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Abstract. Automatic differentiation (AD) is a methodology for developing reliable sensitivity-
enhanced versions of arbitrary computer programs with little human effort. It can vastly accelerate
the use of advanced simulation codes in multidisciplinary design optimization, since the time for
generating and verifying derivative codes is greatly reduced. In this paper, we report on the ap-
plication of the recently developed ADIC automatic differentiation tool for ANSI C programs to
the CSCMDO multiblock three-dimensional volume grid generator. The ADIC-generated code can
easily be interfaced with Fortran derivative codes generated with the ADIFOR AD tool for FOR-

TRAN 77 programs, thus providing efficient sensitivity-enhancement techniques for multilanguage,
multidiscipline problems.

1 Introduction

Multidisciplinary Design Optimization (MDO) is a methodology for the design of
complex engineering systems and subsystems that coherently exploits the synergism of
mutually interacting phenomena. Typically, the MDO process proceeds in an iterative
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fashion, with each MDO cycle including at least the generation of a numerical solution,
determination of associated design sensitivities, and system optimization.

Of these parts, the generation of the numerical solution is the truly domain-
dependent piece of this process, where in-depth knowledge of the problem at hand
is used to develop the necessary simulation codes. For system optimization, on the
other hand, a wide suite of existing optimization algorithms is readily available (see,
for example, [11]).

An MDO problem of particular interest in the aerospace community is the design
optimization of the high-speed civil transport. This problem, at the minimum, in-
cludes computational fluid dynamics (CFD), and therefore numerical grid generation,
as an integral part of the design process. The possible variation of simulation method
employed for modeling this problem leaves the computation of design sensitivities for
the simulation codes in question. Here, we should keep in mind the following issues:

Reliability: The computed derivatives should be computed a,ccurately.

Computational Cost: The amount of memory and runtime required for the deriva-
tive code should be minimized.

Scalability: Whatever method we choose should be applicable to large codes.

Human Effort: A user should not have to spend much time on developing compu-
tational procedures for computing derivatives.

Traditionally, handcoding, finite difference approximations, and symbolic methods
have been used for the computation of derivatives. However, these methods fall short
with respect to the previously mentioned criteria. The main drawbacks of finite dif-
ference approximations are their numerical unpredictability and their computational
cost. The handcoding and the symbolic approaches cannot be directly applied to
large codes and require considerable human effort; in addition, significant effort has
to be expended whenever the analysis code is modified.

Recently, so-called automatic differentiation (AD) tools have emerged as a promis-
ing approach for computing derivatives. AD techniques rely on the fact that every
function, no matter how complicated, is executed on a computer as a (potentially
very long) sequence of elementary operations such as additions, multiplications, and
elementary functions such as sin and cos (see, for example, [6,12]). By applying the
chain rule of derivative calculus over and over again to the composition of those ele-
mentary operations, one can compute, in a completely mechanical fashion, derivatives
of f that are correct up to machine precision [8].
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In this paper, we report on the applicaton of the recently developed ADIC (auto-
matic differentiation of C programs) automatic differentiation tool for ANSI-C pro-
grams on the CSCMDO multiblock three-dimensional volume grid generator. CSCMDO
(coordinate and sensitivity calculator for multidisciplinary design optimization) is a
general-purpose grid generator tailored specifically to MDO applications. The next
section gives a brief overview of CSCMDO. The philosophy and approach underlying
ADIC are described in § 3. In § 4, we report on the results obtained with sensitivity-
enhanced versions of CSCMDO generated with ADIC. Lastly, we summarize our
results.

2 The CSCMDO Multiblock 3-D Volume Grid Generator

CSCMDO is a general-purpose, multiblock, three-dimensional, structured volume
grid generator with specialized features that are highly suitable for MDO-type grid
modifications. The code is designed to execute in a batch environment with control
provided by an ASCII user input file. The code is capable of modifying any of the
six faces of a block to reflect changes in the optimized geometry as defined by an
input surface(s). This section gives a brief overview of CSCMDO; a more detailed
discussion can be found in [9].

With the code executing in a batch mode, it can be incorporated directly into
the design loop as shown in Figure 1. As mentioned before, the “computational
method” at the very least contains a CFD analysis. Information input from outside
of the loop is generated once before the loop is initiated. This information includes
the baseline geometry surface(s), baseline CFD volume grid, and the user input file.
The design loop is then rendered self-sufficient, requiring no further human interven-
tion. CSCMDO operates within the design loop to provide automated volume grid
generation/modification for each design cycle.

The surface definition is provided in the form of a structured mesh of discrete point
data. The number and distribution of points defining the surface are not required to
match those of the desired CFD grid. However, sufficient point resolution must be
provided so as to adequately define all surface curvature.

The baseline volume grid may be generated using any structured grid generation
package. CSCMDO supports the file formats commonly used in the field of CFD. No
restriction on grid topology is imposed. However, the topology of the volume grid
must be consistent with the CFD analysis and capable of incorporating design cycle
geometry modifications. The changes represented by modified geometry surface(s) are
assumed to be small, but in the event that geometry changes do violate the volume
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Figure 1: Integration of CSCMDO into the design loop

topology, grid quality checks provide return codes to the software controlling the loop
for appropriate action.

Individual block faces may be modified independently by using a variety of meth-
ods including direct injection of a modified surface, parametric updates to a modified
surface, projection to a modified surface, and deformations conforming to a mod-
ified surface. Volume modifications are accomplished for each block by algebraic
re-initialization of the block interior or by deformation of the original block interior
based on changes defined on the six block faces. '

3 The ADIC Automatic Differentiation Tool

Traditionally, two approaches to automatic differentiation have been developed:
the so-called forward and reverse modes. These modes are distinguished by how
the chain rule is used to propagate derivatives through the computation. We briefly
summarize the main points about these two approaches. A more detailed description
can be found in [2] and the references therein.

Let us assume that we have a function f that maps an n-vector z into an m-vector
y. The forward mode propagates derivatives of intermediate variables with respect
to the independent variables and follows the control flow of the original program.
Exploiting the linearity of differentiation, the forward mode allows us to compute

4




arbitrary linear combinations

J-S (1)
of columns of the Jacobian
dy(1y .. 2y
8z(1) dz(n)
J= : : : (2)
A y(m .. 9y(m)
dz(1) 3 z(n)

For an n x p matrix S, the effort required is roughly O(p) times the runtime and
memory of the original program. In particular, when S is a vector s, we compute the
directional derivative

flz+hxs)— flz)

J* s =lim A )

In contrast, the reverse mode of automatic differentiation propagates derivatives
of the final result with respect to an intermediate quantity, or adjoint quantity. To
propagate adjoints, one must be able to reverse the flow of the program and must
remember or recompute any intermediate value that nonlinearly impacts the final re-
sult. This process may not be easily achieved for general programs; the issue is further
discussed in {2]. In either case, AD computes derivatives accurate to machine preci-
sion [8] and is directly applicable to computer programs of arbitrary length containing
branches, loops, and subroutines.

From a user’s perspective, AD tools preferably should behave like “black boxes,”
which, given the code describing the “function” to be differentiated and an indication
of which program variables correspond to the independent and dependent variables
with respect to differentiation, generate an efficient “sensitivity-augmented” code for
computing the desired derivatives without any need for human intervention.

Fundamentally, there are two approaches for augmenting a computer code with
derivative computations. Languages like C++ or FORTRAN 90 support a feature
called “operator overloading,” which allows the redefinition of the behavior of the
elementary arithmetic operations and hence can be employed to attach (“under the
rug,” so to speak) derivative objects to original program variables and apply the
rules of differentiation one operation at a time. The ADOL-C tool [7] employs such
an approach to compute derivatives of arbitrary order.

ADIC, in contrast, employs a source transformation approach to directly rewriting
the source code to compute first-order derivatives. This approach requires consider-
able compiler infrastructure, and ADIC employs part of the Sage++ [4] source trans-
formation infrastructure for C++ programs to transform ANSI C programs. With
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minor restrictions, the current ADIC prototype accepts arbitrary ANSI C programs
and can handle, for example, subroutines, dynamic memory allocation, and pointers.
The code generated is portable ANSI C code that can easily be modified to print out
sensitivities, say. The features and limitations of ADIC are discussed in detail in [3].
Here we briefly summarize the main points.

ADIC, like ADIFOR, employs a hybrid forward/reverse mode approach to gener-
ating derivatives. For each assignment statement, the reverse mode is used to generate
code that computes the partial derivatives of the result with respect to the variables
on the right-hand side. Then the forward mode is employed to propagate overall
derivatives. Hence, ADIC and ADIFOR provide the directional derivative compu-
tation possibilities (see Equation 1) associated with the forward mode of automatic
differentiation. As a result, derivatives generated by a FORTRAN code differentiated
with ADIFOR, say, can easily be used as “seed matrix” for an ADIC-augmented C
code, whose derivatives, in turn, can again easily be ingested by a FORTRAN code.
As we will see in the next section, this is of vital importance in the MDO context.

We also mention that ADIC can transparently exploit sparsity in derivative com-
putations through the use of the SparsLinC library [2,3], which, as a byproduct of
the computation, will automatically compute the sparsity pattern of large sparse Ja-
cobians. Information on ADIC and ADIFOR as well as application highlights and
reports can be found on the World Wide Web at

http://www.mcs.anl.gov/autodiff/index.html.

4 Experimental Results

To improve the aerodynamic performance of the high-speed civil transport, we
embed the system shown in Figure 2 in an optimization context. The Rapid Airplane
Parametric Input Design (RAPID) code [10] is written in FORTRAN 77 and, given
geometric design variables (gdv) (for example, camber) produces an aircraft surface
grid (sfg). From this output, CSCMDO builds a 3-D volume grid (vlg). TLNS3D,
a 3-D Navier-Stokes solver for turbulent flow [14,13], then uses the geometry infor-
mation as well as the stream parameters (strm) to compute the flow (flw) over the
aircraft and, from there, measures of performance such as lift or drag. In the MDO
design context, we then need %g% at every pass through the design cycle.

Several issues should be kept in mind when approaching this problem:

1. Computationally, this process is dominated by the CFD solver. The runtime of
the grid generators is almost insignificant compared with that of TLNS3D.
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Figure 2: Structure of CFD Design Problem

2. Accurate sensitivities are required for all modules, and in particular for the grid
generators, since errors in their derivatives would contaminate derivatives of

TLNS3D.

3. The number of design objectives ( flw) is small, whereas the number of surface
grid points (sfg) and certainly the number of volume grid points (vlg) usually
is very large.

4. The codes continue to be developed and refined.

In our experiments, we concerned ourselves only with computing the derivatives

22L, employing the RAPID and CSCMDO codes. The ADIFOR tool [1, 2] was

applied to RAPID, and a file containing g—;gf was written by the sensitivity-enhanced
version of RAPID. (We note that ADIFOR has also been successfully applied to the
single-block version of TLNS3D; the results are summmarized in [5].)

The ADIC prototype was applied to CSCMDO. The fact that the ADIC inter-
face allows for “derivative chaining” is essential in this context. That is, instead of
computing 2%2  which would be a huge (albeit sparse) matrix, which then would be

dsfg>
multiplied with Z—;ﬁ% to obtain %%, we can directly compute g—;;% by using Z—;ﬁf as the

“derivative seed matrix” associated with the inputs corresponding to the surface grid
(sfg). As a result, the complexity of CSCMDO.AD, the ADIC-generated derivative
code for CSCMDO, depends on the number of geometric design variables (gdv), not
on the number of surface grid points (sfg).

Varying the number of geometric design variables from 1 to 7, we compare the
runtime performance of CSCMDO.AD with that of a one-sided finite difference ap-
proximation on a Sun Sparcstation 5 and IBM RS/6000 platform. Employing version

7




Table 1: Timing Results for RS/6000 (Times in User Seconds)

Number of Design Variables
1 2 3 4 5 6 7
Best-Case FD 39 59 79 99 118 | 138 | 158
CSCMDO.AD (1) | 130 | 174 | 223 | 281 | 324 | 526 | 560
CSCMDO.AD (2) 69 84 103 | 119 | 144 | 192 | 212

Table 2: Timing Results for Sun-4 (Times in User Seconds)

Number of Design Variables
1 2 3 4 ) 6 7
Best-Case FD 57 86 115 144 172 201 230
CSCMDO.AD (1) 149 205 278 351 465 546 637
CSCMDO.AD (2) 83 104 131 160 184 | 213 242

2.5.8 of the GNU C compiler with the -02 ~-ffast-math compiler flags, we obtain
the performance shown in Tables 1 and 2.

To generate a grid, we can think of CSCMDO as using a two-step approach.
First, it generates a grid; second, it validates the quality of the generated grid. In
the line labeled “CSCMDOQ.AD (1)” we differentiated through the entire CSCMDO
code, including the validation part. The line labeled “CSCMDO.AD (2)” refers to
a somewhat more judicious use of CSCMDO, where derivatives are propagated only
through the grid generation part, and not through the validation part. Note, however,
that since ADIC intersperses derivatives and original program variables (see [3] for
details), the validation part also had to be modified by ADIC to have data structures
compatible with the sensitivity-enhanced grid generation part, but it did not include
code for propagating derivatives. The line labeled “Best-case FD” lists the time
required for a one-sided finite difference (FD) approximation of the derivatives, under
the assumption that the correct stepsize was chosen. This is an optimistic assumption:
typically, several perturbation sizes had to be tried before a good match of the with FD
derivative approximations with the values obtained by CSCMDO.AD was obtained.
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Figure 3: Sensitivity on the surface of CFD grid X coordinate wrt wing root chord

We see that the code generated by ADIC when applied to all of CSCMDO is
considerably slower than a “best-case” finite-difference approximation of derivatives.
On the other hand, if we do avoid the (useless) derivative computation in the veri-
fication stage, CSCMDO.AD exhibits runtimes that are close to that of a best-case
finite difference approximation. Note that we cannot avoid the verification stage in
finite difference approximations, since the new volume grid arising from a parameter
perturbation must be verified. We also mention that ADIC is still in the prototype
stage; further improvements will narrow this gap. In either case, though, these run-
times are dwarfed by the runtime of a CFD flow code such as TLNS3D. However,
the accuracy of the grid sensitivities is essential for the accuracy of the overall design
sensitivities.

When examining our results, considering the sensitivity of the CFD volume grid
X coordinate with respect to a change in wing root chord, we obtain the results shown
in Figures 3 — 5. Note that our RAPID output assumes that the wing trailing edge
remains fixed with respect to the fuselage. Therefore, a change in the wing root chord
should only be propagated forward of the wing trailing edge/fuselage intersection.

The volume grid shown consists of two blocks and over 525,000 grid points. Con-
tour lines represent the sensitivity of the volume grid X component with respect to a
change in the root chord. The expected symmetry can be noted in both figures. The
grid X component can be seen as most sensitive to changes in the wing root chord
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Figure 4: CFD volume grid produced by CSCMDO.AD
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Figure 5: Sensitivity in the field of CFD grid X coordinate w.r.t wing root chord




around the leading edge of the wing/fuselage intersection. As mentioned, the surface
grid points (sfg) and g;—f;% were obtained from the sensitivity-enhanced version of
RAPID. This data was used by CSCMDO.AD to produce the volume grid points

(vlg) and the sensitivities g;’;‘:} shown in the figures.

5 Conclusions

In this paper, we reported on the applicaton of the ADIC automatic differen-
tiation tool for ANSI-C programs on the CSCMDO multiblock three-dimensional
volume grid generator. CSCMDO (coordinate and sensitivity calculator for multidis-
ciplinary design optimization) is a general-purpose grid generator tailored specifically
for MDO applications. ADIC (automatic differentiation of C) is a prototype tool for
the automatic sensitivity enhancement of codes written in ANSI-C. In our experience,
ADIC allowed us to obtain accurate derivatives with minimum human effort. Without
ADIC, we would have been forced to spend considerable effort developing a sensitivity-
enhanced version by hand. Instead, this effort was more profitably spent improving
the features of CSCMDO. Together with the ADIFOR tool for FORTRAN 77 pro-
grams, ADIC provides efficient support for multilanguage multidisciplinary design

optimization, where codes written in FORTRAN and C are embedded in the design
loop.
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