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Comparison of Simplified and Standard Spherical Harmonics
in the Variational Nodal Method

E. E. Lewis & G. Palmiotti

Recently, the variational nodal method has been extended through the use of the
Rumyantsev interface conditions to solve the spherical harmonics (Py) equations of arbitrary

odd order.2 Here, we generalize earlier x-y geometry work3 to fit the corresponding simplified
spherical harmonics (SPy ) equations into the variational nodal framework. Both Py and SPy
approximations are implemented in the multigroup VARIANT code at Argonne National
Laboratory in two- and three- dimensional Cartesian and hexagonal geometries. The availability
of angular approximations through P5 and SPs, and of flat, linear and quadratic spatial interface
approximations allows investigation of both spatial truncation and angular approximation errors.
Moreover, the SP3 approximation offers a cost-effective method for reducing transport errors.

The even-parity SPy approximations are derived by first writing the slab geometry Py
approximation for odd order N. Let Y and % be vectors of length (N+1)/2 of the even and odd
parity flux moments. Then
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where b= 8,; and E and O are two-striped lower and upper triangular matrices, respectively.
The even parity equation obtained by eliminating % is then
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where H=E O, and  and {{ are related by
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The SPy equations are obtained simply by letting 9 >V and allowing Y and %, to become

ox
functions of the x, y and z. Thus
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The following functional may be shown to have Eq. 1 as its Euler Lagrange equations
within the node and Eq.2 as an interface condition
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From here on, the procedure is the same as published prvieously.# Spatial polynomial
approximations are used for Y and ( ; a Ritz procedure is applied, and the resulting equations are
cast in response matrix form.

Studies have been undertaken to compare the relative performance of SPy and Py
approximations in two and three dimensions. In model fixed-source problems SPy closely
mimic the corresponding Py solutions where large numbers of interfaces are not present. In
criticality 5problerns, the results shown in Fig 1 for the “rods-in” Takada Benchmark I in x-y-z
geometry- are indicative of the eigenvalue errors which are found. In all cases studied the spatial
truncation errors - which may be isolated by comparing flat, linear and quadratic interface
conditions with the same angular approximation - are found to be positive. Errors attributable to
the angular approximations - which may be isolated by comparing the spatially converged
quadratic approximations - are negative. Thus, in some configurations, going from a lower to a
higher order space or angular approximation may produce an accuracy loss as a result of the
decreased error cancellations.

Other general observations are that space and angular approximations interact more
strongly in Py approximations, necessitating the refinement of the spatial approximation in
tandem with increased Py order. Conversely the accuracy of the SPy approximations saturate as
a result of the angular moments which are not included. The SP3 approximation frequently offers
substantial increases in accuracy at roughly double the cost of a corresponding nodal diffusion
calculation, while full Py calculations are substantially more expensive. On an IBM rs6000 the
CPU times for the results in Fig. 1 were 78, 148 and 916 sec. for the P, SP; and P3 calculations
with linear interface conditions.
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Figure 1. Eigenvalue Errors for the “Rods In” Takada Benchmark I
(reference k = 0.95954)




