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WORKSHOP " FUTURE OF HERA *

SEPTEMBER 95 - May 96
YOLUME OF FINDINGS - SUMMER 98.

9 WORKING GROUPS

WORKING GROUP 8: "LIGHT AND HEAVY NUCLEI"

CONVENERS:  M.ARNEODO  (ZEUS)
A.BIALAS (CrACOW NucL.PHYS.INST.)
W.KRasNY  (H1)
T.SLOAN (UNIV. OF LANCASTER)
G.VAN DER STEENHOVEN (HERMES)
M.STRIKMAN  (PSU)

CHARGE: TO INVESTIGATE POTENTIAL OF HERA FOR EA PHYSICS
- HERMES (E_=27 GEV, FIXED TARGET), COLLIDER MODE.

WORK OF THIS WORKING GROUP IS CONSIDERED AS A LONGER
RANGE PROJECT - NUCLEAR WORKSHOP PLANNED FOR DECEMBER 96.

DESY CONSIDERS ALSO BUILDING CONTINUOUS ELECTRON BEAM
FACILITY FOR NUCLEAR PHYsICS (E.=2¥ GEV) AS A PART OF
FUTURE LINEAR COLLIDER COMPLEX. SEPARATE STUDY.
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WILL DISCUSS ONLY COLLIDER PHYSICS.

PARAMETERS: E ,=27.5 GeV, E,= 820 GeV/ A * (Z/A)
e
Squisalent tak enengy  E. « 90 TEV=p X RANGE 107~ < X < O.1

Fic.1
INTENSITY (IF LUMINOSITY IS HIGH) DECREASES AS

1/ 22 DUE TO INTERACTION WITH G449 FN THE BEAM PIPE
COUNTING : RATE DECREASES AS

A

‘E‘i (NEGLECTING SHADOWING EFFECTS)

( ~ 1/3 FOR CARBON AND ~ 1/10 FOR CALCIUM )

FOR COHERENT PROCESSES REDUCTION EVEN LESS SIGNIFICANT

t

4/3
*—Z—z (NEGLECTING' SHADOWING EFFECTS)
( ~ 0.8 FOR CARBON AND ~ 1/3 FOR CALCIUM )

o S'T.L o:‘[ Ecci/c{[ng "o Soyr<c Je(:‘ver/
\,)ISYLGWI based on & S{I eX/Der'Ceth

~ (& .0 DM.



KeY FPIUEY FOR INVESTFEATFON

1) NONLINEAR HicH DeNsITY PHENOMENA IN QCD -
nuclean oshadawing of panton distributions

1) COLOR TRANSPARENCY AT ULTRA-HIGH ENERGIES -

When inte/zactLanogaunaZEo!gect&ecanmllanqe

(nge/z)..?nwzpﬂagogw{ltandhmdplu;mm
ifpraction.

1) QUARK  AND COLOR DIPOLE  PROPAGATION THROUGH THE
NUCLEAR MATTER; HADRON FORMATION AND FINAL STATE
INTERACTIONS

|12 THEYE $99UEY HAVE IMPEIEUTIONY |
FOR REAVY FON PHYSIEY 4T |HC & RHIC
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250 K. Eskola / Nuclear gluon structure 9 3

AP+MQ-evolution

1.1y  A=196

= 0.91Q/GeV = E o 3y oW 4]
[ gf {é B Y pw(34)
A J/y =Pt [35)
X J/y P [35]]

+ Iy pPt(35]]
anSatz 2

2

¥
-t

0.8}
' 0.7} QGev= s E772 (171 W
. : x SLAC [10] Au

Ko
Fos|

a E772 {171W
x SLAC[10] Au

0.5 . .
0.001 0.01 < 0.1 1

Fig. 3. The same as fig. 2 but with gluons in the ansatz 2 at the initial scale Q=2 GeV. Here the

evolution of sea, and hence Rf—‘z is clearly slower than with the gluons of ‘Ansatz 1’ the stronge:

shadowing of gluons is reflected to the behavior of R since the evolution egs. (13) and (14) arc
coupled.
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254 . KJ. Eskola / Nuclear gluon structure

AP-evolution only

1.1} A=196

QGeV=__Z
10

Ansatz 2

_' E772 [17]W
0.7} QGev @
g x SLAC [10] Au

0.9}
<=0.81
0.7}
0.6

Ri(x, Q)

a8 E772 [171W
x SLAC[10] Au

0.5 . .
0.001 0.01 X 0.1 1

Fig. 4. The same as fig. 3 but with the scale. evolution given by the traditional Altarelli~Parisi terms only

(egs. (12)-(14) without the modifications). By comparing figs. 3 and 4 we see that the mainline of

QCD-evolution is determined by the unmodified Altarelli-Parisi equation; the Mueller-Qiu modifica-

tions then give the corrections to this evolution by slowing down the relative evolution of partons
[15,16).
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5 | a) c/D b) Ca/D c) Pb/D
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Figure 3: Per nucleon cross section ratios for events with 141 jets and 2+1 jets at

yeut = 0.04 v8 zpj for C/D, Ca/D and Pb/D.
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REVIEW OF DATA RELATED TO OUR UNDERSTANDING OF
THE ATTENUATION OF PHOTONS (REAL AND VIRTUAL)
AND HADRONS AS THEY PASS THROUGH NUCLEAR
MATTER

by: Wit Busza

Department of Physics and Laboratory for Nuclear Science
Massachusetts Institute of Technology .
Cambridge Mass. 02139, USA

I was asked to review the most important aspects of hadron and lepton-
nucleus data at high energies, in particular those aspects that may be most
relevant to an understanding of relativistic heavy ion collisions. At the outset
of preparing the talk I realized that, for a 20 minute presentation, this was a
hopeless task. The literature on this subject is simply too extensive [1]. I have
thus decided to limit my talk to a single general comment and a discussion of
one body of data — that related to the attenuation of photons and hadrons as
they pass through nuclear matter, which I find particularly interesting and
instructive, and hopefully the understanding of which will prove useful in the
interpretation of heavy ion data.

The general comment is this. In the last twenty years a very large
quantity of data has been accumulated on the interactions of photons, leptons
and hadrons with nuclear targets at energies ranging from a few GeV to over
800 GeV. A study of the literature [1] soon reveals that despite its extent there
are very significant gaps in our knowledge of the phenomenology. What is
" even more apparent, in many cases the precision of the data is inadequate to
give us a good picture of how the nuclear medium influences the interaction
process. The difficulty is that frequently the main features of the A-
dependence simply reflect the geometry of the nucleus, while the interesting
part is often very subtle. A study of the literature also makes it all too apparent
that there are many aspects of the A-dependence phenomenology for which we
do not have a good understanding. This, of course, is not surprising since
most of the A-dependence studies probe low Pt physics, the non- perturbative
regime of QCD.

Why do I make these general remarks? The answer is simple — to
warn those who are looking for fundamentally new physics in relativistic
heavy ion collisions that signatures will be subtle and difficult to interpret,
and that, in addition to studying the collision of heavy ions, it is absolutely

0375-9474/92/$05.00 © 1992 — Elsevier Science Publishers B.V. All rights reserved.
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Fig. 3. Energy dependence of the effective number of nucleons in the nucleus for
inelastic collisions. Aeff is defined as: AofffA = cA/Acp. Data are from [3].
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incident quarks of energy > 30 GeV. Itis for quarks, photons and
consistent with complete transparency leptons.

for such quarks.
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crucial that equally precise and extensive measurements be made, using
identical trigger and equipment conditions, for collisions of protons with
protons and protons with nuclei. Without such comparisons it will be difficult,
if not impossible, to disentangle new phenomena associated with the high
energy and baryon densities produced in relativistic heavy ion collisions from
phenomena which simply follow from multiple scattering in the nuclear
medium or from simple space-time aspects of the collision process. I know
that there are some who disagree with this point of view. They argue that in
fact the interpretation of relativistic heavy ion data will be easier than that of
pA collisions. If much larger nuclei existed so that the interaction volumes
and times for every collision were similar and extensive enough to
approximate the infinite limit, this point of view might be correct. However,
for real colliding nuclei, I suspect it is far more likely that most of the
phenomenology of nucleus-nucleus collisions will follow from the same
physics that determines the phenomenology of proton-nucleus collisions. It
must be well studied and understood if new physics is to be found in this
background.

Now to the discussion of data related to the attenuation of photons and
hadrons as they pass through ordinary nuclear matter. Since the
interpretation of the data is often self-evident, I urge the reader to spend more
time looking at the data than studying the text!

As is well known, hadronic matter has very low transparency for
incident hadrons. For example, the center of a nucleon is only 6% transparent
for incident protons, 18% for pions and 25% for kaons [2]. As a result nuclei
are almost black for incident hadrons. This is apparent from the data shown
in figs. 1-3. In figs. 2 and 3 I introduce two useful measures of the

transparency of nuclei; the first is the parameter o in the parametrization of

the cross-section on a nucleus of atomic number A in the form 6,A%, and the
second is the effective number of nucleons in the nucleus, Aef, defined by

Aeti/A = oa/Acp.

For comparison of nuclear transparencies for various processes, it is
worth rememberiing that for "black” hadrons and large nuclei o = 2/3 and
Aes/A = 1/4, while for total transparency both o and Ae/A = 1.

In contrast to the opacity of nuclei to incident hadrons, they are almost
completely transparent to high energy quarks, leptons and massive virtual
photons. This can best be deduced from data on the Drell-Yan process (figs.
4&5) which, as is illustrated in fig. 6, probes all three transparencies
simultaneously. Nuclear transparency to energetic quarks is also apparent
from studies of the production of two jets with large Py (see fig. 7).

The very different nuclear transparency for fast quarks and hadrons
immediately suggests that fast quarks as compared to slow quarks or gluons
have very different transparencies. If this is the whole story, and we accept
the conventional picture that produced fast hadrons are the fragments of fast
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quarks, we would expect little attenuation of leading hadrons in processes of

the type hA — h'X. In fact, as can be seen in fig. 8, in such processes the
faster is the leading hadron the more it is attenuated. Clearly the
understanding of the attenuation of hadrons, in particular of newly created
ones, is non-trivial. This becomes even more apparent when we look at the
data in greater detail.

For example, for most produced particles, there is the unexpected result
that the ratios of particles produced at a given value of x Feynmann are
independent of the target (e.g. see figs. 9 & 10). If this result is not an artifact
of insufficiently precise measurements but follows from some general property
related to the passage of constituents through nuclear matter, one is
immediately faced with the dilemma why the A-dependence of the production
of ¢'s, E's, J/Y's and perhaps p's is so very different from that of most of the
other particles.

Looked at in its entirety, it is difficult to reconcile all these results with
any multiple scattering picture, with or without attenuation, with or without a
formation time for the produced hadrons.

As a digression, it is worth mentioning that the correctness of the

observed momentum degradation of the leading baryon spectrum in hA — h'X
is crucial for the prospect of interesting physics being produced in relativistic
heavy ion collisions. It is this degradation which leads to the prediction that in
such collisions large baryon densities are produced [10].

Since the passage through nuclei of hadrons is clearly very complicated,
I will now consider the propagation through nuclear matter of much simpler
partonic structures. The photon, both real and virtual, is an ideal tool for such
studies. This can readily be seen through the following simplistic
considerations [11].

As is well known, the photon has a hadronic nature [12]. It can
fluctuate into partonic states of lesser or greater complexity depending on the
kinematics of the process that produced the photon. Consider a photon with

four-momentum q = (k ,v) which fluctuates into a partonic state of mass m
illustrated below

(K,v) Q

q

q2: _Qz

Ol
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Fig. 7. A-dependence of the production of two jets as a function of the transverse
energy of the jets, in pA collisions, at 800 GeV [6]. At the highest transverse energics,

the data are consistent with complete transparency for the incident and outgoing
quarks.
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Fig. 8. Complilation of data on the A-dependence for processes of the type pA — hX.
o is the exponent in the parametrization of the data in the form 6A = 6o A . It is
plotted as a function of x, the ratio of the momentum of the hadron, h, to the
momentum of the incident proton. All the data are for low Pt (<300 MeV/e) [7].

More and more attenuation is seen as the momentum of the produced hadron
increases.



10

5 *

: y -C, 100GeV
el > i ¥ 'pb, 100GeV
i =B, 24GeV
ol '0-'5‘ é =Pb, 24GeV
2 : ]

= ! i
o= i
-2 T 4
10 “g / P 8 l
10’3 L ! L

[N
08 1.0
Fig, 9. Data [8] illustrating that in processes
of the type pA — hX, for many varieties of
produced particles, h, the ratios of the cross-

sections are independent of the target
nucleus.

10g s
E \ x Ph
0.k
2 001
o - r
(a7 i A/A
1072
-4_ X
1 SR R A M
0 0 04 08 1.0
X

Fig. 10. Data [9] illustrating the unexpected
result that the ratio of the cross-sections for

the production of A and A in PA collisions is
independent of the target nucleus A.

'045— ° L ° o .
E"‘ TE e ox am 4] FREE "
.can i O'()/CU)
1000F 4. TSR
: o‘(),P)
IOO§¥
RN NN N E NN NSRRI RN
0 0 20 30 40 50 60 70

Momentum (GeV/c)
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2 2
AE=VYm?2 +k? -v= m____2+Q for v2>> m2+ Q2
v

It follows from the uncertainty relation that the longitudinal distance Asy,
over which the fluctuation lasts satisfies (withh = ¢ = 1)

ASY, 2—22—"—2 1)
m* + Q :

In the distance AS], there is a limit to how far the partonic system can grow in
the transverse direction. It is straight forward to show that for the symmetric
decays of the photon (quark-gluon fusion interaction) the maximum

1
transverse size of the fluctuation AST ~./q2 and m ~+/Q2. For asymmetric
decays, where one of the quarks takes most of the momentum of the photon

1
("wee quark" or "naive parton picture" interaction), AST ~ p;, where Pt is the

transverse momentum of the slower quark. Thus through -lz,v and Q2 one can

"dial" partonic structures of differing longitudinal and transverse
dimensions, and study the propagation of such structures through nuclear
matter.

Consider first real photons. k =v and Q2 = 0, and thus AS], - ikg and

AST ~ —nll‘ Taking into account the fact that the photon can couple to QQ of

every flavour and that the most likely value of m generated by a given QQ is
that of a vector meson with the appropriate quark composition (generalized
vector dominance picture), it is amazing how well the photo-absorption data is

reproduced. The value of Gyp in fig. 11, Aef/A and the difference of Aef/A
between YA and rA in fig. 12 are well accounted for by the magnitude of the

coupling of the photon to the various QQ states, the known p, ® and ¢ - nucleon
cross-sections, and the expected smaller cross-section for the more massive
vector mesons. Even the onset of shadowing at a few GeV is consistant with

the estimate k > m?z x nuclear size, based on the value of AST..

This spectacular agreement encourages us to look at virtual photon
data. From equation (1), shadowing for virtual photons should become similar
) 2
to that of real photons for Q2 << m?2, i.e. for xg; < %\,‘, and there should be no
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Fig. 12. Comparison of shadowing in photon-nucleus and hadron-nucleus
interactions. The difference at the highest energies is a consequence of the small
cross-section of high mass partonic structures, see text. Input data are from
[3,12,13,14].
[4
e £665 Xe/D2 i
1.2F @ NA28Ca/D, [ E-E772 (0V)
: } - &~ EMC (DIS)
T - . A/ B
Afg 10F 5 o, I | I
b, I $ Mo of—ss Hlts
osf —  pf o et 1T
: ¥ 09 *
Bt of 3
0.6 FT Xeq?= 0. 6ev? 08§
stved v wapepd v 0ol L | 1 ! 1
0** 102 10% {0 01 02 0.
X8y Xgy

Fig. 14. Comparison of shadowing
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Fig. 13. Shadowing in inelastic p-nucleus
scattering. The E665 data [15] is for 0.01 <,
Q2 <, 60 GeV2, The NA28 data [16] is for
0.3 <, Q2 < 3.2 GeV2. The cross-sections are
quoted per nucleon. For xB;j > 0.1 the data
are consistent with complete transparency.
For xBj < 10-3 the same amount of
shadowing is seen as for real photons.
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independent of Q2 but is a function of xBj [18]. The lines join data at the same value

of xBj, to guide the eye. The circles, crosses and squares are for xBj = 0.0055, 0.045
and 0.25 respectively. R is the ratio of cross-sections per nucleon.
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Fig. 17. Data [20] which suggests that slower hadrons produced in deep inelastic
lepton scattering are attenuated as they pass through a nucleus. R is the ratio of the
number of produced charged hadrons per nucleon for different nuclear targets. Z
= hadron energy /v. v = energy of virtual photon.
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data on the left are for xBj < 0.005 and Q2 < 1, i.e. for the region where maximum
shadowing is seen, see fig. 13. On the right they are for xBj >0.03 and Q2 > 2, i.e.
for the region where no shadowing is seen. Z = hadron energy/v. v = energy of
virtual photon. The data suggests the surprising result that, from the point of view
of the attenuation of produced hadrons, there is no difference in the two regions.
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shadowing for Q2 >> m?2 and-xgj 2 0.1. Once again this is in good agreement
with the data, both for inelastic lepton scattering off nuclei (fig. 13) and for the
Drell-Yan process (fig. 14).

2 —
For r_;'v‘ 2xB;j20.1 the photon fluctuates into a relatively simple QQ
system which lives long enough to be potentially interesting. As mentioned

1 1
earlier, the transverse dimension of the system is either ~ N orp
depending on whether the QQ has a symmetric or asymmetric momentum
division. As is evident from fig. 15, for a given xBj, shadowing is largely
independent of Q2. From this we can conclude that the asymmetric decays

dominate the interaction. Thus the study of the A-dependence of the inelastic
lepton scattering off nuclei can be viewed as the study of the production,

evolution and propagation through nuclear matter of a QQ system, where one
quark is fast and the other slow. Based on our earlier discussion the manner
in which such a system evolves and interacts with the nucleus should depend
strongly on the kinematics of the virtual photon. In the non-shadowing

kinematic regime (xg; 2 0.1) the QQ pair is produced within the volume of the
nucleus. We would thus expect that the slower quark would strongly interact,
leaving the fast quark to propagate through the nucleus. In the shadowing

2 —_
regime (xBj < -’;—‘V- ) the QQ pair is produced before the nucleus is encountered.

It has time, as in the case of real photons, to evolve into a hadronic system. We
thus would expect the A-dependence of the process to be very similar to that
observed for incident hadrons. The surprising feature in the data is that the
A-dependence of produced hadrons in lepton-nucleus scattering, to within the
accuracy of the experiments, seems not to depend'on the kinematics of the
scattering. As can be seen in fig. 16, the spectra of produced high energy
hadrons are the same in the shadowing and non-shadowing kinematic
regimes. Furthermore, in both regimes, the spectra are at most very weakly
dependent on the nuclear target. In the non-shadowing regime, this is exactly
what we would expect. Here we are looking at the propagation of a fast quark
through the nucleus and, from the A-dependence of the Drell-Yan process, we
know that the nucleus is highly transparent to fast quarks. In the shadowing
regime the data are surprising. If our overall analysis is correct, the incident
state is basically a hadron. As in the case of incident hadrons, the produced
fast hadrons should show strong nuclear attenuation. None seems to be seen.
It points out, once again, the fact that we do not have a good understanding of
the propagation and fragmentation of complicated hadronic systems as they
pass through nuclear matter. It would be interesting to see if for real incident
photons, the fast forward produced hadrons show transparency. I am not
aware of any data on this subject.

We see that there is good reason to believe that very slow quarks are
highly attenuated in the nuclear medium while fast ones are not. The final
topic I wish to touch upon is the question: below what energy does the
attenuation begin to be apparent? The compilation of data in fig. 17
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summarizes everything that is known on this subject. For different reasons in

the various experiments, the measurements at the lowest value of v are
difficult and, in my opinion, the data should be used with caution.
Nevertheless, taking together the results of all the experiments, there-is a
clear indication that for virtual photons of energy below about 100 GeV,
producing hadrons of energy greater than 20% of the photon's energy, there is
observable attenuation. Since the formation distance of a 20 GeV pion is much
larger than a nucleus, it is unlikely that these results are a consequence of the
formation time of hadrons. It is also not known if the observed attenuation of
the slower quarks is a reflection of an increase of cross-section with decrease
of energy, or if it is a reflection of an energy loss which only becomes noticeable
when its magnitude is significant compared to the energy of the quark [21].

To summarize and put it all together. I believe that we have a fairly
coherent picture of the interaction with hadronic matter of photons, real and
virtual. Depending on the energy and Q2 of the photon, the interaction ranges .
from being that of an ordinary hadron to that of a simple pair of quarks, where
one of the quarks carries almost the entire energy of the photon. The A-
dependence of photon absorption, photo-production, the Drell-Yan process and
lepto-production are thus a good starting point for the study of the space-time
evolution and propagation through hadronic matter of various partonic
structures. These A-dependences teach us, for example, that high energy
quarks interact weakly, if at all, with nuclear matter (quark-nucleon cross-
section < a few mb). Furthermore, if quarks lose energy as they pass through
nuclear matter, it is at most a few GeV/fermi.

This is to be contrasted with the passage of complex hadronic
structures. When a hadron impinges on a nucleus it interacts strongly.
Nuclei are almost "black” for incident hadrons. However, other than that the
soft components of the hadrons interact strongly, little else is understood well
about the propagation of complex hadronic structures through nuclear
matter. The data from hadro-production or lepto-production, for the
production of one type of particle or production of another type, at one Pt or
another Pt (a subject I did not have time to cover), often give conflicting
insights into the physics that is involved. Furthermore, the existing data is
not systematic or precise enough to give reliable insights.

The fact that it has proven to be difficult to interpret existing data on the
interaction with nuclear matter of complex partonic structures should not be
overlooked by those searching for fundamentally new physics in the collisions
of relativistic heavy ions. If photon, lepton and hadron-nuclear studies are a
guide, interesting effects will be subtle. To understand them, it will be crucial
to study systematically and with high precision a very wide range of
phenomena in pp, pA and AA collisions.




62c

W. Busza / Understanding of the attenuation of photons

REFERENCES

A

10.
11

12.

13.
14.

15.

16.

For reviews and compilations of data on hadron, photon and lepton-
nucleus interactions see, for example: W. Busza, Acta. Phys. Pol B8 (1977)
333; N. N. Nikolaev, Sov. J. Part. Nucl. 12 (1981) 63; S. Fredriksson, et al.,
Physics Reports 144 (1987) 187; T. Kanki, et al., Progress of Theoretical
Physics, Supplement No. 97B (1989).

D. S. Ayres, et al., Phys. Rev. D15 (1974) 3105.

S. P. Denisov, et al., Nucl. Phys. B61 (1973) 62; A. S. Carroll, et al., Phys.
Lett. 80B (1979) 319; W. Galbraith, et al., BNL preprint 11598 (1967); Particle
data group, Phys. Lett. 204B (1988).

D. M. Alde, et al., Phys. Rev. Lett. 64 (1990) 2479.

P. Bordalo, et al., Phys. Lett. 193B (1987) 368.

C. Stewart, et al., Phys. Rev. D42 (1990) 1385.

R. Bailey, et al., Z. Phys. C22 (1984) 125; A. Beretvas, et al., Phys. Rev. D34
(1986) 53; and the compilation of D.S. Barton, et al., Phys. Rev. D27 (1983)
2580: For analogous nA results see W. Busza and M. Zielinski, Phys. Rev.
D31 (1985) 192. ' ,

T. Eichten, et al., Nucl. Phys. B44 (1972) 333:D.S. Barton, et al., Phys. Rev.
D27 (1983) 2580.

P. Skupic, et al., Phys. Rev. D18 (1978) 3115.
W. Busza and A.S. Goldhaber Phyé. Lett. 139B (1984) 235.

This section is based to a large extent on discussions with A. H. Mueller
and on J.D. Bjorken, Fermilab-Pub-86/16 (1986).

For a review of the data and a theoretical discussion of photo- and lepton-
production see, for example: T.H. Bauer, et al., Rev. Mod. Phys. 50 (1978)
261; L. Frankfurt and M. Strikman, Phys. Reports 160 (1988) 235.

Particle data group, Phys. Lett. 204B (1988). |

D.O. Caldwell, et al., Phys. Rev. Lett. 42 (1979) 553.

D.E. Jaffe, presented at the XXVI th Recontres de Moriond; Les Arcs,
France (1991).

M Arneodo, et al., Phys. Lett. B333 (1990) 1; M. Arneodo, et al., Phys. Lett.
B211(1988) 493.



W. Busza | Understanding of the attenuation of photons 63c

17. Figure taken from D.M. Alde, et al., op. cit. ref, 4.
18. P. Amaudruz, et al., CERN-PPE/91-52 (1991).

19. J.J. Ryan, Ph.D. Thesis, Massachusetts Institute of Technology (1990) E-
665 data.

20. Compilation of data: A.F. Salvarani, Ph.D. Thesis, University of
California at San Diego (1991). The reader should be warned that the E665
data is very preliminary, and that the v-resolution and the normalization
in the three experiments differ significantly.

21. See also M ‘Gyulassy and M. Plumer, Preprint LBL-27605 (1989).

Acknowledgments

In preparing for this talk I have significantly profited from discussions with
James Bjorken, Stan Brodsky, Clive Halliwell, Al Mueller, Jan Nassalski,
John Ryan and Andrzej Zieminski. Without the dedicated help of Sandra
Fowler and Anne Lees, this manuscript would never have been prepared in
time for the proceedings. This work was supported in part by DOE Contract
No. DE-AC02-76ER03069







Fermilab E665:

Results in Muon Scattering

John J. Ryan
Massachusetts Institute of Technology







ovqZ °J, ‘mieqnr °r m 'p1oT 't .En .N
‘nasuep W'q .»tuaw:oﬂ M ‘HosstaRQ Y ‘daeig c ‘medg vy

xu:_g 3 anﬂoz..unﬂom .m .S_Eﬂm ‘N
'suupy vy ‘osouep *n ‘aqyuey °q .._o=2—u0 *'H "“1p1s1eg A 'flone) 1, ‘opeiaq ‘]

Moug YD ‘shhyg Y
Jssquivy g Av@,0 'S 'Houn)] s 'pIv 'S

POPH .Bd ._E.: U’ 2YVE ‘A'Q 'R ‘D
‘ond 'Sy 'MIGAY *V'Qq ‘swvpy YN

o premRy .zaﬁm W 'mdid W wosIYIIN gy
PRI *D"d ‘(PAI0) *A'Y ‘Fuug “A°D ‘PRN0D WL

f13qlom .<.m ‘opus[es *M°D ‘uylol ‘O .bquwEoE ‘4’
‘uosnupl Y ‘Peg W'

01eI0q V'] [VUONjUN 9UU0IT
Sy8Z v 'pPaod "H'( ‘nofsseavdud A Y T,
‘f3uury .&.ﬂ .a-nc..-v— g ‘wosyynp ‘F Y ‘uwwmesvn “J°q

mpYA | NS g m tuwu.m i) .-.-.-E r .nndEv..m W ‘19821 L,

16/00 - wolyv0qe([0) S99T ML

A8ojouyoa fo agmiusuy s11aSNyoDSSO

ueAy ‘[ uyor "I(g

C661-AON-LT

SurLI9)1L0s uon
Ul S)[NsaIx

-GCO0H qeTItLo




2

e

i
SR

ey

"
e
SRS

mmcad Ty

‘ ap—-
IETTT e s s
W

Jrnong
2 S

e
aal:

%

,.
S
NN{

P
=2

5

V54

SO i
T T

Mk 179

-

..._
e

E665 Plan View

Wide Angle Drift Chambers

Chambers Muon Chambers

Time-of-Flight

CCM PSA

PCV 3 m radius Chambers

Chambers

L Becam §
(490 GeV/c)
Target RICH
Electromagnetic
Calorimeter

Y Hadron

Absorber
PCF
Chambers

4

|

Concrete
Ahsorher




X
I 01 01 01 01
I- (Al € - C .
] i i ) ﬁ O
g2
< BOnE
moongn
» BYFT RANE
Enegad 41
ramp n 5994
.ﬁum&
3 .
| | [ ]
N MR _| O.m
FHIILE
rrerL-
HEREmm
| ' .
L 1 or
L B K B T
B & VyEH
-
+ (01

syuewLiadxy ST 0] seSuey onRWoUrs]

d/u 5994

-A%D .0

d/a=f :1ejsuel], AS1ous] pareog

"M TWRSAS OIUOIPRYY O} JO SSRA]

:9[qeLreA Juledg uaIolg

9500 4lllg — TG + Jug— =,

.le = N® tI”JSURIT, WNJUSUIOIA[ -}

' lI9suRly, A319U5Y

-SO[qRIIEA Oljewsuryy

Surreyyeog onyseppuy deo(g




"SJUBAS BAloRIIQ 10}
Anondnini Jo souspuadep-v o

"SJUBAS DAIIOBIHI( 10}
ateudsiweH (0<,A) piemiod ul
s,d 1o eouspuedop-vy

"SJUaA® §|Q Joj alaydsiweH
(0>,A) premorg Uj s100)7 JES|ONN o

"sjuane S| 1o} aleydsiweH
(0<,A) premiod ui s1084jg Jes|oNN e

(|xmor) -1 >Ho/ty/V0)
:UOI}08S SS0.0 [e101
jo Buimopeys juspuadep-y o

upnO

0> e > 1000
27N 08T > ;0 > 2/, A9D T'0

A®D 00§ > 1> AD 001

A®D 067 = (da) wreeg oy Jo AS1ouy




uekyrr

uononpo.d |
oAloRIg

oM~ w1~ Tgy

:99%e)S [eNYIIA JO JUSIXO ISIOASURI} 8} PUR

(g
.NENMN@ EN.H z 2 AveES __m.q

99es
[ENIIIA JO JUOIX® [eUIPN)ISUO] oY) SoAIS

L

W0

AIN.E.TNUINA\, =HqVY
opdrourrg Ajurejrsoun

se awes ay)
uoneziuolpeH




NO\ N\/mw ¢ < N@

pue e00 < '€z
NQ\N.\/@U H > N@
pue 000 > ‘e

(2661) ‘2829 1o 'sAud

4

[(9/A2D) O () [(YA%D) O (@
o] ol 0l i ,. Ot
e 150 . —
» ury
4620 u my =
|
| m I Nam
Ny ] L
i ]
- - 621 .
fs
20>%x > ¢z00 gl sz00>"x> 1000
g1 °
[
9y (v
. O 5 OF . O
S
“ury tury i
uonosfoid A jeay ---> W
]
w ]
- ]
] | |
|
(*%y/2%) / (Py/*0) m

§24°0

gec'l

S0

S0

ez

oney

oney



Differential Hadron Multiplicity:

Phys. Rev. Lett. 68(22) (1992)

T W
K | 1 dN
. T D(2) = = =h,
i ) 21 (2) Ny dz
- K | n 1
.r mw. 1 .
W =01 UP
I 5] < Scaled Hadron Energy:
[€ 7
4¢ u mz y = Prarget * Phadron
i | 4o = f) |_O Prorget - 4
” 14w = SEN = Ep/v  LabFrame
| <w n Nt i
| i ,a i
| —d- & 15 V ,.,.m,,..
m m m m | & BoCE N Feynmann - z:
g o m m | o . QW\\M _O .mu_ﬁ_"bp .Nu_n_uB
-5 5 5 3 SRR, 2. B
[ D © © O I — w\\xw = T = =
ARAA R “= e W2
e - N ]
o =5 § E _ R
S g o .2 i o RNl . . Yo e
5% 5§ © S ek m + Partial Multiplicity:
|} OoOm e = Bl Zimas |
- m SRSRS “ b= W qu 17 R HMNSW: Ummgﬁmﬁ&&v Az
m W W W . 878 . sample = 2 mas — Ziin
. 4 | nnba % -—
| IR R ! s . wve\oﬂh .”xu
N — 0 (e} <
S S S o

"Ca)o/(v)o




I ® EMC E =280 GeV
| ; Q?> 6.0 GeV/c?
x E665 E =490 GeV
N 10 b & Q%> 2 GeVi/e?, 100<v < 500 GeV
F Xsi> 0.03. 0.01<Y<075
e ox .
~— A~y
% =
= e, o
Z. * 2
1 L & <
o '*.-3 =
— i
Z - 2
- m CHIO E=219 GeV A o
Z 10-1 Q2> 1.0 GeV¥c?, W> 10 GeV Ll -. 8
— E 4 CHIO E=147GeV ¢ =
3<Q2<6.0GeV¥c?, 5< W< 20 GeV * o
A CHIO E=147GeV x o
i Q%> 6.0 GeVZc?, 5<W<20GeV g
2 £
10 N R N D T B o
0.25 0.5 0.75
o 1 Hadron-Nucleus collisions,
o=t e / forward hadron distributions.
3 RE ez Z
% zgi dp? :% ]
".g‘l'-’-n_ - X:08 E:”i;”;.lom“t { Barton, et al, .
w® 2°-' o - ~ 1 Phys. Rev. D27(11), (1983)
*E e Faob, - 3 h O((Xp)
! S ’\"O'(X)‘Gnlb\
T 2 s 10 20 %0 xoo—_zo!oj F
A
2527} e Predicted Ratio, then,
o p=n i for xenon / deuterium
.o A } Ro ] forward hadron distribution.
; :: ;" Rel, 9 -
o p= w7 ‘_g 1.5
0 p-Tm" R <] ,
: :: ::] Ret. 7 3 .
3 94
T .3 I £ ,
\%\F# 1 os
os|- ] é’ -
R + / ** * + 0 0 o.'zs ds a.'75 1
1 1 + 1 ! XF

04 1 ] 1 1 1
[+]



(v661) ‘()05 Aoy 'shyq
1D 32 ‘SWepY W'
6999

¥90°0 F 0660 tuny (Jreq) ‘*q/ex
060°0 F 280'1 tuny (y1ey) ‘2q/ax
990°0 F 9811 (3% payoas100) tury / tury
850°0 F VET'T (2@ payoarred) zuryy / tury
vp0°0 F 256°0 (zunyy pajoamros) ‘zq/ayx
090°0 F $L6°0 (tuny pajoamsod) ‘2q/ey
Vua ; YH

'sajdues ja81e3-J1ey ay3 10} 3daoxa ‘s303ya Y33ua] 3281ey J0f
Pa3193110 219M YDA SUOIINQLISIP Y3 Pasn suosiredurod oyy
‘suospzedwos paisy ay3 10§ {gz) 'by jo uoiduny uosmredwod
Y3 W0JJ 318 SIN[RA 3SIYJ, *San[eA Yy PaIdalIo) A FTHVL,

TIXXX Pue XX s9[qu], Ul paje[nqe; sJe ejep assqy,
“zur)] 105 (p) up pue ‘lury Jof (2) Ur UMOYS ST SWORNQISIP
952y3 Jo opje1 Yy, -Tury :uotdaz oryewaury Yy o3 Iof ale
Y311 943 wo 9s0q3 Sym ‘tury] :uotSax sfyemaury Mol aY3 10§
are 3y9] 943 wo sjo[d 3y, ‘suolNqLISIP Wouax pajdaiiod Y3
uasaxdar saj3uery oYz S[IYA 'SUCHINQLIISIP WRIMAINAP Patdal
-103 343 jussaxdal sapaId oy, 's3931e3 9y} ut Surrejyessar 10§
P33931102 U33q 2ARY PPIYM SUONINGIISIP z 343 moys (q) pue
(e) s101d -3utra33vaser J0§ pagoarion ‘Z(] pue X ‘£ *OId

2 Fupy 2 tupy
sL0 §0 sco b74/] g0 sco
T T T Y T T 50
I “(p) - ©®)
_L+ I — 1 1 1
I —] '
g
=
§1
z z
(747} s0 sco (74 g0 sC0
1 1] L} L] 1] L] E 0‘
éé @ ®
A5 % 1o
%%s 8%5 -
F i1 5
. B, -
%5 Fog E
g B o 5
N

T puw UOUIX PIIILIOY ‘D

(r661) (£)0SA Ay "shyd
‘10 12 ‘swepy W'

2l =2 o N E) N N N9 9o g
5| &s . (g 8 + ' 233333
$ 18 —Hwo [ ™ Sw 2T g
gg;ﬂ 15 mHH Ay IN 200,08

G Sre S ~ a =
a¢ : ] g8 -—I-—- Sd' Sfaseg
E . ~ ] i

S8 =2 .
weo “ we 25582353
Jox - 1sna o 4 3% oe)t)g.:.“"><
§=‘§- ] 2|23 e BSH3E gy
\3 A NEE 2 gwe=SsoR

(3

;w&«g g |E%88 @ - 9% 2587535
2 g 1° S e 1o BgezE P

l = SN
i ~ 235 = 3 <
A { [} L ! Qﬁ.::: -‘g‘a‘”
SRR =1~ [&] §% N N 526 zE82
-| o T 8} oo ::gm-:Eg'g
: - HH -*— _ﬁ wHH R o av:o:xg“i"
1 Qe : - 1 48 - -
L PPy S Yo S S KaghEXgE
v Ay : g a .. 85,82 95
L R~ Y I 4
a J@ e W e 0.8 gS%?Eug
3 = T [S3e] = 1sA 187 :sgoueg
${23. 228, e =z TS5 3
g\é‘g N S Zgf8z3%
G | % 18 [s)x8a Q T Q= FSsHEC 8

3 - . R Qo
| € 9° i °© 8 ] ®G4s£85°

-+ n 22

: L L D 18835 .2
= o0 B o =
[~} .2 33— E S
= = 2 =3 © - 0 -
. . ° EEESS e
(20/NP) "N/t (2p/'Np) "Nt onmy 2222




(s661) 590 'shud "z

6993
Su
;,@ouapuadep Buimopeys sl 818UM o l# ¢ % T 1, :Buimopeys-uonN
| . aAnjobau | . 14 R NO >}
o - 4+ . _mx .
‘BuimopeyS-uop pue -9 c00 = v 000
BUIMOPBYS U8amiaq 8ousiadip ON , :buimopeys
| INq SjuaAe S| Jo} alsydsiweH 1
(0>,A) premioeg ul Buipeose) JesjonN e ; :
. / T 6y
'SIUBA® S| 10} eioydsiweH AR AR
(0<.,A) premio Ui s108)43 JeajonN ON e TR LY b 00
‘ « - - N q o
3 / 0
('8x moy ) ._.VIb\.A<\<.OV : vy 90
:UON08S SSOIO [B10] R - Fox giex 7| 80,
j0 Buimopeys 1uspuadep-y ¢ T<u> dustvttistind (1)

*<Puju> = Puy

Buimopeys-uoN sA buimopeys

:18J 0S SUOISN[ouo0))



g
S84
g >
QD
E=s
0 £ 40
© 9 28
©>s5o9
wunaoal
bt
* / o
e =
o~ (o]
Q
o N 3
- = <
PN 5 X
—~~ o X g
— (@]
et |
aQ
" 2 N
= VN Ja
] S
1} i 1 1 e | O T
O 090 00 oo Q » —
SN O n O n 1 i -3
A A - :
A9 Z0'/sjuaA] jo # f $
T I PSP W P W ¢! o
- ' [ o vy ~r o™ o~
- o o - ) o O © o o o o
nn <t 5 N — N9 /SIUdA]
S}UBAT JO #
U 1] '
[
- - ==
/—M-— ?
. / :
e
—/'/
- ] R"‘:., \
{ e
i
e IE _2_ "':.'.._‘ _
{
!
¥
! !
A I 1US T 1L O-XSONT CSLE-ININ3 S2a T e v

—t'(GeV?)




A-dependencé of diffractive: O - scattering

O,/A°  H D C Ca Pb
Oy | L Q%>3 Gev?
i w
A F ' | |
04 < Q2 < 3 GeV?
(x1)
oL Q2 < 0.4 GeV?
- (x1/2)
®
| 1 ] > .l
1 10 10

E665 Preliminary



£0°0F60°0 €O'0F80°0 £0°0F81'0 ZOOFTI'O “¥(fewoyaandeiyyip)

EI'0F6Y0  60°0FZE0 LOOFI90 S00Fry0 “"“(DYTI/eansesyip)
axr ar axr! ar

g uoi3a1 3uimopeys-uou ¥ uo13a1 Suimopeys

Suuaness ax 1! pue g jo uolSal (200 < ‘9x)
Buimopeys-uou pue (zo'0 > f8x) Suimopeys oy u ‘ajdwes 1usAd [e101
pue DY 3 U1 SIUAAD JANORIYIP JO UONDEIJ 3Y) UO SIWI JOMOT] *§ djqel

XC XC

91 ¢ 8 ¥ O ' 9
9 0, 0
00 £ $0'0
= (q H g00E 80°0
E £ 3 3
- ] - [
3 A4 CLOF 210 3
. E 2 o
o 3 3 [¢)]
— 4 91°0F g1 7
- 3 3 o
3 ] 3 o
3 ‘4 $00F $0'0 o
3 E 2 -
- 1 800F 800 O
L o )
m 970 u N_om L0
2 ¥Se Jo10F 91°0
> Dys axn E E oys Q1!
FUNTST I TN BT I IS I U

ouon.gmaxm. D)}Dp "Jadxa

(5661) 590 'sAyd -z
6993

(s661) 590 'shud 'z

G993
L 170 100
w:_._.. 1 | AALARILLI T E O
3 axm & —- :
- 1 - .
- S
H\&\\
3 ¢ 1¢°
- i O ¢ ]
E L0 T e Y
- + 3 £0
WSFF[L:E.—L.I bunery oo h*

14 12 0

| RN

T

x
3 x 0
Lsu Vo— ¥

N\,
M
oys x b/w

/-

- \ -

RN
T 7/
A / d

3 AN
2 ¥ E
- i .
- ysu % - - w/

Oys a A
AL

[ FUCTRTY FUNY PR RPN S

"UOIBUILIBIUO0D

Buneneos eanoeiIq S1EOIPUI 0} HHT 8sN

Pttt o], 071

100

L@

o'l

den Aupidey abieq yum sjuanz jo uonoe.




(. SJUSAD QATIORIFJI(T-UOU
10J 90uepuadop-y [enpIsay o

"S1UBAS BAIoRBMI 10}
(4w sy2w32) AUIAIINIAL 4O BOUSPUSASP-Y

"SJUBAD BAIIORIYI( 10}
ateaydsiwey (0<,A) plemiod ul
s.d 10 aEmmemsy \uopuadep-Y o

:01.0:19..&
"SJUaA® S| 10} ateydsiweH
(0>,A) premoeg ul Buipeose) JesonN e

‘SjueAe S|Qq 10} a1eydsiweH
(0<,A) premiod Ui s1o8jjg JesjonpN ON e

("xmor) -1 >Ho/(y/70)
:U0J}08S SS0JO [Blo |
jo Buimopeys jJuspuadep-y

:SUOISN[IUO))



Interactions of Quarks and Gluons

with Nuclear Matter

Al Mueller

Columbia University
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Rescattering in Nuclear Targets

for Photoproduction and DIS

George Sterman
SUNY /Stony Brook
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Structure Functions and Nuclear

Effects at PHENIX

Mike Leitch
Los Alamos National Laboratory
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Integrated. Xsection
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Evoluti_on Toward RHIC Energies

* Quark-gluon-plasma signals visible via high-mass
dileptons:

— J/¥ suppression by Debggscreemng in the
plasma.

— Thermal dileptons from qq annihilation in the
plasma.

— Enhanced charm from fusmn of hot plasma
gluons.

« Expected evolution of nuclear effects to VS = 200
Ge\/}' .
— Shadowmg becomes dominant effect as x, ~

0.02 at4 GeVmand structure functlons are not
well known at fow x.

. — Intrinsic charm and beauty - not important for
low xp collider measurements.

— Energy loss and multiple scattering - become

less important at low x; and as <p> increases
withfs.



— Nuclear absorption and co-movers - expect
large effects due to ~1000 charged particles per
unit rapidity at small Xg.

— Broken nucleons - would eliminate J/Psi
production except from near the nuclear
surface; o0 — 2/3.

— Finite formation times - less important for xg ~
0.

— Feeding of resonances - #seep large effects due
to increase in 'S.

» (Otherissues:

— As VS and number of participant nucleons
increase, high mass pair production from
secondary interactions may become important
and could give o > 1.

— Hot glue models of QGP also give o > 1.
—T/d#1causes a1 for Drell-Yan.
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(PHENIX Detector )

Spokesman: 8. Nagamiya, Project Director : S. Aronson

[Probes] ' :

Electrons{2 sr,|y|<0.35) Photons{2 sr,jy|<0.35
Muons{i.2 <|yl<2.4}- Identified Hadrons{.36 st}
Event Multiplicity (ENfdnde) {-2.7<y<2.7)

[Physics Highlights]
Jy, ¢, T: Debye screening.
oy mesons (4m <4 MeVvy: Chiral symmetry restoration.
Directy {(p; > 1 GeVic} : Radiation from a hot gas.
Identified hadrons Order of phase transition.
el Coincidence: Open charm enhancement.
1, €, i: Studies on the nucleon spin with polarized p's.

[Others]

396 collaborators from 10 countrieg45 institutions)
All detector elements are funded
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Simulation of the Full Dielectron Mass Spectrum
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RHIC/SPIN Facility overview

Spin Rotators —

Spin Rotators
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are approximately valid at higher energies as well due to /7 scaling.
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curve) are based on an integrated luminosity of 2x10®cm™ at +/s = 50 GeV;
beam polarizations are taken to be 0.7
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Figure 11. Asymmetries from the polarized gluon structure functions of Ref.
[31] solid, Ref [33], medium dash, Ref. [32] long dash, and Ref. [31] short

dash. A partor-level asymmetry, |d, |=0.3 was assumed. The points show
error estimates for JAy and Y (circles) production at /s = 50, 200, and 500

GeV (right to ¥eft on the graph).
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Probing Spin-Averaged and Spin-Dependent
Parton Distributions Using
the Solenoidal Tracker at RHIC (STAR)

Tim Hallman
Brookhaven National Laboratory
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Parton Distributions Using
The Solenoidal Tracker At RHIC (STAR)
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Workshop

November 17-18, 1995
Brookhaven National Laborato
Upton, NY |




The Role of Hard-Parton Scattering
in the STAR Physics Program

Determining the initial conditions in AA collisions
Compton QCD diagram in pp and pA

Studying the effects of “jet-quenching” in AA
interactions

Jets, v + Jet events, and inclusive high pt
particle spectra

Searching for evidence of a change in parton
energy loss in “special” event samples possibly
indicating new physics
Jets, y + Jet events, and inclusive high pt
particle spectra

Determining the contribution from gluons to the
proton spin

QCD Compton diagram

Determining the polarization of the valence and
sea quarks in the proton

W+ production

Measuring the transversity distribution h1(x) of
quarks in the proton

Z° , Jet-Jet production

Searching for new physics (parity violating
asymmetries)

Jet-Jet production
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Measuring the Gluon Structure Function in-
the Nucleus
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The normalized ratio of the quark and gluon structure
functions in A«™ to those in the proton.  ®gef. K. Eskdlo. ot ol
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Fig. 14 The ratio of quark structure functions Rx(z) € F{(z)/AF)(z)
as a function of z in small and medium z region for different nu-
clear mass number A. The data are from Ref. [47] and curves are
the para.mc{riution.in Eqs. 38 and 37.
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v+Jet Acceptance, Barrel + 1 Endcap
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P+ Au— v+ jet

5 Entdes 2656
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0 002 004 006 008 01 012 014 016 018 5.2

min(x1,x2)

“Useful” Events in 5 RHIC Days
e 1< my £2
¢ -03< Myt <0.9
1.1 < Mjet <13
e [£° =1028 cm-2sec -1

« Jet and v efficiencies not
included.
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CDF Shower Maximum Cuts
(Abe et al, Phys. Rev. D48 (1993) 2998

For direct y candidate events having p¢ >
14 GeV/c :

Cut | Prompt y
- Efficiency

Econe <2 GeV 0.89
Ix| and |zl 0.64
fiducial cuts

extra strip/wire 0.95
clusters

associated track 0.97
E¢ balance 0.99

l Zvertex l < SOcm 0.88
shower profile 0.80

Total Prompt v Efficiency 0.37
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Figure 4A-6. A scatterplot of the energy of clusters found using electromagnetic energy from the STAR EMC plus
tracking and momentum information from the TPC versus EM plus hadronic calorimetry. Data shown are for 40
GeV jet events from pp collisions atys = 200 GeV. The asymmetry in the distribution is due primarily to the
transverse energy of neutrons and K; mesons which are detected using EM plus hadronic calorimetry but are
detected in the EMC alone with low probability.
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Figure 4A-7. A plot of the average energy of clusters found using EM plus tracking versus the average energy
found using EM plus hadronic calorimetry for 40 GeV jet events from pp collisions at \'s = 200 GeV.
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Spin Studies at RHIC
STAR

e Direct measurement of the spin-

dependent gluon structure function of
the proton, AG(x)

inclusive jets, inclusive direct photons,
jet-direct photon coincidences

* Direct measurement of the spin-
dependent distribution of sea quarks
and sea anti-quarks in the proton

+
W Production

* Direct measurement of the
transversity distribution of valence
and sea quarks in the proton

Z° Production , Jeis ( Jer-Ter)

e Search for small parity-violating
asymmetries as possible indications of

quark compositeness or new physics
beyond the Standard Model




“SPIN EMC EFFECT”

0.21} .+ EMC (1988)
KT ELLIS-JAFFE SUM RULE 0.189 ¢ SLACIYALE
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{9 (x)dx
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1
Jax{gf (x)— gl (x)}=284 *OCD,4,,
0

CONCLUSIONS FROM CURRENT DATA

e BJ sum rule confirmed to about 10%.

As =-0.10£0.03
Au, >0
— +
e AX=0.27£0.05 Ad, <0

* Theoretical understanding of nucleon spin
structure has progressed, but is still limited.

JBRRHIC pp BNL presentation June 5. 1995



CURRENT DATA ON SPIN STRUCTURE FUNCTIONS

_ o In Scaling ApprOXImatlon

F(x)=% Se2(q' (x)+q*(x)

uds

81(x)= Zeq(q (x)-q" (%))

uds
| 1
A=Y [dxAq(x)[=Au+Ad + As]
u,d,s 0

3 =53 AZ+AG+(L,)

* First moment must strictly obey Bjorken Sum Rule:

JBRRHIC pp BNL presentation June 5. 1995
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The Asymmetry Predicted for
Inclusive Direct Photon Production

ecm =] 450 T

P p -~ 7 + anything
s = 300 GeV

- ——— — n aan . — .

- -
’.-“'
- - .
-
-
-
-

S0 . 100
Pr (GeV/c)

A do = [dx,dx,g,(x,)AG(x,)af o™

q
(——) ~5x0A,; = 0.03

o

Bourrely, Guillet and Soffer, Nuc. Phys. B361 (1991) 72
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STAR Spin Physics in
Perspective

e EMC/SMC/SLAC data — revived interest in
spin physics: tests fundamental sum rules
and models of nucleon structure.

 Expts underway at CERN, SLAC, HERA on spin structure
functions.

o New acceleration projects at BNL, FNAL, HERA.

 More spin data on proton’s constituents

are necessary to complete the picture of
nucleon structure.

« Both longitudinal (Aq,AG)and transverse (h1)spin
distributions

e Separately for valence (Au,Ad) and sea (Au,Ad)quarks
and for gluons (AG).
« Using the measured spin distributions, asymmetries in

—>—>
pp — (jets, W=, ZO, ...) are calculable and test
standard model in new domain.

e |deal place to make thesg> measurements:
STAR at RHIC with the l—fp option.

JBR RHIC 33 BNL presentation June 5, 1995



Working Assumptions

40 Weeks of Heavy lon Running
(Including Maintenance)

10 Weeks for pp Spin Running

At s = 500 GeV,
L = 2x10°%cm 2 sec!
For 4 x10%sec

( ~ 100 days, 50% efficiency )
JLdt = 800pp~1

At s = 200 GeV,
L = 8x1031cm—2sec-1

For 4 x10°sec

J Ldt =320 pb~"

For These Working Assumptions:




For These Wdrking Assumptions:

Type Barrel Barrel &1 Endcap

W 69k 72k

W- 15k 21k
yAL 3k 4.2k
Y™ 224k ~ 300k
v—Jet * 100k
Jet*™  ~109

Jet—Jet ~107

Can these signals be triggered upon
and measured with an acceptable
signal to noise ?

Is a significant measurement
possible in the available running
time?

pt> 10 GeV/c
Iny <2, Myetl < 0.3, 10 < pt <20 GeV/e, Xq=0.2
Indet| <03, pt=10 GeV/c



W* Background Study

Backgrounds Considered W* W~
Z° with missing electron (positron) 2%, 10%
n° Dalitz electrons ~0

‘Mis-identified high pt charged hadrons 5%, 20%

Overlap of y from n° with charged hadron

Cuts to minimize background

Energy-Momentum matching
Isolation Criterion
. Shower Width

P’ cut




dN/dP; GeV™*

V. Rykov and K. Shestermanov, W% and Z° in STAR..__ ANL-HEP-TR-93-89

108

107

10°

102

10

STAR bo rrel

pp. \/“s 500 GeV 800pb"

Generqted o qnd p spectrum

T ann

LI llil"l

LBLBLRLARLL

.p wiéh cuts i

LR RALL

W= e.+1 . -

R LR RLRL

..........

lil!llillllillllillllll

10 15 20 25 ° 30 35 40 45 50

With PF cut > 25 GeV/c
Efficiency for W' ~ 80%, Background ~ 5%
Efficiency for W~ ~ 85%, Background ~ 20%



e L=2x10%m™s™
(o]
- 0.4 - \\/S-"‘-'-'SOO GeV
& I X
%osr_ \
> [+
02 | \
0.1 |- \\
E
o E beadestebis bt biotodestedist.

20 25 30 35 - 40 45 50
Pt of parton scatter (GeV/c)

Jet Pt do/dndpt No. persec Level 0 per sec
(Barrel, 1 EC) (20 GeV Tower)

(GeV) (ub/ GeV) (H2) (H2)
20 0.8 480 0.006
30 0.08 48 0.5
50 0003 15 0.05

Total Level 0 Trigger rate 3.5Hz
(20 GeV High Tower)

Trigger rate for W+/~-and Z .03 Hz




%k

Effective Yijelds

Type Yield € Background Effective

(STAR) | Yield
w 72k 0.8 5% = 58k
w+ 21k 0.85 20% 18k
A 4.2k 1.0 ~ 0% 4.2k
v* 300k 0.5 <50% 150k
Y+Jet* 100k  0.35 ~ 0% 35k
Jet** 10° - 0.01* . go 107
Jet+Jet** 107 1.0 * . 0% 107

Pt =210 GeV/c

My <2, yet < 03, 10<pg<20 GeV/c, Xq=>0.2
Mdetl < 0.7, pr>10 GeV/c

DAQ/Trigger limited ‘



W= and Z° Production at 500 GeV

1) Parity-Violating Asymmetry
The observable Ay, (PV) is defined as, Ay = (N"- N*VM(N" + N¥),
where -(+) are minus (plus) helicity. For W+,
A - A xl)d(xz)—(uea)

EEC )

When the helicities of both beams are the same, we define another

observable:i: —[A u(xl)a-(x‘?)_ﬁ‘(xz Xl)]—(uea).
ARV (y) [ Xl)z(xz) _ Au(xl)Aa(xz)] + (u<——>_&)

Fory=0, A¥ =1/2 (Au/u-A&'/a), AY =1/2(ad/d-Au/w)

AV =AM+ AL(-Y)

| 2) Parit):Conserving Asymmetry
For Wt, - -
or Apon Au(xl) Ad (xg)

u(xl) d (xz)

A similar expression for W~ production by permutingu and 4. -




Tests of SU(Z) Flavor-Breaking of the
Quark Sea in Unpolarized pp Interactmns

d(x) > u(x) 7

{ v " { T

(a) -

X S00 GeV
0.3 - pPp —-—> w* i
xd(x)—xu(x) = 22x‘5(1 —x)*
0.25 — ,’,, \\\\ -
Vd ' \

0.1 |+

01} < -

907 Gymel3e x fu (<M (3) (D ]
Y .
T

ZM ( sin’6, )

GF - Xa — Teya Xb -_—_-_,\/—%e—)’, T:M%V




Tests of Sea Quark Polarization In
Polarlzed PP Interactmns

Ve = 500 GeV

pp——> w'

0.5 |-

! B — Aa(x)=(x)—d(x)
Ad(x) =—bAdy(x), b=0.14 £ 0.024

pp—> \ 8

o - ———— =
- — —
- -—
- -
- —
, - _——

O—— O Au(xa,M 2Yd(x, M) — U(xas M 2YAd(xp, M) —(u & c
O-—-t 04w U(xas Mw)d(JCb, M) — Au(x,, MW)Ad(JCb,Mw) —(u < ¢




Transversity Structure Function h1

h1 decouples from DIS, even with QCD
corrections

In STAR, h1 can be measured from
qq annihilation in pp — Z°— e*e"
g %eihi‘(xl)hf(xz)

" %‘,eifla (X, )fla (X,)

h1 can also be measured in pp —jet + jet

JBR RHIC pp BNL presentation June 5. 1995



206 Polarized Protons at RHIC

20 l |

15

o

¢ = Apy (PERCENT)

|
0 10000 20000 30000
Zp% GeV2 A _F P

Figure 4.3: Predicted single jet PVA (A4py) for quark substructure model®
with parameters A = 1 TeV and 4 = —1. The Apy is plotted in percent as
2 function of the quantity 2p% which is a good estimator of —%, the invariant-
four-momentum-transfer-squared of the constituent scattering. The value of A
can be derived from the observed linear slope, as illustrated. The error bars are
calculated assuming an integrated luminosity of 2 x 103° em™2, corresponding to
10 months running, and a “nominal” collider detector covering A¢ = 2w, Ay =
+2.5. This figure indicates that the sensitivity of PVA measurements at RHIC
can be much larger than the c.m. energy of the p — p collisions, with sufficient
integrated luminosity.




Complimentary Studies Possible in Principal

— at HERA with Nuclear and Longitudinally
Polarized Proton Targets

Study of jet quenching in nuclei

Extension of gluon shadowing measurements
to low x4y

Study of gluon shadowing in the proton

Study of gluon contribution to the proton spin
(photon-gluon fusion)
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Conclusions

The STAR Collaboration looks forward to an
exciting period of discovery in the nucleus-
nucleus and polarized proton programs at RHIC.

The use of hard-parton scattering as a
penetrating probe in AA interactions is an integral
part of the STAR physics program

The use of hard parton scattering to determine
the initial conditions in AA interactions, and probe
the spin-dependent parton distributions of the
proton is a key element of the STAR physics
program

The use of nuclear targets in HERA can in
-principal provide some complimentary studies of
jet quenching, gluon shadowing in the proton,
and spin-dependent parton distributions of the
proton

The level of interest in future nuclear and spin
studies at HERA is to some extent dependent on
the projected time scale for upgrading the
accelerator. _







Jet Quenching in eA, pA, AA

Miklos Gyulassy

Columbia University
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Fig. L. (a) The preliminary NA 38 data [ 1] on the relative J Jy-
to-continuum yield (1) with £% > 85 GeV and E5 <34 GeV are
compared 10 our calculations for the analogous LUND model
values Ey=60 and 15 GeV including both quasielastic initial-
state scaiiering and final-state inelastic J/y-hadron scattering for
6=5 mb. The dashed curve shows the suppression factor in the
absence of initial-state interactions. (b) Transverse momentum
distributions of p+A—y+X at 200 GeV for '**Pt (diamonds)
and p (squares) targets from ref. [11] are compared to those
measured in O+ U (dots) for Ex>85 GeV [1]. We use (6) and
the measured values of {p3 ) [11] to obtain the p+A curves.
The O+U curve is calculated using (4) for Er=60 GeV.
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Fig. 2. (a) Measured {13] ratio of Drell-Yan yields as a function
of transverse momentum for a 140 GeV x~ beam on "W and
deuterium targets are compared to the gaussian fit (solid curve)
with {p3 ) taken from refs. [13,15]. (b) Shown is the expected
P, variation of the Drell-Yan continuum ratio for the same E;
cutsasin fig. la.

< F’p{ (1:4+ 0-06 Gyg-1Y) Gey

= 37 6w




t‘nevgi\oss o¥ cbu.q\"\( é@ks " eA

G BRI NG,

AE ~ (Ff my“O oS Gev®
A~200 ™ "" &m 0.2 GeVfwn

~ 3Gel/ < smdll cowmpaced
“‘o v~(ooée\l

-xfec“' O“{i Swaa\l w\odﬁ‘\ca‘\‘lou W\ ‘f\‘o.%we&'l‘ak‘\‘(o"\

£xn(@) = ‘F (%, ?_'I__ }
N 1 '\ *‘: azx QEA x 3GeV <<i
_eh>r | \ ! '3’ > .
Nepsn | o

l:ner%us LoSS oS: a\uon Ae{“s \M A"'A

~ 4 = 3
~ AE, = LR, (;‘3 RA
i RA$ . cgc;P QcP
~\ o) 7 ‘03 Rx724m T=300 Melr

v AE = 50 GeV <——As+omsb
Alse 1 JE s - L‘“SQ
So"]'ogoo‘v;-o(f\ = &€, oCA <\°“‘~l¢s

Now - \k@qv 1y

RAwA/S




OHL. Me[qnson /E'_ééS’

% ?re,\t.mw'uatg E66S
Xe /O
4 EMC Sw/D

- N 8z>o.zx
RA/Dz LA ~
Nﬂ_D<Z> O. 2} ‘5 SLAC Sw/D

———

[.2

.o -

0.3 + |

0.6 -

04 -
0 4o Qo A0 ‘.60 : 200
o Gev

4




CERN- PPE-F/ -60

-
.

EMc

) T T T T
. ,ﬂ. ot e i -9
R e S ~q-
L e NI oS>
... ) ' aard .H..u. .*" . G % -
& -Ot Yo
v ~_ N
.o O a7
T : n“.mu T T
B ® 0]

-*-;_---

0.8

0.4

volbh_.

1
-
.
L3

1.2 = b)

2
11
0
08

v~ - O

- 238 S pryNe et jo opey

0.7

0.8

0.4

0.8

0.4

, . T | T T |
2 (%2p s, Np oTingy) | 10 oney g >
N : . 3 | o= G
> . 2 . o~
[ ______._ _:____ g:_ o | -9~ ©
N fe) B “ -
| . B
B © L~ | o
G (&] (&) o 1 1 ] [ 1
"o ® o 9 . - 52 2 35
_ O . @
L6 o Jo "ZP 1y NPT} o opjey
A Zn T | | T T
-V ® < - ol 2
o Q —ey— 1G]
2 ~ ! o
. - Q A o
B e P .
L . - e 2
. ’ W ..”,........ . o ™ a " ;l
: “ — . o 1 -. " :0!. 1
it 4 il 1y _:__ =N = 9 a @ N
u.”.o. . ) A2 Ve . J v v © ° ©
s 3 .1 L N 40! .w...n. _-nnv\czhvolz:. j0 ojey
IR T 2o N g . L




Eéég— MPL -FLE /7317 Geesa may €+0J
L Za = 490GeV (#:60)

WS> SO GeV 3> | x33.= E‘?.zvs 0.002.

[ D

a) negative

A

e\ - i T
L) b) positive

2.0k T -:

: - — pXeo T 8 <W< 14GeV :

; FVENUS 4.10 7" 0/D o T GeV |
0. | 1 T N,

-1
P

{
d) positive
14 < W< 20 GeV

Illlllllll

lllllll

Illl'l!llllll

l 1]
f) positive
20 < W< 30 Gev

.......

IIllIllllllll

lllllllllllll

Fig. 22: Normalized cms-rapidity distribution of negative and positive hadrons, for uD
(full circles) and uXe scattering (open circles), in three bins of W. The lines rep-
resent the predictions of the VENUS model for ¢D (dotted lines) and pXe scat-
tering (solid lines). It should be noted that the distribution for positive hadrons
in pXe scattering has a systematic error. the size of which can be estimated from
the distributions in Fig. 23.
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Nuclear Dependence of High-x, Hadron and High-z Hadron-Pair Production

in p-A Interactions at /s =38.8 GeV
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Nuclear Gluon Shadowing via

Continuum Lepton Pairs

Ziwei Lin
Columbia University
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at /s = 200 AGeV
Zr ‘ L~
. . . [¥)
4ia@fswmmmamwm;am;;msssms}{m}:m‘szmMﬁmmﬁmmmms&ﬁx&sﬁmwm;&mnﬁiﬁs&{mﬁmm&mmmsfmmm

HERA
' ////%) 9¢




AN
107 E=--.
10~-8
30—‘ ‘

4AN/dMdy

FIG. 5. We compare the contributions to the dilepton spe
trem st RHIC for (a) M =2 GeV, (b) Al =4 GeV, and (c) M=
GeV. Drell-Yaa (dashed), direct thermal dileptons with C=

> 3

V|

Pﬁbq—‘ﬁ ,3345 1



4 % - =~
244 KJ. Eskola / Nuclear gluon structure f\i f\ :‘) “1{ s !_: _ ;
Distributions at Qo
) - A
1.05¢ D lx FC‘ ]
~ 1.00
S Dot on Que
Zoos| § ]
z 0.
® NMC (14] No data em
0.90} 5 7@,&&
. a E772 (17]
0.85F~ =4 i x SLAC (10] 4
1.10 + ¢ '
A
1.05} A=40 i e
__1oo - -
B S T
<& 095¢ R
' > 0.90}
.
0.85 & NMC [14]
0.80 a E772 [17] 1
0.75F .-~ x SLAC (10] 1
0.70 Rs - -
0.001 0.01 x 0.1 1

Fig. 1. The ratios of the parton distributions in a nucleus A to the ones in deuteron (a): '2C, (b): ©
at an initial scale Q = Q, = 2 GeV, as defined in egs. (5) and (8). Only our ‘ansatz 1’ is shown for gl
- ratio R} (solid line). The data points shown are the deep inelastic NMC 200 GeV 'u A data
(diamonds) and the SLAC 8-24.5 GeV eA data [10] for the ratio Rf}z (crosses), and the E772 800 C
pA Drell-Yan data [17] corresponding to the ratio R2 (boxes). The parametrization (A.1) of R;
plotted with a dashed line. Valence quarks. R%, are shown by the dotted line, and seaquarks, R§
the dotted-dashed line.




f(' P
et n e s

pre-equilibrium charm production

107 —— Initial fusion ]
\ «~—— strong -y correlation |
2 | ——— Bjorken correlation

—~ 107 F ' ——— fireball case E
> O |
s ]
= 10°
(@]
i
Z
o 10°
Z
by

10°

-‘0'6 ] 1 TN ]

0.0 2.0 4.0 6.0 8.0 10.0
P (GeV)

Z. Lin and M. Gyulassy, Phys. Rev. C51. 2177 (1945).



i

, P,
0.4 1 -—— Eskola shadowmg{f@:tz})
: —— HIJING shadowing
0.2 f :
0.0 -
10° 10 10” 10°




1. Lepton pair spectrum (ee.ep.uu)
from open charn decay

Two commonly used shadowing scenarios:

a: independent of scale or component?.

b: scale and component-dependent shadowing®.
Dilepton signals with different invariant masses
scale approximately to the shadowing curve :
— a sensitive probe for nuclear shadowing.

20 Eiiiane \i_-_-z;:xl-rn—]rcu'kgl'()und 11 eTector
Consider:
detector suppression of background leptons.

RHIC detector geometry, kinematical cut.
The signal-to-background ratio is promising.

a ¢ T f
. aba .

(N



.~ Shadowing in D/D production

delta-function fragmentation: D(z) = §(1 — z)

, J
dN\NP—Au

(2. O . )2
dp"ldygdy4 X azblafa(la-Q ,)tlbfb(,l,b.Q )

p—du, 2 dogp E3Ey
< By (2. Q7) dt E1Es

, . p—Au, . 2\ - . i
where R} /Ay (rp. Q°) is the shadowing for
- parton b in Au nucleus.

dN =
T 2dvadn; = D/ D events

=D —¢+X,D— 4+ X (BR:~ 12%)

d\N a .
= I3idy for « . cp,pu

"M = (pe + pu)y = tanh~ [(pl + pl)/(E. + E)]
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Scaling '&3 (‘L -
| T
For gluon fusion gg — cé:
M — AYCE e—ym?
AU
= Inxg = —yez+In(Nz/Vs)

N —Yeu + 111[-3(Mep + A)/ V5]

= approximate scaling among the observables

Mep, Yep and the shadowing variable x,.

=

RE (Mep, Yoy = —Inxq + In|F(Mey + A)//5])
d.\'({’l‘f‘(shadowing) ‘

= d.\’,{'f‘( no—shadowing)

~ Ryra(xp. Q% ~ [B(Mey + A)]2/2)

i
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Background Estimates

electron background:
Dalitz decay (7%,7, etc.), photon conversion.
muon background: random decays (7, . etc.)
decay in the free space
before the hadron absorber.
decay from hadron leakage and
shower particles in muon arm.

generate background e and u from the e and u
spectrums d:\/dp dy (produced from HIJING)

How many? We have to estimate:

I RHIC detector geometry

= a specific kinematical cut

" detector suppression of background leptons




PHENIX
1 &= detector geometry:

—0.35 < 1, < 0.35, ¢ € £(22.5°,112.5°)
115< 7, <244 7 ~ ,
My "New we Qave Secand ar-

2 a specific kinematical cut:
E.>1GeV, E, >2 GeV, ¢+;- > 90°.

Due to detector geometry and kinematical
cuts, the pair rapidity region covered by ee, eu
and pu spectrums is 0. 1 and 2, respectively.

3 detector suppression of background leptons:

for electrons: suppression factor 5.

for muons: suppression factor 100.

4 Finally, Signal-to-Noise Ratio:

large (~ 200) for ee; ~ 2.5 for ep; ~ 1/4/1“{)1‘ (UL
(like-sign subtraction?)——————’——""’l

| "‘\\\/ (N R
6 (J/j T L
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Summary:

Lepton pair (ee, ey and pp) spectrums from
open charm decay in two different shadowing
scenarios have clear differences.

Nuclear shadowing effects is reflected nicely in
the scaled ratios of lepton pair dN/dMdy(M)
spectra.

The charm decay signal can be seen in p — Au
collisions, some even before using like-sign
subtraction.
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What can we learn from HERA

with a coﬂiding‘ heavy ion beam?

Jianwei Qiu
Iowa State University
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Coherent Production of Vector
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Gluon Production for Weizsacker-Williams

Field in Nucleus—Nucleus Collisions

Heribert Weigert

University of Minnesota
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