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Abstract

A solution method is presented for the motion planning and control of kinematically
redundant serial-link manipulators in the presence of motion constraints such as joint limits or
obstacles. Given a trajectory for the end-effector, the approach utilizes the recently proposed
Full Space Parameterization (FSP) method to generate a parameterized expression for the entire
space of solutions of the unconstrained system. At each time step, a constrained optimization
technique is then used to analytically find the specific joint motion solution that satisfies the
desired task objective and all the constraints active during the time step. The method is
applicable to systems operating in a priori known environments or in unknown environments
with sensor-based obstacle detection. The derivation of the analytical solution is first presented
for a general type of kinematic constraint and is then applied to the problem of motion planning
for redundant manipulators with joint limits and obstacle avoidance. Sample results using planar
and 3-D manipulators with various degrees of redundancy are presented to illustrate the
efficiency and wide applicability of constrained motion planning using the FSP approach.

Summary

The new approach which is presented differs from previous work in that it allows treatment
of constraints and task criteria that may vary in real time. The method is thus particularly
applicable to rapidly changing environments where obstacles and other constraints are a priori
unknown and must be detected using sensor-based techniques. In addition, the analytical
solutions that the approach provides for given types of criteria and constraints are the matter of
only a few additional statements in the code so that a wide variety of dynamically changing

conditions can he handled using a single code with no “extra” computational burden.
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manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
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Abstract

A solution method is presented for the motion
planning and control of kinematically redundant serial-
link manipulators in the presence of motion constraints
such as joint limits or obstacles. Given a trajectory for
the end-effector, the approach utilizes the recently
proposed Full Space Parameterization (FSP) method to
generate a parameterized expression for the entire space of
solutions of the unconstrained system. At each time step,
a constrained optimization technique is then used to
analitically find the specific joint motion solution that
satisfies the desired task objective and all the constraints
active during the time step. The method is applicable to
systems operating in a priori known environments or in
unknown environments with sensor-based obstacle
detection. The derivation of the analytical solution is first
presented for a general type of kinematic constraint and is
then applied to the problem of motion planning for
redundant manipulators with joint limits and obstacle
avoidance.  Sample results using planar and 3-D
manipulators with various degrees of redundancy are
presented to illustrate the efficiency and wide applicability
of constrained motion planning using the FSP approach.

1. Introduction

This paper deals with the control of kinematically
redundant  serial-link manipulators with motion
constraints such as joint limits and/or obstacles. The
kinematic equations of the system can be written as:

X=F@ (1

where X represents the nx1 vector of position and
orientation of a given point of interest on the manipulator
(generally the end-effector) expressed in the n-dimensional
Cartestan task space, g is the mx1 vector of joint
coordinates for the m degrees of freedom (d.o.f)
manipulator, and F represents the forward kinematic
vector function for the system. For motion control, the
velocity equations obtained by taking the time-derivatives
of Eq. (1) are used:

X=J@)3q @

where an upper dot denotes a time-derivative, and J(g) is
the nx m Jacobian matrix of the system with component
J;=0F[dg;. Since Eq.(2) is typically highly
non-linear, control of the system is generally performed
using a linearized version of Eq. (2) providing first-order
approximations for the displacement vectors AX and A7
over the discretized time domain with time steps Ar:

AX[ At = J,, AG[ At 3)

When the manipulator is a redundant system, the
Jacobian is a rectangular nxm matrix with n<m, and
the system of equations represented by Eq.(3) is
underspecified. Given an end-effector trajectory and the
corresponding incremental displacement vectors AX, the
matrix J,, cannot be directly inverted, and the system
has an infinity of solutions for Ag.

In addition to Eq. (3), we consider that, at each time
step, the system is subject to a set of » constraints with »
varying between 0 and a finite number. The constraints,
which themselves can vary at each time step, are assumed
to be of the form

C(7,47)=0 , @

which many manipulator-related constraints (e.g., work
space obstacles, joint limits, velocity limits) can be
reduced to, as discussed in the following sections.

Several authors have previously addressed this
problem (e.g., see [1], [2], [3], [4], for applications to
obstacle and joint limit avoidance). All of them have
used one of the two main techniques for resolution of
underspecified systems of equation: constrained
generalized inverse-based approaches or augmented task
space methods with “extended Jacobians” [5]. In [6], we
pointed out some of the shortcomings encountered when
using either of these two general resolution approaches for
application to real-time systems where constraints and/or
task requirements may change widely and rapidly (e.g., at
loop-rate and/or on a sensor-based basis) during a single
trajectory. Among these shortcomings are the implicit
task priority requirement of inverse-based techniques,




i.e., the fact that a solution which is the sum of a
particular solution obtained from a primary criterion and a
homogenous solution obtained from a secondary criterion,
typically does not satisfy both together (e.g., a solution
obtained from a least-norm particular solution to which
an obstacle-avoiding, self-motion solution has been
added, is not the least-norm solution of the obstacle~
avoiding solution); and the “artificial” algorithmic
singularities that may be encountered with extended
Jacobian and augmented task space approaches.

In recent papers [6], [7], [8], [9], we introduced a new
method for the resolution of underspecified systems of
algebraic equations. This method has been named the
Full Space Parameterization (FSP) method because it
provides, in simple form, a parameterized expression for
the entire space of solutions of the basic system. With
the entire solution space parameterized, specific solutions
corresponding to wide ranging criteria and/or sets of
constraints can be analytically found using simple
constrained optimization techniques. In [6], an
application of the FSP method to the problem of inverse
kinematic joint velocity calculations of redundant
manipulators was presented. Analytical solutions were
derived for a general least norm criterion and the method’s
results were compared with results from the “standard”
pseudo-inverse in unconstrained cases. The results
appeared very promising for application of the method to
other general cases, in particular the constrained problem.

In this paper, we present an FSP-based solution
method to the constrained inverse kinematic problem of
Eq. (3) and (4) with the constraints and the number of
constraints varying at loop—rate. The FSP framework is
briefly reviewed in the next section and the general
analytical solutions for the constrained case are derived.
Example applications to the treatment of work space
obstacles and joint limit constraints are described and, in
the following section, sampie results using 2-D and 3-D
manipulators are presented to illustrate the approach. The
last section includes our concluding remarks.

2. FSP-Based Approach

In a previous paper, [6], we showed that the entire
space of solutions, S, of the unconstrained Eq. (3) could
be parameterized as

_ " e m-n+1_ m—n+1
S= Aqeg{ ’Aq(tla"'s tm—n+l)= Etigi; Ztk=1
i=1 k=1
(5)

where each of the m—n+1 linearly independent vectors
g; includes m—n zero components and can be easily
calculated from inversion of square (nxn) submatrices of
J. It was also shown that the null space N of the
mapping J can be parameterized using the same g,
vectors as:

m-n+l1

- {AE eR™, AQ(ty o typ) = 1T
i=1
(6
m—n+1
k=1

At each time step therefore, a calculation of the vectors
g; for Eq. (3) provides a parameterization of the entire
spaces of solutions of Eq. (3), be it for an end-effector
motion or a motion in the null space. With the entire
spaces of solutions of Eq.(3) now parameterized, the
calculation of the specific solution satisfying the particular
task requirement and all the constraints of the time step is
then the matter of only a few code statements embodying
the analytical expression of the corresponding parameters
L k=1, m—n+1. A wide variety of these parameter
solutions, each corresponding to particular types of
requirements and constraints, can be included in the code
and selected as appropriate at each time step.

Analytical solutions for the parameters can be obtained
from a Lagrangian-type constrained optimization. For a
general criterion Q(Ag(¢;)),i=1,m—n+1, to be
optimized in the space defined by Eq. (5) with a set of »
general constraints C/(g,A4q(;)=0,j=1,r; the
Lagrangian is:

L(ri,u,v,-)=Q(r,-)+u['"'z"2 -1)+ Sv,Cl) ()

i=1 j=1
and the optimality conditions are:

2£=0,i=1,m—n+1;2L—=0;-i-L—=0,j=l,r (%)
ot ou ov .

7
With these m —n+r conditions, analytical solutions
can be found for the Lagrange multipliers g and v,

j=1,r, and for the vector 7 with components

(ty+++.tyns1). The resulting joint displacement solution
m—n+1
Ag = Y.t;g; will optimize Q while satisfying all the
i=1
constraints. As an example of such an analytical
derivation, consider a general criterion

0=|4Z7. 49)- AZ | ©

where AZ, represents a given reference operational vector
characterizing the state to be acheived by the system, and
AZ is an operational vector function of the joint
positions and displacements. Let B(g) be a matrix such
that

AZ = B(3)Ag 10




and define the vector H and matrix G as:
H,H, =AZT Bg,;k=1,m-n+1 (11)
G,.G; =g/ B'Bg;i=1m—n+1;j=1,m-n+1 (12)

where the upper T sign denotes a transpose. Note that if

B is set as the identity matrix and H =0, then the
criteria reduces to the least norm of Ag, as was utilized

in the comparisons of Ref. [6].
Assume the r constraints C'(7,A7(7))=0 are
expressed as

B i-1=0;j=1,r (13)

a form to which many kinematic constraints (e.g., joint
limits, obstacle avoidance, etc.) can be reduced as
discussed in the next section. Then the optimality
conditions [Eq. (8)] become:

eTi=1 (14)
T

where € and o are the m—n+1 dimensional vectors
eT=@Ll,...) and 37 =(0,0,...0),
Setting v’ =(V},...v,) and a=e¢T7G'¢; and defining
the vector b, ¢, and d, and the matrix 4 by:
b, =2"GB, ¢, =B" G, d =1+pB" G'H,
Ay =¢;b; —aﬁir G_lﬁj,i =1,r,j=1,r; the solution of

Eq. (14) for the Lagrange multipliers and parameter set
can be written as:

respectively.

V=AW ad -c(1+eTG'H)) 15)

pu==(1+v"b+e'G'H)/a (16)

Z=—G'1(y2+2r',viﬁi +E) an
=1

In a very similar manner, if a constrained solution in_ the
null space of Eq. (6) is desired, the solution for 7 is
given by Eq. (17) with the Lagrange parameters given by

V=AVad -2@TG7'H)) (18)

u=—~v'b+e’G'H)la (19)

3. Applications to Obstacle and
Joint Limits Avoidance

This section presents applications of the framework to
two of the most common constraints encountered with
manipulators: obstacles and joint limits. In practical
applications, these constraints are active on the system
only at certain times during a trajectory, in particular,
when the configuration of the system approaches one of
the limits imposed by the constraints. Thus the
constraints and their number will change with time, with

the corresponding E 7 vectors in Eq. (13) calculated as

non-zero when the system reaches “danger zones” in the
vicinity of the absolute limits.

3.1. Obstacle Constraint

Figure 1 depicts the two situations in which the
manipulator may come dangerously close to obstacles:
(1) with a link or (2) with an elbow. In the figure, the
distance d indicates the “danger distance” below which
the constraint becomes active. This distance is of course
a parameter that is set by the user as a function of the
particular manipulator characteristics (e.g., maximum
joint velocities and accelerations) or sensing scheme
(e.g., sensor location and spacing, sensor sampling rate).
The scheme which we use to implement the obstacle
avoidance in both the link and elbow cases, consists in
moving the point X, calculated as the closest point to an

obstacle, away from the obstacle using:
AX;en=L , (20)

where AX ; is the position displacement of the point X o

n represents the normal to the obstacle surface and L is
the desired “push away” distance. Other schemes tailored
to the system’s specific pattern and capabilities could
obviously be selected to embody this “push away”
concept and that would produce similar effects. Calling

JX the 3xm Jacobian matrix for the position
displacement of a point X; characterizing a given obstacle
constraint, Eq. (20) can be written as

JXAg()en=L 1)

which, put in the form of Eq. (13), give the expression for
the vector B representing the constraint as

- 3 m
BB =X gn)L 22

i=1j=1

where &, and n; represent the components of the vectors

g, and i, respectively.




Fig. 1. Schematic of the obstacle avoidance scheme.
3.2. Joint Limit Constraint

In a similar fashion, if any joint, i, of the manipulator
is approaching one of its limits &;., or 6., and
requires an angle displacement, d, to return outside of its
“danger zone” (angles within a 8, range of the limit),

the constraint can be expressed as:

m—n+l1

Ag; = kE_:ltkEk,- =d (23)

and the B vector corresponding to the constraint in the
form of Eq. (13) is:

Baﬁk=§k,./d (24

4. Sample Results

Implementation and testing of the FSP with obstacle
avoidance and joint limit constraints were performed on
several manipulator systems. Sample results using a 2-D
planar manipulator are first presented here to ease the
visualization of the effect of the changing constraints
through a display of the detailed step-by-step motion of
the manipulator. Results using 3-D manipulators are also
shown to illustrate a more realistic implementation.

Figure 2 shows four cases of a 4d.o.f. planar
manipulator controlled in position only (thus, with two
degrees of redundancy) while following a semi-circular
end-effector trajectory from point A to point B, as
indicated in Fig. 2a. A least-norm optimization criterion
(i.e., H =07 and B is the identity matrix in Egs. (10) to
(19)) is used in all four trajectories for ease of comparison.

In Fig. 2a, no constraints are imposed on the system. In
Figs. 2b and 2c obstacles are placed in the way of the
manipulator, while in Fig. 2d obstacles and a joint limit
constraint on joint 1 have been imposed.

The initial motions of the manipulator are identical in
all four plots confirming that the constraints are not active
during these early time steps. Only when the manipulator
is in the near vicinity of an obstacle or a joint limit do the
constraints have any effect on the motion. Figures 2b and
2¢ depict the obstacle avoidance behavior resulting from
the expression of the obstacle constraint using the
formalism of Eqs. (20) and (21). Comparison of the final
portions of the motions on Figs. 2c¢ and 2d shows the
joint limit constraint on joint 1 becoming active and the
resulting effect on the manipulator motion.

Figures 3 and 4 show selected frames during the
motion of a seven-degree-of-freedom 3-D manipulator
controlled in position only (thus with four degrees of
redundancy).  Figure 3 shows the motion of the
manipulator under a least-norm criterion with no obstacle
avoidance constraint. An obstacle, depicted by the big
sphere in Figs. 3 and 4, has been placed in the path of the
manipulator. Intersection of the obstacle and several of
the manipulator links and elbow are clearly illustrated in
Fig. 3 where the obstacle constraint is kept inactive.
Figure 4 shows the obstacle avoidance behavior of the
manipuiator when the obstacle and joint limit avoidance
schemes are turned on. (The motion data log for this case
shows that several joint limits, principally at the sperical
wrist of the manipulator, are reached and compensated for
during this motion.) Here too, the initial portions of the
two motions of Figs.3 and 4 are found identical,
confirming that the constraints are active and affect the
motion only in the near vicinity of the obstacle.

5. Conclusion

A new method has been presented for resolving the
inverse kinematic motion of redundant manipulators with
constraints and number of constraints that can vary in real
time (sensor sampling rate). The method utilizes the
FSP approach to find analytical joint motion solutions
that satisfy the task criteria and all constraints active at
each time step. A change of criterion and/or number of
constraints does not require a major change of algorithms
and is only a matter of switching from one analytical
solution to another in the code, each solution consisting
of only a few explicit statements. Complex motions with
widely varying constraints and task criteria can therefore
be considered with a single code. Example applications
of the constraints formulation have been described for the
two most common manipulator constraints, obstacle and
joint limit. Sample results using various manipulator
test beds have been presented and discussed to illustrate
the general algorithm and the real-time sensor-based
control applicability of the method.




Fig. 2. Sample trajectories of a 4 d.o.f. planar
manipulator, a) without constraints, b) and c¢) with
obstacle constraints, d) with obstacle and joint limit
constraints.
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Fig. 3. Sample trajectory of a 7 d.o.f. manipulator Fig. 4. Same as Fig. 3 with obstacle and joint
with no obstacle constraint. limit constraints.




