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Abstract

Heisenberg's commutation relation for position x and momentum p, and its
validity for relativistic harmonic oscillators are examined, using the techniques of
Lie algebra ahd dual-bosonic representa;ion of x, p and the Hamiltonian H. A
modification with [x, p] =ih( 1 + H/mc?) is proposed for a particle and an anti-
particle in a harmonic potential. For a 2 X2 matrix representation for x, p and H
operators, the quantized eigenenergy E is given by (E - mc?)/hvo = 3/2, 5/2,7/2,

..., where 1/2 is not allowed.




The non-commutability between any pair of conjugate canonical variables
such as [x, p] =ih is the most fundamental relation for Heisenberg's matrix
approach to quantum theory.! It is completely equivalent to the wave function
representation of Schrédinger’ where the momentum p needs to be replaced by -
i%9/9x and the Hamiltonian H by i%d/0t. The presence of such a commutation
relation leads to Heisenberg's uncertainty principle proclaiming that the position
and the momentum of a particle cannot be measured simultaneously with complete

accuracy.

In this work the Heisenberg's commutation relations and their validity for
relativistic harmonic oscillators will be examined. Harmonic potential is one of the
simplest interactions between particles. In addition to the applications to
vibrational motion of isolated molecules or collective motion of the lattice in
condensed phases, one can transform many other kinds of physical system in terms
of harmonic model. For example, the quantization of electromagnetic waves. leads
to representation of photons in terms of harmonic oscillafors. In the study of
hadron dynamics and quark confinement, harmonic potentials have also been used.’
Because the velocities of quarks may not be slow as compared to the speed of light,
the ordinary non-relativistic harmonic model has to be modified.* In a recent
study, Feynman et al.? proposed a potential that replaces x> by a Lorentz-covariant
form x* - ¢*t* (or x*x,). Thus, the wave functions possess a term with a Gaussian
time-dependence as well as the ordinary Hermite polynomials. A similar harmonic
potential was also used by Kim and Wigner’ in their study of relativistic phase-
space representation of quantum mechanics.® In a more recent report, Aldaya et
al.” proposed a different approach using generalized Hermite polynomials as

wavefunctions for a relativistic quantum harmonic oscillator. In this work, we
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would like to extend such a model and examine its consequences using a simpler
alternative. More powerful and general techniques using Lie algebra and group
theory will be used, and there is no need to invoke generalized Hermite

polynomials.

In the non-relativistic quantum theory, the operators for the coordinate x, the
momentum p and the Hamiltonian H of a harmonic oscillator satisfy the following

commutation relations

i

-ip-E, [H, p] = itmyw3x
Iy

[H, x]
(x, pl = ih . (1)

In this work we propose a generalized commutation rules using three operators K,,

K, and K, to represent x, p and H as

It

= = b =
Kx P KJ P K, =
b4 ? Po A . (2)

where x, and p, are the natural units for length and momentum. The operator A

is related to H which will be determined later. The operators K;'s satisfy

[Kz/ Kx] = lKV ’ [Kzl K_V] = _iKX

3)

I

[le Ig,] - lKZ ’

where the commutation relation between K, and K has a negative sign. They are

different from the generators S,, S, and S, for the ordinary SU(2) group. With
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Schwinger® and Wigner® techniques one can use two kinds of boson creation and
annihilation operators (a,*, a,, a,” and a,) to represent angular momentum. These
boson operators commute with each other if they belong to a different species and

[a;, a"] = &;. We shall extend such a technique also to the operator K; as

K, = a‘:a;, K_ = ala2

-

4.a)
Kz = %{al,a{} + —i‘{azla;.}
and
[KZ’ K13 = iKiI [K+, K_] = _2Kz .
(4.b)

It can be shown that K,, K, and K, commute with K,? - K,? - K,> which will be
defined as K®. Thus, K* is a Casimir operator of the noncompact Lie group.
Unlike the normal spin-% operators S,'s where S? = S +82+S,%, K has a
negaﬁve metric in K, and K. Using eq. (4), one can show that K, = j+ ' where
j = (n; + ny/2 is the average of the quantum numbers n, for a,*a; and n, for
a,%a,. In addition, one can show K?® =- K, K +K (K,-1). Because K,K_ = n;n,,
we have found that K = m? % where m is defined as (n,-n,)/2. In SU(2) group
where the eigenstates of S* = S(S+1) and S, form a base set. Similarly, one can
define a quantum state of a relativistic harmonic oscillator in terms of the eigenstate
of K* and K,. If one defines |K, j+!%) as such an eigenstate with the
corresponding eigenvalues K(K+1) for K* and j+ for K,, one can show K =-
2+ m. Both n and m can be a half integer as well as a whole integer. Using the
step operators K, in eq. (4) one can transform one eigenstate into another and to

map out all possible states. For example, one can show K, I K, j+%) = C, l K,
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j+3/2) and K | K, j+'4) = C,|K, j-'4) . The proportional constants C, and C,
can be determined by using (K, j+% | KK, |K,j+%)=[C,|?and (K, j+% |
K.K |K,j+%)=|C,|% WithK® =-K,K +K,(K,-1)or K* =-KK, +K,K,+1)

one can show

L f , P .3
CJK,J+=) = J-K(K+1) +{j+= +Z) K, j+=
KK, ] 2) { )+ {3 2)&3 2)] 3 2)

¥
®)

K [K,3+3) = »/-K(Km F3+2) (-2 K, 3-2)

These coefficients are different from the ordinary Clebsch-Gordan coefficient.'
The hyperbolic metric of K;'s leads to a reversed role between K* and K, as
compared to the ordinary angular momentum operators S* and S,. By applying K.
repetitively on | K, j+ ') as illustrated in eq. (5), one can reach the lower bound
of j. Because j= (n+ny)/2 and m = (n;-n,)/2 wheren, andn, = 0, 1, 2,...,
j and m can only be whole integers or half integers at the same time but not a mix

of them.

Let us consider the case with m = 4 1. In the first branch withm = 1 (or
K =1/2 because K =- 4 +m), one can have (n;, n,) = 2, 0), 3, 1), (4, 2), (5,
3), ..., which corresponds to j+%¥2 = 3/2, 5/2, 7/2, ... Therefore, j must be an
positive integer (=1) and j+ Y2 has a half-integer form (= 3/2). The lowest
boundary state is | 1/2, 3/2). Other higher state | 1/2, j+ 1/2) with a larger j can
be generated from | 1/2, 3/2) by applying K, j - 1 times. It can be shown | 172,
j+1/2) = C'K,7* | 1/2, 3/2), where C; = [G>-D(G-D*D...(3*-D(2*1)]*. There

1s no upper boundary for n. In the second branch with m = -1 (or K = -3/2), one
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has (n,, n,) = (0, 2), (1, 3), (2, 4), (3, 5) ..., which corresponds to j+ Y2 = 3/2,
5/2, 7/2, ... The bottom state is l -3/2, 3/2). In either case with K = 1/2 or -3/2,
one has K?* = K(K+1) =3/4. Therefore, for either branches of m =+1 (K =1/2
or -3/2) one has the following allowed states |K, 3/2), |K, 5/2), |K, 7/2), ..,
where K, = 3/2, §/2,7/2, ... IK, 1/2) is not allowed here. One can use Pauli
matrices to represent K,, K and K, as

e 1 0 1
] L4 Ky = ¢
-1 Q, -1 0

/

K. =

X

nof -
ol

o .
K“E[O _1]' ©6)

where K, is hermitean but K, and K, are anti-hermitean. It can be shown that these
matrices satisfy the Lie algebra defined in eq. (3). In addition, one has K* = K2
-K,.2-K? = 3/4 as expected for |[m| =1, because K> = m? - % as derived

earlier.

Now we shall seek a general Hamiltonian for a relativistic quan'tum‘ oscillator
from the point of view of group theory and Lie algebra.!’ The Hamiltonian H must
be a function of the Casimir operator K? and K, i.e., HXK?, K,). Because K’ =
m? - % is a constant for a given m, thus one may choose the following simplest

form for H

H = H, + HK, .

7

If one sets H; = myc?, H, = +my? then K, = A/A, = H/my? # 1. Eq. (4) can

be reduced to




[H, x] = —lhap—, [H, p] = ihmwx
- (8)
(%, p] = ih({F1+ Ho)
m,C ?

If one chooses K, = H/m,c? - 1, one has

2

cp? + miclwix? = (n2+3n+%)h2w2

®

The energy E in eq. (9) approaches the rest mass energy myc? as w —> 0 for a free
particle. In this case one has [x, p] =ih(- 1 + H/m,c?), the commutator has a sign
different from the conventional Heisenberg relation as H/myc? — O in the non-
relativistic limit. If one chooses K, =H/« +1, one has [x, p] =ih(1 +H/m0c2) as
suggested by Aldaya et al.” In this case, we have found

cp? + miclw?x? = (n2+3n+%)°ﬁ2w2

(10)

E=(n+2)hw -myc?, n=0, 1, 2, ...,

| w

where E is the eigenenergy of H. The lowest bound for E +myc® is given by
3hw/2 which is different from the case for a non-relativistic oscillator. Eq. (9)
expression is more favorable than eq. (10). Although eq. (10) preserves the same
conventional sign in the commutator, however, eq. (10) leads to E - -m,c* as w -

0. We would like to argue that the sign convention in the commutator is not
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important. It is only a matter of choice because one can use time-reversal
operation to reverse the sign of p and change the definition of a particle versus an
anti-particle without altering the basic physics. Thus, [x, p] =ih(z 1 + H/m?)

is proposed for a particle ("-" sign) and an anti-particle ("+" sign) in a harmonic

potential.

In conclusion, in this work the Heisenberg's commutation relations for
relativistic harmonic oscillators were examined. The approach presented here is
based on representation of x, p and H operators in terms of dual-bosonic
operators. A modification of the commutation relations is given in egs. (2), (3)
and (7). In particular, [x, p] =ih(¥ 1 + H/mc?) is proposed for a particle and
an anti-particle in a harmonic potential. For a 2X2 matrix representation for x,
p and H operators as shown in eq. (6), corresponding to m = +£1, the quantized
eigenenergy E is given by (E - myc®)/hw = 3/2, 5/2, 7/2, .... The lowest bound
of 1/2 for a non-relativistic oscillator is not allowed in this case. A similar result
has also been obtained by Aldaya et al.” by a different method using generalized
Hermite polynomials. This method, however, using Lie algebra is simpler and

more powerful which can be easily extended to any general case with [m| # 1.
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