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Abstract

This paper describes an algorithm for
determining the optimal placement of a robotic
manipulator within a workcell for minimum time
coordinated motion. The algorithm uses a
simple principle of coordinated motion to
estimate the time of a joint interpolated motion.
Specifically, the coordinated motion profile is
limited by the slowest axis. Two and six degree
of freedom (DOF) examples are presented. In
experimental tests on a FANUC S-800 arm, the
optimal placement of the robot can improve cycle
time of a robotic operation by as much as 25%.
In high volume processes where the robot motion
is currently the limiting factor, this increased
throughput can result in substantial cost savings.

Introduction

Industrial robots are often used in high volume
manufacturing processes where meeting a
specified cycle time is vital to the profitability of
the process. Examples include loading a press,
inserting electronic components, or spot welding
a workpiece. Many times the speed of the robot
between taught points is a limiting factor in the
process. A good robot programmer can often
reduce the cycle time by changing the trajectory
of the robot or by changing acceleration/
deceleration times. However, an often
overlooked point is that where a robot is mounted
to the floor can substantially affect the cycle time
between a sequence of points.
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The problem of time-optimal control along a
specified path has been investigated for several
years [1,2]. The objective of these optimizations
has been to find a minimum-time path of a robot
(with a fixed base) which passes through a set
number of points. These algorithms account for
the robot's non-linear dynamics, actuator
saturation characteristics, joint limits, and, more
recently, the presence of obstacles in the
workspace [3,4].

This paper addresses a new problem: finding the
optimal position of the robot base given a fixed
set of points in a world space which the robot
end-effector must reach. The proposed
optimization algorithm uses only the robot
kinematics and the maximum acceleration of each
joint as defined by the trajectory generator. For
most industrial robot applications, the dynamic
effects are negligible for payloads that are less
than the robot's nominal payload; therefore, full
robot dynamics are not considered here.

As demonstrated in some of the off-line graphical
simulation packages [5], one way of finding the
optimal base position is to perform an exhaustive
search of the entire (x,y,z) position and (roll,
pitch, yaw) orientation space of the base with
respect to the world coordinate system. This
approach may be reasonable if the search space is
restricted to just (x,y) space. However, for a full
6 DOF search space, a gradient search method is
much more efficient at finding local minimums.
This paper will discuss the results of using a
steepest descent method as applied to a two link
manipulator and a full 6 DOF manipulator.

* This work was performed at Sandia National Laboratories and supported by the U.S. Department of Energy under contract DE-AC04-

94AL85000.
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Theory

It is assumed that a task has been defined where
the robot arm is to move between a starting and
ending point as shown in Figure 1.
Homogeneous transformations (4x4 matrices
representing both position and orientation (pose))

are used to represent the starting pose “T and

ending pose T, with respect to the world

coordinates w. The pose of the starting and
ending positions are stationary because of

constraints on the factory floor; therefore, “T ;

and "T,, are constant matrices. Also, it is

assumed that the transformation from the robot
end-effector mounting plate to the tool coordinate

frame has already been used to compute “T ;. and
"T,. The pose of the robot base with respect to

the world coordinates is denoted as "T},. The

objective is to move T}, so as to minimize the

time required to move between YT and *T, .

(D)

where g, — s, is the joint distance moved and
Gmax ; 1S the maximum acceleration of the axis.
For n joints, the time of a coordinated move is
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Figure 1. Starting and ending poinis with respect
to the world coordinates are fixed, but the robot
base is allowed to move.

Most all industrial robots are joint coordinated
devices, meaning that all joints will complete
their motion at the same time. If we assume that
the maximum acceleration profile for the slowest
axis i is a first order acceleration/ deceleration as
shown in Figure 2, then the time of the motion
for joint i is

Figure 2. Velocity Profile of Slowest Joint

The vector g, — g is the distance traveled by
each joint and is given by

g —qs =K CT)-KT) @)

where st andee are the homogeneous
transformations of the starting and ending pose

with respect to the robot base, and K -1 (*)
represents the robot's inverse kinematics. The
expressions for the homogeneous
transformations can be written as

1= (1) s @
and

'r,=("Ty) V. ©

where the (-)_1 denotes a matrix inversion.

The pose can also be represented as a 6x1

column vector wxb with elements x, y, Z, yaw,
pitch, and roll. The mapping between the

ar
>




homogeneous transform and " x;, will be
represented as

w1, =1( Yxp)- 6)

The problem can then be stated as the
minimization of time ¢ in Equation (2) while

moving the robot base T}, (or “xp ).

To minimize Equation (2) subject to the
constraints in Equations (3), (4), and (5), a
steepest descent algorithm can be used to
iteratively converge to the solution.
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The constant g, in more elaborate algorithms

such as Newton's method and Davidon-Fletcher-
Powell method also includes the inverse Hessian
relationship [6]. For simplicity, o wassettoa

Jarge number (10%) at the beginning of the search
and decreased when the gradient increased time
instead of decreased time. The partial of time
with respect to the robot base pose is given by

ot
awxb

Wy (k+1) =" ()~ a;{
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ot 0

L max 2 [(q —q )2];,;
awxb awxb i=l,..n 1,amax,- € Si

®)

This suggests that the gradient used in the kth
iteration of the search should be along the joint
which is going to take the longest time to
complete it's motion. In implementation, we
ranked the joints motion time from longest to
shortest, and began the search using the gradient
of the longest. When the local minimum along
that axis was reached, the next longest ranking
joint was used. This was repeated until a local
minimum was reached for all joints.

The gradient along joint i may be computed as
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where the partial ;v% is the differential change
*b

in joint angles given a differential change in the
robot base pose.

This partial is related to the inverse manipulator
Jacobian as follows. First notice that since the
starting and ending pose do not change, the
differential change of these points with respect to
the world coordinates is zero.

2" x,
aw

w
dwxb + J *n
Xp 3q

W —
d"x,=

dg=0  (10)

Here, "x,, is the pose of the robot end-effector

with respect to the world coordinates. Therefore,
the partial of the joint angles with respect to the
base pose is a function of the inverse manipulator
Jacobian with respect to the world coordinates

[7] and the Jacobian relating changes in base
pose to changes in world coordinates.

-1
dq Mx, | [3"x,
- = (11)
d Xp 3q 8be
Often, it is easier to express the manipulator

Jacobian with respect to tool coordinates [8].
Therefore, the above expression can be written as

-1
oq 3" x, da"x,
=- 12
awxb ( aq ) (awxb ( )
nxn

q
given in [8], and

where is the manipulator Jacobian as
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"x,

o"wxb

=[

0

].

(13)

The variable " R, is the 3x3 rotation matrix with
column vectors *n,,, %o, and “a,. The matrix

w . .
S, is given by

an = [( Wanwnn) ( wpnxwon) ( Yo" ay )]
(14)

where ¥p,, is the position vector of end-effector

with respect to the world coordinates. The
superscript T is a transpose operator.

In summary, the steepest descent algorithm (7) in
conjunction with Equations (9), (12), (13), and
(14) can be used to solve for local minimums of
Equation (2).

Two Degree of Freedom Example

Insight into the optimal placement problem can be
gained by first analyzing a two DOF problem as
shown in Figure 3. A task has been defined
which requires the 2 link robot arm to move
between two points (70,100) mm and (20,50)
mm. With the base of the arm at (0,0) mm, the
change in joint angles between the starting and
ending points are (-8.80, 43.99) degrees. The
length of each link is 100 mm, and the maximum

acceleration of each joint is 100 mm/s2. The
motion execution time with the base at (0,0) mm
is 1.3264 seconds. .

The steepest descent algorithm converged to a
local minimum of 1.0804 seconds (a 18.5%
improvement) at a base position of (44.56,
5.23). Figure 4 shows a contour plot of time
verses robot base position, and the path traveled
by the steepest descent algorithm. In the figure,
darker regions correspond to shorter motion
time. The algorithm converged to 4 decimal
places in time in 19 iterations. At this optimal
base position, the change in joint angles is
(29.18, 29.18) degrees. Since the accelerations
and link lengths of each degree of freedom are
equal, the optimization moves the robot base so

that the distance traveled by each joint is the
same.

Now suppose that the acceleration of joint 1 is
half that of joint 2 (50 mm/s? instead of 100

mm/s2). The motion execution time with the
base at (0,0) mm is still 1.3264 seconds because
joint 2 is still the limiting joint. Using the
steepest descent algorithm, the optimal base
position is (31.87,1.36) with a motion time of
1.1807 seconds (11.0% improvement).
Convergence to 4 decimal places in time occurred
in 18 iterations. At this optimal base position,
the change in joint angles is (17.42,34.85)
degrees.

(70,100)

A y (mm)

(20,50)

X (mm)

Figure 3. Two link arm example.
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Figure 4. Contour plot ;f time verses 2 DOF
robot base position.



Six Degree of Freedom Example

Next, let us consider the optimal base placement
of a six degree of freedom FANUC S-800 robot
arm. A maneuver between two points will be
discussed. The maneuver is from a starting pose
of (x, y, zz w, p, r) = (1040, 0, 634; 160, -90,
19) to an ending pose of (x, y, z; W, p, ) =
(1616, 0, 789; 160, -90, 19). The position units
are in mm, and the orientation units are in
degrees. This motion is a simple translation of
the robot end-effector in the positive x and z
directions. The change in joint angles between
these two points is (-0.10, 47.89, 6.30, -2.09,
6.28, 2.17) degrees. Assuming the maximum
acceleration of each joint is 80 degrees/second,
the estimated time of the motion is 1.547
seconds.

Using the steepest descent algorithm, the optimal
base position relative to it's initial position is at
(x, y, 2) = (-1, -160, 730). The orientation was
not allowed to change appreciably by lowering
the values of o, for the orientation components.

Convergence to 3 decimal places in time occurred
in 163 iterations. By comparison, an exhaustive
search of this precision over a 2000x2000x1000

mm volume would require approximately 100
iterations. Figures 5 and 6 show contour plots of
time verses the x, y, and z positions. Again,
darker regions correspond to shorter motion
times, and black corresponds to points which are
unreachable. The new starting and ending poses
are (1042, 153, -102; 8, -90, 170) and (1619,
149, 50; 8, -90, 170), and the change in joint
angles between these two points is (-4.42,
2428, 24.28, 2.72, 24.20, 3.33) degrees.. The
estimated time of motion is reduced to 1.102
seconds (a 29% improvement). Notice that the
limiting joint's travel (joint 2) has been nearly
halved. The reduction in joint 2's travel was
made up for by an increase in the travel of joints
3 and 5. In the optimal position, joints 2, 3, and
5 have approximately equal travel times.

The motions in Figures 5 and 6 were
experimentally tested. The non-optimal motion
took 1.456 seconds, while the optimal motion
took 1.176 seconds (a 19% improvement).
While the estimated and actual motion times are
relatively inaccurate, the fact that the optimization
does result in shorter cycle times is important. In
fact, improvements in the 20-25% range typically
have been seen in other experiments.
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Figure 5. Contour plot of time verses robot x
and y base positions.
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Figure 6. Contour plot of time verses robot 'y
and z base positions.

There are several reasons for the discrepancies
between the estimated times and the actual
experimental times. The first is that every robot
vendor performs trajectory generation differently.
On the FANUC controller [9], the trajectory is
specified by a minimum acceleration time and
maximum joint velocities. In addition, an
exponential filter is used to smooth the trajectory.
In our case, this filter adds approximately 0.1
seconds to the motion time. To improve the
accuracy of the motion time estimate, equation
(1) and it's partial would need to be changed to
the particular algorithm used by that vendor.

Second, we have not taken into account dynamic
effects which may increase the settling time.
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