. B

Theorem 2.2 is closely related to Lemma 5.4 in the paper of Kojima, Megiddo, and
Noma [23]. However. they assume that z > 0 and do not show that h'(z,y) is a Pp-matrix.
In our situation Theorem 2.2 shows that if f is a Pp-function on R%, then (1.6) has no
statioanry points in the interior of IR2+". Indeed, if (z,y) is a stationary point with z > 0
and y > 0, then
W (z,y) h(z,y) = 0,
and since Theorem 2.2 shows that h'(z,y) is nonsingular, we must have A(z,y) = 0. In

particular, z;5; = 0. This contradicts our assumption that (z,y) is in the interior of 1R2+".

Theorem 2.3 The function f : R™ — R"™ is a P-function on R%}, if and only if the
function b : R*™ — R*" is a P-function on lRi’f*_
Proof. The proofis very similar to that of Theorem 2.1. W

Moré and Rheinboldt [35] proved that if f is differentiable on a rectangle © and fl(z)

is a P-matrix for each z € Q, then f is a P-function in §2; the converse is clearly false.

Combining this result with Theorem 2.3 we obtain that if f is differentiable on R} and

f'txr) is a P-matrix for each z € lR'i", then A is a P-function on ]Rﬁ_”+




3 Regularity

We want to show that if z” satisfies a regularity assumption, then any stationary point
(z*,y") of (1.6} yields a solution z* to the nounlinear complementarity problem (1.1). The
regularity assumption requires the introduction of index sets associated with a vector z in
R% . The first index set

C={i:z; >0, fi(z) 20, z;fi(z) =0}

is the set of indices that are complementary (C for complementary). Other indices can be

classified according to the sign of z; f;(z); we have the negative and positive indices
N={i:z; >0, fi(z) <0}, P={i:z; >0, fi(z) >0},

and the residual indices
R={i:z: =0, fi(z) <0}.

Note that these sets depend on a given z € R, but that the notation does not reflect this
dependence. This should not cause any confusion because the given z € R} will always be
clear from the context.

Definition 3.1 The vector z € R} is regular with respect to problem (1.6) if for any
nonzero z € R™ such that

ze =0, v <0, zp > 0, zr < 0, (3.1)

there is a vector p € R™ such that

pc <0, pr > 0, pr <0, (3.2)

with
T f'(z)p > 0. (3.3)

Our objective is to provide conditions that guarantee that any limit point of a sequence
generated by an algorithm for (1.6) is a solution of (1.1). Thus we are only interested in
the regularity of points of attraction for a minimization algorithm for (1.6)

A solution of the nonlinear complementarity problem (1.1) is regular according to this
definition. This is clear because at a solution of (1.1) the sets P, A/, and R are empty, and
thus the only vector z that satisfies (3.1) is the zero vector.

Also note that the regularity condition imposes a restriction on the rows of the Jacobian
matrix f'(z) with indices in

D=NUPUR.




The set D is the set of defective indices; indices in the set C are not relevant because z: = 0.
We usually choose p¢ = 0 and guarantee regularity by imposing conditions on (@) .
For example, note that if we assume that [f'(z)]p is positive definite, then z is regular
because we can choose p = z. In particular, z is regular if f'(z) is positive definite.

Theorem 3.2 Assume that f : R™ — R™ is differentiable on RY. If (z*, y*) is a stationary

point of (1.6), then z* is regular if and only if x* solves the nonlinear complementarity
problem (1.1).

Proof. We have already noted that if z* is a solution to the nonlinear complementarity
problem (1.1), then z* is regular, so we only need to prove the converse.

If (z,y) is a stationary point of the nonlinear least squares problem (3.2), then the
Kuhn-Tucker conditions imply that there are multipliers u and v such that

F@T YN[ f@-y\ [
-I X Yz R

where u and v satisfy the complementarity conditions

We express these conditions in terms of vectors z = f(z) — y, and w = Y2z as
flix) z+w=u, Xiy—z=u. (3.4)

The first relation will not be needed until the end of the proof. However, in the proof below
we make heavy use of the relationships z#y; — z; = v; and z; = fi(z) — ui-

First consider the case where z = 0. If z = 0, then f(z) = y > 0. Moreover, zly; = v;,
and since v;y; = 0, we must have z;y; = 0. Hence, z solves (1.1). In the remainder of the
proof we show that the regularity assumption implies that z = 0.

The first step in the proof is to show that

2 =0, zy < 0, zp > 0, zr < 0. (3.5)

We first show that zc = 0. Uf i € C, then z?y; — z; = v; shows that if z; = 0, then

s = —v; < 0. while z; = fi(z) — y; shows that if fi(x) = 0, then z; = —y; < 0. Hence,

2 < 0. If we assume that z; < 0, then v; = z?y; — z; > 0, and thus y; = 0 by the
>

complementarity conditions. This leads to the contradiction z; = fi(z) — y; > 0. Hence,
z = 0 in this case.

We prove that zp > 0 by considering two cases. If : € P and v; = 0, then z; = z2y;. We

cannot have y; = 0 because then z; = 0, but on the other hand, z = fi(z) > 0 for : € P.
This contradiction shows that y; > 0, and thus z; > 0. If i € P and »; > 0, then 7; = 0 by
complementarity, and thus z; = fi(z) > 0. Hence, we have shown that zp > 0.




The proof that zy» < 0 and that zg < 0 follows directly by noting that fi(z) < 0 for
i € NUR, that y; > 0, and that z; = f;(z) — u. '
The next step in the proof is to show that

we = 0, wy =0, wr = 0. (3.8)

We first prove that we = 0. Assume that ¢ € C. If z; = 0, then w; = 0 is immediate. If

z; > 0, then fi(z) = 0, and since we have already shown that z; = 0, we obtain that y; = 0.
Hence, w; = 0 as desired.

We prove that wp = 0 by first recalling that z?y; = z; + v; and that z; < 0 for i € A
Hence, z?y; < v;, and since y;v; = 0, we must have y; = 0. Hence, wp = 0. The proof that
wyr = 0 is immediate since z; = 0 for : € R. '

We also need to note that since z; > 0 for i € N U P, the complementarity conditions
show that

upy = 0, up = 0. (3.7
For the final step in the proof, let p be the vector guaranteed by the regularity assump-
tion, and assume that z # 0. The results (3.6) and (3.7), together with (3.2), clearly show
that
pr >0, qu < 0.

The Kuhn-Tucker conditions (3.4) imply that f/(z)Tz + w = u, and thus these inequalities
show that 27 f'(z)p < 0. This contradicts (3.3) and proves our result. H

Pang and Gabriel [39] proved a result similar to Theorem 3.2. They considered the
problem

min {%“H(.IZ)HZ ir > 0} , (3.8)
where

H(z) = min(z, f(z)),

and showed that r € R} is a stationary point for this problem if and only if z € R} is
s-regular, in the sense that there is a p € R™ such that

[f(e)pli = ~filz) i fi(x) <z, 2>0
(Flle)pl; > = file) i flz) <z 2zi=0
(f'(e)pl, € =filz) i filz) =i 2;>0

and
pi > —z; if fi(z)<zy, ;=0
p:
pi

IN IV

—-I; if f1(.L') =z;, ; >0
—z; if fi(z)> z;or fi(z) =z, x; =0.




A difference between our regularity assumption and s-regularity is that s-regularity requires
that the vector p satisfy the equations

[F'@pli = —fi(2), i€l ={i:fiz) <z z;>0}.

This can be satisfied for arbitrary f only if we assume that [f'(z)]7 is nonsingular.

Also note that the notion of s-tegularity depends on the scaling of f; that is, if we
consider the scaled function f,(z) = af(z) where a > 0, then f may be s-regular at a given
z, but f,; can fail to be s-regular at z. The dependence of s-regularity on the scaling can
be explained by noting that problem (3.8) depends on the scaling of f. On the other hand.
a computation shows that the stationary points of (1.6) are unchanged under this change
of scale. ‘

We should also consider more general scalings since the nonlinear complementarity prob-
lem (1.1) is invariant under the change of scale defined by f,(z) = D, f(Dyz), where D,
and D, are diagonal matrices with positive diagonal entries. Note, however, that stationary
points of (1.6) are not invariant under this change of scale unless we replace the Euclidean
norm by a scaled norm that reflects the scaling in the problem.

An advantage of our approach is that most algorithms for solving the minimization
problem (1.6) can be shown to generate sequences {(zk.,yr)} such that any limit point
(z*,y*) of {(£&,yx)} is a stationary point of (1.6). Hence, Theorem 3.2 shows that if
< is regular, then z* is a solution of the nonlinear complementarity problem (1.1). The
assumptions needed to obtain this result are usually that f is continuously differentiable on
R’} and that the level set

{(z,y) € R} : [|A(z, )l < 1A(zo, yo)ll}

is bounded. Pang and Gabriel [39], and Gabriel and Pang [14] can show that limit points
are solutions of the nonlinear complementarity problem (l.1) only if they assume that z* is

s-regular and [f'(z™)]7 is nonsingular for any index set Z such that
{i:file™) <zl z; >0} CTC{i: fi(z") <ax}}.

[n their terminology, they need to assume that the limit z* is b-regular.
The regularity assumption needed by the algorithm of Xiao and Harker [47, 48] is similar
in the sense that limit points of the sequence generated by their algorithm are guaranteed

to be solutions of (1.1) only if [f/(z*)]z is nonsingular for any index set Z such that
{i:z; >0y C T C{i:z]>0}.

We provide a precise definition of this regularity assumption at the end of the next section.
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4 Regularity Conditions

[n this section we explore conditions that guarantee regularity of z in terms of the Jacobian
matrix f'(z). This requires the introduction of two classes of matrices that have played an
important role in the study of complementarity problems.

A matrix A € R™™" is a P-matrix if for each z # 0 there is an index i such that
z;[Az)]; > 0. Similarly, a matrix A € R™*™ is a Pp-matrix if for each z # 0 there is an
index ¢ such that z; # 0 and z;[Az]; > 0.

The P-matrices were introduced by Fiedler and Ptdk [11] as generalizations of the pos-
itive definite matrices, the M-matrices, and the irreducibly diagonally dominant matrices.
One of the main reasons for the importance of the P-matrices in the study of linear comple-
mentarity problems is that A € R” is a P-matrix if and only if the linear complementarity
problem

z >0, Az +4q 20, T (Az +¢) =0

has a unique solution for any q € R"™.

Fiedler and Ptk [12] also defined the S-matrices: A matrix A € R™"*" is an S-matrix
if there is an z # 0 such that z > 0 and Az > 0, while A € R™*™ is an Sp-matrix if there
is an z # 0 such that z > 0 and Az > 0. Clearly, A is an S-matrix if and only if the above
linear complementarity is feasible for all ¢ € R™.

The P-matrices and S-matrices are related. Indeed, a P-matrix must be an S-matrix,
and any Pp-matrix must be an Sp-matrix. This result of Fiedler and Ptak [12] is a direct
consequence of the following classical theorem of the alternative.

Theorem 4.1 Let A € R™*™,
A is an S-matriz if and only if {y cy>0, ATy<o0, y# O} s empty.
A is an So-matriz if and only if {y ty >0, ATy < 0} is empty.

For additional information on P- and S-matrices and their connection to linear comple-
mentarity problems, see the book of Cottle, Pang, and Stone [8].

The regularity requirements can be expressed in terms of nonnegative vectors by making
a transformation. Let z € R™ be a nonzero vector that satisfies (3.1), and let T be the
nonsingular diagonal matrix defined by

1l 1eP
T = diag(t;), ti= ' (4.1)
-1 i¢P
Define the transformed z by = Tz, and note that 2; = 0 aud that Zp > 0. We carry out

the same transformation on f'(z) and define a transformed Jacobian matrix

J(z) =T ' f'(x)T"". (4.2)
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With this transformation, z is regular if there is a vector p € R™ such that § = T'p satisfies
FTJ)E>0,  Fi20,igN. (4.3)
The following result is a direct consequence of this observation.

Theorem 4.2 Assume that f : R"™ — R" is differentiable at z € R} and let the matriz

J(z) be defined by (4.1) and (4.2). If [J(z)]e is an S-matriz for some index set & with
D C &, then z is regular.

Proof. If [J(z)]e is an S-matrix, then a computation shows that there is a vector § € R™
such that p > 0 and [J(z)ple > 0. Since % = 0, #p > 0, and D C &, it is clear that
satisfies (4.3). Hence, z is regular. M

Theorem 4.2 is easy to apply is specific cases. For example, if z > 0 and f(z) > 0, then
J(z) = f'(z), and thus Theorem 4.2 shows that z is regular if f/(z) is an S-matrix. We
illustrate this remark with a nonlinear complementarity problem proposed by Kojima (see,
for example, Dirkse and Ferris [10]) where f is defined by

3zt + 22120+ 225 + 23 + 324 — 6
2:1:%-}-9:1 +:1:§+3:z:3+2x4-—‘2
3xf + 122 + 2:1:% + 223+ 3z4 — 1
z? +3z% + 223 + 334 ~ 3

flz)= (4.4)

Xiao and Harker [47] noted that their damped Newton method converges to z*, with
z" = (1.05,1.33,1.26,0.0), f(z™) = (4.98,6.86,9.84,5.99),

if started from zg = (1,1,1,1). The damped Newton method fails at z* because the (linear
complementarity) subproblem required by this method is infeasible. On the other hand, =~
cannot be a limit point for the trust region Newton method that we propose in Section 5
(or any reasonable algorithm based on the formulation (1.6)) because z* is regular. A full
justification of this remark is provided by the results in Section 5, but for now note that
f'{r*)is an S-wmatrix, and thus Theorem 4.2 shows that =~ is regular.

Theorem 4.2 is also easy to apply if z > 0 and f(z) < 0. In this case J(z) = f'(z), and
thus Theorem 4.2 shows that z is regular if f(z) is an S-matrix. This remark applies to
the problem defined by (4.4), because for this problem f’(z)is an S-matrix.

Two special cases of Theorem 4.2 are of interest. For the following result note that the
definition of a P-matrix implies that if D is any nonsingular diagonal matrix, then A is a
P-matrix ( Po-matrix) if and only if DAD is a P-matrix ( Pp-matrix).

Corollary 4.3 If f : R" — R" is differentiable at = € R} and [f'(z)]p is a P-matriz,

then « is regular.




Proof. The result follows from Theorem 4.2 because if [f'(z)]p is a P-matrix, then [J(z)]p
is also a P-matrix, and thus an S-matrix. l

Corollary 4.3 shows, in particular, that if f'(z) is a positive definite matrix, an M-
matrix, or an H-matrix with positive diagonal entries (f'(z) is an H-matrix if f'(z)D is
strictly diagonally dominant for some diagonal matrix D with positive diagonal entries),
then z is regular.

We now consider the positive semidefinite case in more detail. As mentioned in the

introduction, this case is of special interest because it covers the linear programming and
convex quadratic programming problems.
Corollary 4.4 Assume that f : R" — R" is differentiable at z € R} and that (z,y)
is a stationary point of (1.6) for some y € Ry. If [f'(z)]p is positive semidefinite, then
J(z) = f(z). If, in addition, [f'(z)]s is an S-matriz for some indez set & with D C &,
then z is regular.

Proof. We first show that if [f'(z)]p is positive semidefinite, then P is empty. The proof
uses results and notation established during the proof of Theorem 3.2. In particular, recall
that we have already shown that if P is not empty, then zp > 0.

We prove that wp > 0 by noting that w; = y’z; and z; > 0 for ¢ € P and that
yi = zi + fi(x) > 0 for i € P. Now recall (3.5), (3.6), (3.7), and that the Kuhn-Tucker
conditions (3.4) imply that f(z)Tz + w = u with « > 0. Hence,

T 2)z = 2E fl(2)zp = k2 — whap < —whzp < 0.
This contradicts the assumption that {f’(z)]p is positive semidefinite. Hence, P is empty,
and thus J(z) = f'(z).
If we also assume that [f'(z)]s is an S-matrix, then [J(z)]s is an S-matrix, and the
result follows from Theorem 4.2. W

In this result we assumed that (z,y) is a stationary point of (1.6) for some y € R.
There is no loss of generality in assuming this because we are only interested in the regularity
of points of attraction for an algorithm for (1.6).

Corollary 4.4 shows that we can guarantee the regularity of x without imposing any
nonsingularity assumptions on f’(z). For example, if f/(z) = u(x)u(x)T for any u(z) > 0,

then f'(x)is a positive semidefinite S-matrix. On the other hand, f'(z) is clearly singular.

Theorem 4.5 If f : R" — R" is differentiable at z € R} and [f'(z)]p is a nonsingular

FPy-matrz, then r ts regular.

Proof. Since [ f'(z)]p is a Py-matrix, [J(z)]p is also a Py-matrix, and thus an Sp-matrix.

Hence. there is a vector p # 0, with ¢ = 0 and pp > 0 such that {J(z)]ppp > 0. Since
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Z: = 0 and Zp > 0, we can fail to satisfy (4.3) only if [J(z)lppp = 0. However, this is not
possible because [J(z)]p is nonsingular and pp # 0. Hence, z is regular. W

The main assumption used in the continuation approach of Kojima, Megiddo, and Noma
(23] is that f is a Po-function. Under this assumption Moré and Rheinboldt [35] proved that -
f'(z) is a Po-matrix. Thus, Theorem 4.5 shows that if we restrict ourselves to Py-functions,
then we need to assume that [f/(z)]p is nonsingular to guarantee that an algorithm based
on the formulation (1.6) converges to a solution of (1.1). ‘

We now present a variation on the previous results that is closely related to the results
of Pang and Gabriel [39], Gabriel and Pang [14], and Xiao and Harker [47, 48]. Recall that
if A € R™™™ is partitioned in the form '

A Ay
A= 7V 2 (4.5)
Azg Az
and the matrix Ay is nonsingular, then As = Ay — AMAl"}Am is the Schur complement

of Al.l in A.

Theorem 4.6 Let f : R" — R”™ be differentiable at x € R7. [f [f/(z)]n is nonsingular
and the Schur complement of [f'(z)|y in [J(z)]p is an S-matriz, then z is regular.

Proof. Partition [J{z)]p into

A1 A

[J(z)]p = ( A A ) ,

where Ay, = [f(x)lyv . We want to show that there are vectors p; and p; such that
A Ay , 0
b b2 P , p2 > 0, q>0.
Az Az P2 q
Since Ay is nonsingular, this system is equivalent to
Ag A pr\_(0O
0 As P2 q

where As = Ay — A1 AT Ay is the Schur complement of [f'(z)]x in [J(z)]p. Since As
is an $-matrix. we can find a vector p; > 0 such that Agp; > 0, and since A1 = [f/(z)lv

is nonsingular. we can solve A; ;p; + Ay 2p2 = 0 for p;. Hence,

0 .
q P2




satisfies (4.3) because Zc = 0 and Zp > 0. Hence, z is regular. W

Corollary 4.6 is similar to a result of Pang and Gabriel [39] that guarantees s-regularity.
In their Proposition 3, they assume that [f'(z)]s is nonsingular and that the Schur com-

plement of [f'(z)]y in [f'(x)]p is an S-matrix, but the definitions of the index sets A and
D are different. For example, in their result

D= {i: fi(z) <z, z; > 0}, N ={i: fi(z) < z;, z; > 0}.

For additional details, see Pang and Gabriel [39].

Corollary 4.6 is also related to the definition of regularity used by Ralph [40], Dirkse
and Ferris [9], and Xiao and Harker [47, 48]. They require that [f'(z)]x be nonsingular,
where

K={i: z; >0},
and that the Schur complement of [f'(z)]x in [f'(z)]c be a P-matrix, where
L= {i I Z 0} .

These conditions imply that [f'(z)]r is nonsingular for any index set Z with KX ¢ Z. In
particular, f/(z) must be nonsingular.

We cannot compare their results with ours because the assumptions are made on different
submatrices of the Jacobian matrix. The major difference seems to be that results based
on our regularity condition do not require explicit nonsingularity assumptions.

5 Global Convergence

We now show that a trust region method for the solution of (1.6), where b : R*™ — R*" is
defined by (1.5), can be used to generate a sequence {(z,yx)} such that if {z;} has a limit
point z* that is regular, then z* is a solution to the nonlinear complementarity problem
(1.1). We use the trust region method of Burke, Moré, and Toraldo [3] for the general
minimization problem

min { fo(z) : z € Q}, (5.1)

where () is a general closed convex set, but specialized to the case where
fo(z) = %Hh(:)nz, Q= R%. (5.2)

Other algorithms could have been used, for example, those of Bertsekas [2], Gay [16],
Soares and Jiddice [42], and Coleman and Li [5], but the rate of convergence theory of
these algorithms does not cover degenerate minimization problems. For problem (5.1) with

2 = RY", nondegeneracy means that

VAl #0, 1<i<om (5.3)




However, in our case fy is given by (5.2), and 2(z*) = 0 because z* is a solution of the
nonlinear complementarity problem. Hence,

Vfo(z*) = K (z*)Th(z") = 0,

so that the solution is degenerate. The rate of convergence theory for the algorithm of
Conn, Gould, and Toint [6, 7] has been extended to the degenerate case by Lescrenier [27],
but these results do not cover the projected searches that we are proposing. We discuss this
point further in the next section.

The trust region method generates a sequence {2}, where z; = (z4,yx) and 2z € }Ri_".
At each iteration we have a bound Ay and a model ¥ : R* — R of the possible reduction
fol(zk + w) — fo(zx) for ||w]] < Ag. We use

vr(w) = 3 (1A(2k) + B (ze)wl® = ([A(z)2) -

The iterate z; and the bound Ay are updated according to rules that are standard in trust
region methods for unconstrained minimization. Given a step s; such that z; + s € ]R?,_"
and ¥Pg(sg) < 0, these rules depend on the ratio

pi = folzx + si) — fo(2x) _ Ho(zk + sl = [Jh(ze)])?
¢ Pil(sx) h(zie) + W (zk)sell? = (2]

of the actual reduction in the function to the predicted reduction in the model. Since the

(5.4)

step s is chosen so that ¥;(s;) < 0, a step with p; > 0 yields a reduction in the function.
Given 7; > 0. the iterate z, is updated by setting

3 ze+ sk if pe>m
“h+1 = .
zk if pr<m
The updating rules for A depend on a constant 7, such that

D<m<m<l,

while the rate at which Ay is either increased or decreased depend on constants o1, g2, and
3 such that
O0<or <oy <1<os.

The trust region bound Ay is updated by setting

Apgr € [01Q%, 02Ak] if pr <1
Apyt € (0128, 038;] if pi € (m,72)
Apy1 € [Di. 03] if pp>m
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We choose a step si that gives as much reduction in the model ¥ as the Cauchy step s¢
generated by the gradient projection method applied to the subproblem

min {¥x(w) 1 zx +w € Q, [Jw| < Ax}.
The Cauchy step s is of the form si(ay), where the function sk(-) is defined by
s(e) = [2k — oV fo(2ze)]) — 2k
and the scalar oy is chosen so that si(oy) produces a sufficient reduction. We require that
Yr(se(ak)) < po (Vfo(zk)TSk(ak)) ) se(ap)ll < g, (5.5)
for constants pg and pq such that
0 <o < %, ur > 0,
and that there are positive constants v, and v, such that
Qp 271 Or Qg 2 Y204,
where &, > 0 satisfies
wk(sk(G)) 2 (1 — o) (V folz)Tsu(@n))  or

The function defined by si(-) defines a piecewise linear path on the feasible set, and the
composite function ¥, (sk(-)) is a piecewise quadratic that is convex on each piece. The above
requirements on oy require that ¥(se{ax)) achieve a sufficient reduction as compared with
the linear model and that the step sg(ax) not be too small. For more information on the
above requirements on oy, see Burke, Moré, and Toraldo [3].

se(a)ll 2 p1 .

These requirements can be satisfied by generating a decreasing sequence {ag) } of positive
trial values such that

aff“) € [/Jlag),/}zaff)], 0< B <Ba<],

with ai,o) bounded away from zero, and setting ay to the first trial value that satisfies the

sufficient decrease condition (5.5). An advantage of this procedure is that it produces an
acceptable «y with a finite number of evaluations of 1. For more details on this type of
search, see Section 4 of Moré and Toraldo [36].

Given the Cauchy step s7, we require that the step s; satisfy
e s6) < potrl(sg ) Hsell < midg, zi + s, € R (5.6)

However,

This requirement is quite natural and can always be satisfied by choosing s = ei‘

this choice is likely to lead to slow convergence, since the method would then reduce to

a version of steepest descent. In the next section we explore other choices that lead to

superlinear and quadratic convergence.
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Theorem 5.1 Let f: R" — R" be continuously differentiable on R%, and let {(zx,ye)}
be the sequence generated by the trust region Newton method. Assume that {zr} is bounded,

and let z° be a limit point of {zr}. If ™ is regular, then z* is a solution to the nonlinear
complementarity problem (1.1) and

Jm lA(ze, yi)ll = 0.

Proof. The trust region method generates a sequence {2} such that {||A(z¢)||} is decreas-
ing. Since {z} is bounded, and

1F(zk) = well < (ACz < 1AC20)Il

the sequence {yi} is bounded. Hence, {z;} is bounded. Theorem 5.4 of Burke, Moré, and
Toraldo [3] now implies that every limit point of {2} is a stationary point of (1.6). Since z*

is regular, Theorem 3.2 shows that z* solves the nonlinear complementarity problem (1.1).
|

6 Superlinear Convergence

The analysis of the rate of convergence for the trust region method is delicate because,
as mentioned in the preceding section, the minimization problem (1.6) is degenerate at a
solution of the nonlinear complementarity problem. In this section we show that we can
still obtain superlinear convergence if h'(2*) is nonsingular at a solution of (1.1).

We have already explored in Section 5 conditions that guarantee that a limit point of
the sequence generated by the trust region Newton method is a solution of the nonlinear
complementarity problem (1.1). In this section we assume that z* is a solution of (1.1) with
=+ f(x™) > 0 and that

L (=)])a, B={i:z; >0, fi{(z") =0}, (6.1)

is nonsingular. These assumptions are reasonable because if we knew B, we would need to

solve the system of nonlinear equations
fi(_xziho):()v lEB*

to determine z%. The following result provides additional motivation for our assumptions.

Theorem 6.1 If f: R" — R" be continuously differentiable on Ry, and ™ is a solution of
the nonlinear complementarity problem (1.1), then h'(z*,y*) is nonsingular for y* = f(z™)
if and only if (6.1) is nonsingular and ™ + f(z*) > 0.




Proof. If A'(z, y") is nonsingular, then we must have z} + y* > 0 for all 4; otherwise a row

of A'(z*,y*) would be zero. Hence, z* + f(z*) > 0 when y* = f(z*). Also note that if u is
any vector with u; = 0 for ¢ ¢ B, then

e o [ _ [ 1Fsus
e 3)- ()

and since we have assumed that A’(z",y*) is nonsingular, we must have [f/(z*)]gug # 0 for
ug # 0. Hence, (6.1) is nonsingular.

We now assume that (6.1) is nonsingular and that z* + f(z*) > 0, and we prove that
R'(z*,y") is nonsingular for y* = f(z*). If ’

B (z*, ) ( ¢ ) =0,
v

for some vectors u and v, then the definition of A’ implies that
Ffl(z")u = v, Yiui + ziv; = 0.

If : € B, then y7 = 0 and z; > 0, and thus v; = 0. Moreover, if ¢ ¢ B, then y7 > 0 and
xf = 0, so that u; = 0. Hence, f/(z")u = v implies that [f'(z*)]gus = 0, and since we
assumed nonsingularity of this submatrix, ug = 0. We have shown that v = 0, and thus
v = f'(z")u = 0. This proves that h'(z*, y") is nonsingular. M

We want to use Theorem 6.1 to prove that if {(zx, yx)} is the sequence generated by the
trust region Newton method, and if z* is a limit point of {z;} that satisfies the assumptions
of Theorem 6.1, then the whole sequence converges to z~.

Theorem 6.2 Let f: R" — R"™ be continuously differentiable on Ry, and let {(zx, yx)}
be the sequence generated by the trust region Newton method. Assume that {x} is bounded,
and let == be a limit point of {z}. If ™ is a solution to the nonlinear complementarity
problem (1.1) such that ™ + f(z*) > 0 and (6.1) is nonsingular, then {(zg, yr)} converges
to (x*,y*) with y~ = f(z™).

Proof. The first step in the proof is to show that z* is a limit point of {zx}. This result
can be established by noting that since Theorem 3.1 guarantees that {h{z;)} converges to
zero, { f(xr) — yr} converges to zero. Thus, f(z™) is a limit point of {yx}. This shows that
2™ is a limit point of {z;}.

For the rest of the proof we need to estimate the behavior of & near z*. Theorem 6.1
guarantees that A’(z*) is nonsingular, and thus we can choose § > 0 so that A/(z) is nounsin-

gular for ||z — z”|| < 4. Let ¢ > 0 be such that
ellsil < 1A(=)s (6.2)
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for ||z — z*|| < 6. Moreover, since h(2*) = 0, we can also require that

ellz = ="l < lA()I (6.3)

whenever [z — 2*|| < é. Finally, choose an index ko such that ||zx, — z*|| < § and

1Azl < §e6. (6.4)

This is possible because {h(zx)} converges to zero. We use an induction argument to show
that these estimates imply that ||z — 2*|| < é for all k& > k.

The first step in the induction argument is satisfied by the choice of the index ko. Assume
that ||zx — 2*|| < 6 for some k > ko, and note that (6.3) and (6.4) imply that

ellze = 27l < [JR(zi)ll < 1A(zko)l| < €6
Hence, ||z — 2|} < ;6. We bound the size of s by noting that since ¥(s) < 0,

1A(zi) + B'(26)sell < [JA(ze)],
and thus
A (zr)sill < 20 (zi)]l-
This inequality, together with (6.2) and (6.4), implies that

ellsell < 1A' (ze)sill < 20ACz)l < 2lh(z1) < Fe8.

Hence, ||skll < 34, and thus ||zx41 — z|] < §. This completes the induction argument
and shows that ||z — z*|| < é for all £ > ko. Convergence of {z;} to z* is then a direct
consequence of (6.3) and the convergence of {h({z;)} to zero. B

The rate of convergence of the sequence generated by the trust region method depends
on the choice of sx. We base the computation of the step s; on the subproblem

min {qx(2): 2, =0, { € A(zx1)}, (6.5)
where 241 = 2z + Sf, the quadratic ¢ : R"® — R is defined by
ae(2) = 3 [h(zk) + W (z)(z = =],

and A(zg, ) is the active set at 41, that is, the constraints ¢ such that [z;]; = 0.

We can always choose s; = sg, but it is usually desirable to reduce gy further. The
subproblem (6.5) is an unconstrained linear least squares problem, so it is not difficult to
compute a descent direction pg; with [px1]; = 0 for i € A(z;,;). We can then examine g
in the ray zx1 + fSpk.1, with 8 > 0, and choose Si 1 so that ¢, is minimized; if gx does not

have a minimum, choose 3¢y = +0c. The minor iterate zxy = 2x1 + Bk,1Pk,1 may not be
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acceptable either because 2 is not feasible or because =, does not satisfy the trust region

constraint ||zg,2 — zk|] < Ag. Thus, if necessary, we modify 3 ; so that both constraints are
satisfied.

The descent direction pi; can be generated by either direct or iterative methods. The
use of iterative methods is usually advised for large problems, while direct methods tend to
be more reliable for small and medium-sized problems.

Instead of using a line search to determine z > we could use a projected search along
the path defined by [zx,1 + 8pk,1]+. The advantage of this approach is that we would be able
to add several constraints at once. In this case we would not insist on strict decrease of gy
from zi 1 to 24,3 because this would require the determination of the first local minimizer.
Instead we would require that the sufficient decrease condition

ak(2k2) < qe(z61) + 20 Var(zk1) T (2h2 — 21)

be satisfied. This is precisely the same condition that we require for the computation of
the Cauchy point. For additional details on projected searches, see Section 4 of Moré and
Toraldo [36].

The process that we have outlined above can be repeated to generate a sequence of minor
iterates zx 1, 2,2, - - ., Zk,1. Global convergence is obtained as long as the quadratic decreases
at each stage, but a superlinear rate of convergence requires a stronger requirement which
is discussed later.

Calculation of step. Let z; 5 = 2z, and compute ! minor iterates zi 1, 22, - - -, 2k, With
2; € R, ok — 2l S mde, 21 = 2+ s§,
and such that the sufficient decrease condition
062k 5401) < @l 2k) + 1oV ar(2k;) T (kg1 — 25) (6.6)
is satisfied. The step is then defined by s¢ = 2z — 2.

We have assumed that we always compute a fixed number { of minor iterates zj ;. This
only imposes an upper bound on the number of minor iterates because we can always set
Zkj+l = Tk

The conditions on the minor iterates are similar to those used by Lescrenier [27]. How-

ever, Lescrenier assumed that
Ge(Zr 1) < qelazijpr + (1= a)zg ), a € [0, 1]. (6.7)

This requirement can be satisfied if a line search is used to choose the minor iterates, but
it rules out the projected searches that we have proposed. Also note that our convergence
analysis does not require Lescrenier’s [27] assumption that

Az + 5% ) C A2k + si)-
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This condition rules out, for example, choosing 2 + si in the interior of RY}.

An important observation is that assumption (6.7) on the minor iterates is stronger than
(6.6) when g is a quadratic. This observation can be verified by proving that if $ : R — R
is a convex quadratic on [0, 1], and

(1) < gle),  a€l0,1],

then
$(1) < ¢(0) + 3¢(0).

Indeed, since ¢(1) < ¢(a) for @ € [0, 1], we must have ¢'(1) < 0, and since ¢.is a quadratic,
2(¢(1) = $(0)) = ¢'(1) + 4/(0).

The result is now a direct consequence of these remarks.
The rate of convergence results depend on showing that eventually the trust region
bound is not active. This result requires an estimate of the decrease of the quadratic g¢.

The estimates needed for this result are valid for a general strictly convex function.

Lemma 6.3 Assume that ¢ : R — R is twice differentiable on [0,1] and that there is a
g > 0 such that ¢"(a) > € on [0,1]. If

$(1) < #(0) + ug'(0) (6.8)

for some p € (0,3), then

- , p
H(0) —o(1) > —E.
Proof. The mean value theorem shows that

o(1) = ¢(0) + ¢'(0) + 30"(8)
for some 8 € (0, 1), and thus (6.8) implies that

14"(8) < (1 - p)(=¢'(0)).

Hence,
7

#(0) — (1) > p(—¢'(0)) > =

" b
Oz

as desired.

This result has immediate application to the analysis of the trust region method. If we
define

pla) = qr (@zk j41 + (1 — @)ze,5)
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and assume that the sequence {2z} converges to z* = (z*,y*) with A’(z*, y*) nonsingular,
then there is an ¢ > 0 such that

ello]l < IR (z)oll,  ve R™

for all & > 0 sufficiently large. Hence, Lemma 6.3 implies that

ak(2k,) = Qe (Zk,541) > €llzrjer — 2,502 (6.9)

We will need this estimate for our next result.

Theorem 6.4 Let f : R — R™ be continuously differentiable on RY with f' Lipschitz
continuous in a neighborhood of z*, and let {(zx,yi)} be the sequence generated by the
trust region Newton method. Assume that {z} converges to a solution z* of the nonlinear
complementarity problem (1.1) such that z* + f(z*) > 0 and (6.1) is nonsingular. If the
step si s calculated as specified above, then the trust region bound Ay is bounded away from
zero.

Proof. In the proof we bound |pi — 1|, where pi is defined by (5.4), and show that the
bounds converge to zero; the rules for updating Ay then show that Ay is bounded away
from zero. We begin by noting that

_ 1z + sl = 1h(z) + B (zx)sel)?
B (k) '

The denominator of this expression is estimated by proving that there is an ¢p > 0 such
that

Pr—1

— r(sk) > collsell®. (6.10)
Since we have already established (6.9), we obtain that the decrease generated by s satisfies
l B
gi(zk) = qr(zk + 5¢) 2 VJ; 25 = zej-]l* 2 € max {20 = 2511} -

On the other hand,

{
lsell < ,Z—:l 2k = 2kj-1]] < 1}2;’% {25 = ze=ll} -

Hence, (6.10) holds with g = ¢/l. We estimate the numerator of the expression for py — 1
by

mh(zk + sl = l1a(zk) + h’(zk)skll'zb < e |z + k) = h(ze) = B (z6) sk 5
where

= Iz sl + 1Bz + B (sl
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and by
12(=k + &) — h(zk) — h'(zr)sk]] < JSup {17 (2 + 0sk) = A'(z)1} lIsell < sllseli?,

where « is the Lipschitz constant for A’. For this last estimate we made use of the fact that
the Lipschitz continuity of f’ implies that A’ is also Lipschitz continuous near z*.

These estimates show that [px — 1| < (k/€0)uk, so that the our result will be established
if we show that {ux} converges to zero. Since {z} converges to z* with h(z*) = 0, we
obtain that {ux} converges to zero if {s;} converges to zero. Note that ¥(s;) < 0, and
thus

l(z) + A (2i)sill < {lR(25)|)-

Hence, the nonsingularity of A’(z*, y*) implies that

ellskll < 1A (zi)sell < 21| 20)]]-
This estimate clearly shows that {s;} converges to zero. M

Theorem 6.4 requires that z;; satisfy (6.6), and thus the Cauchy step s{ is acceptable.
A superlinear rate of convergence requires that we impose further conditions on s.

When the iterate zp is far away from the solution, the step s; is usually determined
because the trust region bound ||zx ; — zx|] < p1Ak is encountered during the computation
of zx;+1. However, as we converge, Theorem 6.4 shows that the trust region does not
interfere with the computation of the step, so that we are free to reduce g further by
searching the feasible set. We propose to continue computing minor iterates until zx; is an
approximate minimizer of g, on the current active set A(zg ). If Py is the projection into
the subspace

{zeR™:z=0.ic A},
then we require that

|QEIh(z1) + A (z)sal| < & bzl (6.11)

where @y is the Jacobian matrix with respect to the free variables, that is,
Qk = h'(zk) P
We can motivate this requirement by noting that if ¥y(w) = g (211 + Prw), then
VUL(0) = QF[h(zk) + A (21) 5]

In particular, if we choose £, = 0, then zx,; is a minimizer with respect to A(z ).

We have already noted that the step si is usually determined because the trust region
bound ||2x,; — 2k}l £ #1A is encountered during the computation of z¢ ;1. Thus, we only
need to assume that the step sy satisfies (6.11) if ||sgf] < p. Ay for some p, < py.
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Theorem 6.5 Let f : R™ — R™ be continuously differentiable on RY with f' Lipschitz

continuous in a neighborhood of x*, and let {(xzy,yx)} be the sequence generated by the
trust region Newton method. Assume that {r} converges to a solution z* of the nonlinear

complementarity problem (1.1) such that z*+ f(z*) > 0 and (6.1) is nonsingular. If the step
sk 18 calculated by the algorithm outlined above, and (6.11) holds whenever ||si|| < prAg for

some p. < p1, then {zx} converges Q-linearly to z* when £* is sufficiently small, where
&" = limsup &.
k—4co

The rate of convergence is Q-superlinear when £* = 0, and Q-quadratic when
€k < ollh(z)]]
for some constant o > 0.
Proof. The main estimate that we need for this result is that
ellzken = 27l < |QFAGe) | + ek llzkan - =7 (6.12)
for some ¢ > 0 and some sequence {¢;} converging to zero. Note that
QEh(sre1) = QLA (26)(2ke1 = 27) + QF [A2k41) = h(z") = B (z) (k1 = 27)],

and thus standard estimates of the last term show that

[CRICNEMEEY

where {e,} converges to zero. We now note that

< ”QZh(zk.H)n + ekllzesr — 27|,

Pe(zpgr — 27) = 2441 — 27,
since A(zrp+1) C A(z"), and thus

“thl(zk)(zk+l - Z*)“ = ”Q;.T-Qk(zkH - 3*)” > ellzesr = 27l

where ¢ is a lower bound on the eigenvalues of A'(z)Th’(z;). Hence, (6.12) holds.
The result follows from (6.12) by standard arguments. Since

|QFr(zian)|| < |QFhlzr1) = A=) = (z)sil| + |QF Th(z0) + W (z)s4]
we obtain that
|@FRCzer)]| < sliskll” + & llaCze)ll

where « is the Lipschitz constant for #’. We also know that there are constants p; and p3
such that

Hsell < pallaCzll, Gzl < p2llze — 27
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The first inequality was established at the end of the proof of Theorem 6.4, while the second
inequality follows from the existence of A/(2*) with A(z*) = 0. Hence, (6.12) shows that

e lzesr — 27N < mlpip)? 2w = 20 + pabi llze — 2] + ek laper — 27]) - (6.13)

This inequality shows that {z;} converges Q-linearly to z* if u,¢* < ¢. Inequality (6.13)
also shows that the rate of convergence is @-superlinear when £* = 0, and Q-guadratic
when & < o||h(z¢)|| for some constant o > 0. W

A weakness in our convergence analysis is that we are not able to prove Q-linear con-
vergence for any £* < 1. This may not be possible since for degenerate problems the active
set A(zx) may not settle down; R-linear convergence seems to be possible.

The convergence results of Pang and Gabriel [39], and Gabriel and Pang [14], require
that the limit point =™ be s-regular and b-regular. These regularity assumptions imply that
(6.1) is nonsingular, but do not require our assumption that z* + f(z*) > 0.

The algorithms proposed by Pang and Gabriel [39], Gabriel and Pang {14, 15], and
Monteiro, Pang, and Wang [32] are quite different from the trust region method. From a
computational viewpoint, an important difference is that each iteration of these algorithms
requires the solution of a linear programming problem or a quadratic programming problem,
while the trust region method requires the solution of systems of linear equations.
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