| G’.OME%P :777"8'/1465

Control and Supervision of
a Complex Production Process
Using Hybrid Systems Techniques

by
RECFEIVED
JAN 3 0 1935

O&ST1

Humberto E. Garcia

Argonne National Laboratory-West
P.O. Box 2528
Idaho Falls, ID 83403-2528

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
« United States Govcrnment or any agency thereof

ICECCS'95
First IEEE International Conference on
Engineering of Complex Computer Systems
Held jointly with 5th CSESAW, 3rd IEEE RTAW and 20th IFAC/IFIP WRTP
Ft. Lauderdale, Florida

DISTRIBUTION OF THIS DOCUMENT 18 UNLIMITED 3s

_ MASTER

The submitted manuscript has been authored |
by a contractor of the U.S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
t | or reproduce the published form of this
‘| contribution, or allow others to do so, for | ;
U. S. Government purposes.

November 6-10, 1995

*Work supported by the U.S. Department of Energy, Reactor Systems, Development
and Technology, under Contract W-31-109-Eng-38.

Control and Supervision of a Complex Production Process
Using Hybrid Systems Techniques

Humberto E. Garcia
Argonne National Laboratory
P.O. Box 2528, Bld. 713
Idaho Falls, ID 83403-2528

Abstract

New processing activities for the decommissioning of the
Experimental Breeder Reactor I are being carried out at
Argonne National Laboratory. The task addressed in this
paper is a process to convert metallic sodium to sodium
carbonate. The main idea is to characterize this sodium
operation as a system that integrates real-time continuous
and discrete-event components and then apply hybrid
system techniques to design and implement the control and
supervisory policies. This paper introduces the research in
progress at ANL on this conversion process, the flow of
material, and the hybrid control solution.

I. Introduction

The Experimental Breeder Reactor-II (EBR-II) is
a liquid metal reactor operated by Argonne National
Laboratory (ANL). In 1994, it was shutdown and defueling
was started. Part of the planned decommissioning activities
includes disposal of the sodium used as coolant for the
EBR-II and FERMI reactors. The plan is to convert the
chemically reactive radioactive sodium coolant to sodium
carbonate, which is a chemically inert form suitable for
near-surface burial as a low level waste. The schedule goal
is to convert approximately 660,000 liters of sodium. This
goal demands a system with high reliability, productivity
and safety.

II. Operations for Sodium Processing.

The chemical conversion process will be conducted
in the Sodium Process Facility (SPF) at ANL-West. The
conversion will be performed in two steps. The first step,
which converts sodium to sodium hydroxide, will be
conducted at the SPF Sodium Hydroxide Process System
(SHPS). In particular, SHPS will transfer sodium stored on
site to a reaction vessel, combine it with water in the
presence of sodium hydroxide to produce caustic, and
deliver the caustic for the following step. As seen in Figure

1, sodium is first moved from two different sources to the
Sodium Storage Tank (SST). The first source of sodium
comes from about 1400 208 liter barrels that contain
FERMI sodium. The second source is the Secondary
Sodium Storage Tank containing EBR-II sodium that has
been transferred there by a piping system. With sodium in
the SST, it is first moved to the Day Tanks (DT) for
reaction. The sodium at a DT is then transferred to the
Reaction Vessel (RV) where it is combined with water in
the presence of caustic to form additional caustic. The
resulting caustic is moved from the RV to the Caustic
Cooling Tank (CCT). Caustic from the CCT is pumped out
and used in the next conversion process. This second step,
which converts sodium hydroxide to sodium carbonate, will
be performed at the SPF Sodium Carbonate Process System
(SCPS). As seen in Figure 2, the sodium hydroxide is
pumped out from the CCT(at SHPS) and fed to a horizontal
thin-film evaporator blanketed with a carbon dioxide
atmosphere. Here, the caustic reacts with the carbon
dioxide to form sodium carbonate. The reaction is
exothermic and produces most of the heat necessary to
evaporate the excess water, leaving a dry sodium carbonate
product. The evaporated water is condensed and drained to
a water holding tank, and the carbonate is discharged into
drums for landfill disposal.

III. Process Control System.

SPF will be monitored, controlled, and supervised
by a computer system. The sense, control, and operator
interface functions for each process will be incorporated
into a distributed control system consisting of a control and
an input and output (I/O) front-end computer as seen in
Figure 3. All of the process sensor and actuator wiring
comes into the I/O front-end (STD Bus based) computer via
terminal strips connected to the I/O boards. The front-end
computer communicates with the control computer via a
serial link. The control computer drives a graphic terminal
used to monitor and control the SPF systems. These two
computers contain all the software needed to read the

FERNMI
D rums

Ww Solid Sodium

Draining Barrol
A sscxmblics

w

Iiguid
Soaium

Sccondary Sodiumm
Srtorage Tanli

4

Sodium
Storage Tanlk

W Sodium

' Stoam | Nirrogon W arex
Sysrem l Day Tanks ' | Systom Systom
7
W _Sodium MNitrogon
Stoam Roaction W atoxr
Vossol i
T I W ator Wator
Caustic W oatox

OLr-CGan
Orr-Gas
SwyvBstom

V

Holding Tanlk

Slycol ’
Systcm

]
b4

=

[se

Caustic
oragce Tank

v Caustic
Atmosphoro 5 Cooling Ta
| cauanc
v
To the
Carbonato
Procoss

Figure 1. Sodium Hydroxide Process System (SHPS).

process sensors, to drive process actuators, to condition
data, to control the SPF through its various operating
modes, and to display process graphics and interact with the
operator. To this end, the major development efforts
include: 1) Development of a hybrid model of the sodium
processing operation and 2) Utilization of hybrid system
analysis techniques to characterize and validate the behavior
of the actual process under the control of a supervisory
agent. Specifically, this industrial system is hybrid by
nature consisting of continuous time processes controlled by
discrete-event processes running on real-time computers. In
principle, the integration of real-time continuous and
discrete-event components into a control system can be
done in an ad hoc manner. However, feasible operational
states, changes and conditions may be far more difficult to
categorize, correctly interpret, and respond to if a formal
approach is not used. Software engineering methods are
being utilized in the design and implementation of the SPF
control system to improve the tasks of verifying software
correciness, debugging, updating, and maintenance.

The proposed system architecture is a hierarchical
configuration primarily built from three types of
components as seen in Figure 4; 1) low-level objects, 2)
high-level objects, and 3) inter-level interfaces. The

igquia Cco2
Srorageo ‘Tanlic

| Carbon dioxido

hierarchy is structured in such a way that intelligence
increases while precision decreases as one moves from the
bottom to the top. The flow of information is well defined
in that communication is only possible among directly
adjacent (above/below) objects. For example, the scheduler
cannot directly communicate to a given supervisor without
first going through the coordinator. Similarly, information
flow among objects at a same level is kept to a minimum.
In case information from a given object is required by
another, their higher supervisory object would serve as their
communications mediator. The aim of these information
flow design criteria is to increase the robustness of the final
code. With respect to the components of the proposed
architecture, the low level objects correspond to the low
level controllers that interact directly with the physical
process. Their control actions, which modify manipulated
variables, result from measured process variables and
commands received from higher level objects. Four types
of high-level objects are identified, namely, the scheduler,
the coordinator, supervisors, and high-level controllers. In
particular, the scheduler interacts with the user to define the
set of concurrent activities (to be defined later) to be
executed at any time. The coordinator then directs and
coordinates its subordinate supervisors in such a way to
complete the set of commanded activities. Supervisors are

FProm
Caustic
Procons

Caustic I
Stoam

Thin-Filmm
Evaporatorx

g

I Sodium
Ww Carbonate

I OLf-CGas I W ator

Packaging and Handling OLff-Cins W ator
System Systom Holding
A 4 Tanlk
W aste
Drums

Figure 2. Sodium Carbonate Process Systems.

Graphic
Usex
Intoxrface

=

Control Computerx

Weeor Intorface Scheoeduling
he o X33 Control
Sharod Suporvision
Momory Tanlc
Safoty
== 2
communlc-tlon-j Tanic
Tasic
A L] Mlaintonanco
| e Torminal
Ww I/ FProntend Computer
Communications
T awic
Tomsic Momory Tanic
Input/Output
Tank
A i
! h 4
[Sensors I I Actuators '

Figure 3. Sodium Process Fa

then defined based on functional and physical partitioning.
Each supervisor has a defined range of possible action and
responsibilities for configuring its underline control scheme
in such a way that every required activity is supported. For
example, based on Figures 2 and 3, instances of
implemented supervisors include the DrainBarrel
Supervisor, the Reaction Supervisor, the DayTanks
Supervisor, the CausticStorage Supervisor, the Carbonate
Supervisor and the Support Supervisor. For instance, the
DrainBarrel Supervisor is responsible in assuring that its
assigned end-effectors, i.e., sensors and actuators, operate
properly in support of each activity it may be involved in at
any time. Depending upon the underlying complexity of
the supervisory task, a supervisor may rely on subordinate
supervisors or sub-supervisors to accomplish the assigned
activities. For example, the DayTank Supervisor relies on
two sub-supervisors, each one defined for one of the
existing two day tanks in the plant. Finally, the objects at
the lowest level of the hierarchy shown in Figure 4
correspond to the high-level controliers, which gather
information on the current operational conditions of the
controlled process and direct commands to the low-level
controllers to govern the behavior of the physical process.

cility Computer Control Systems.

As mentioned before, the desired behavior of the
plant is given in the form of a set of required (concurrent)
activities that should be performed by the system. This
activity set is enforced by the scheduler which verifies that
this set is consistent in the sense that all listed activities can
be executed concurrently without violating safety and
performance constraints. In particular, an activity is defined
as a fask in a given mode. A task specifies a given
operation. Instances of tasks include DrainSodium,
ReactSodium, StoreCaustic and MakeCarbonate. For
example, as seen in Figure 1, the task DrainSodium defines
all the operations required for extracting the sodium
contained in a number of drums (FERMI Drums) and
transferring it to the Sodium Storage Tank. On the other
hand, a mode identifies the operational status of a given
task. Examples of modes are Shutdown, ColdStandby,
HotStandby and Run. For example, a task in mode
ColdStandby defines all the setup conditions that must be
met in order to maintain the tanks associated with the given
activity at a specified operating temperature. Similarly, in
HotStandby, not only the associated tanks but also valves,
pumps and piping are taken to proper operational
conditions. Thus, a task (e.g., StoreCaustic), in a mode (e.g,

User <—)—| Scheduler l
(=)
| Coordinator I
A 4 A A A 4
l Supervisors I LSupervisors |
A A N
A 4 A 4
|SubSupcrvisor§| |Su‘bSupcrvisors |
y
| Controllers | | Controllcrsw I Controllers l |7Controllcrs

Figure 4. Hierarchy of the Control and Supervisory System.

HotStandby), defines an activity (e.g.,

StoreCaustic.HotStandby).

An activity may require the participation of one or
more supervisors in order to be executed. The set of
supervisors involved in supporting a given activity is called
the Activity Supervisors Set. Each of these supervisors is
responsible for assuring that its end-effectors are operated
in support to the commanded activity. For example, to
execute the activity “MakeCarbonate.Run,” the
CausticStorage, the Carbonate and the Support supervisors
are needed; however, the DayTank supervisor is not
involved in this case. Supervisors could have also been
defined in relation to the completion of activities, with only
one supervisor being responsible for each activity. Because
of the possibility of concurrent execution of activities, this
approach could result in a controller receiving commands
from several supervisors whenever its end-effectors are
involved in executing more than one activity. To resolve
these multiple supervisory order situations, it would have
been required to provide controllers with decision-making
capabilities. This would have somewhat violated the
principle of decreasing intelligence while increasing
precision when moving down in the proposed hierarchy and
potentially complicated the final implementation.
Partitioning supervisors based on underlying physical
boundaries assures that only one supervisor can govern the
operation of any given controller and places the
coordinating functions on higher level objects.

To assert the current operational phase or condition
of the given activity, status is introduced. Possible activity
status includes Idle, Setting, Ready, Working, Suspend and
Down. For instance, an activity in a “Suspend” status will
indicate that it has been suspended momentarily in order to
resolve an abnormality in the system. The status of each
activity is used by higher modules to coordinate the
operation of their subordinate objects. For example, to
compute the status of a given activity, the coordinator looks
at the statuses reported by each of its supervisors involved
in supporting the activity. Based on the reported statuses (at
the supervisory level) and given guidelines, the coordinator
assigns the status for the activity as seen at its level. For
instance, assume that a given activity involves three
supervisors. Two supervisors indicate to their coordinator
that the commanded activity is Ready to be executed while
the third supervisor reports the activity as still being Setting
at its domain, The coordinator thus reports to the scheduler
that the activity as still being in a Setting status; the activity
will be declared Ready to be executed when all supervisors
indicate so. This activity status (at the coordinator level) is
then utilized by the scheduler to resolve operational
inquires. Similarly, if an actively involved supervisor relies
on a set of subordinated sub-supervisors to support a
commanded activity, it asserts the activity status by

gathering the reports communicated by its subordinates.
This procedure extends all the way to the control level
where no further division of operation occurs. Controllers,
which are the only objects in direct contact with the
physical system, finally retrieve the information required to
assert activity statuses at higher levels.

To ease implementation and verification of the
correctness of the control software, a real-time object
oriented approach is being utilized. Object-oriented
concepts such as inheritance and class abstraction can be
beneficially employed in the design of real-time systems to
enhance reusability, understandability and software quality.
In addition, formal modeling approaches are being used to
clearly characterize the behavior of objects. In particular,
each activity executed by a given object is modeled as a
hybrid mechanism. A hybrid mechanism [3] is here defined
as a tuple M: (I",¥) where I and ¥ are the static and the
dynamic components of M, respectively. The static
component is the tuple I" : (N,Z,T,X,P) with N denoting the
set of nodes, 2: set of possible events, T: a tuple of timers,
X: a tuple of state variables, and P: collection of state
predicates. The set Z is further divided into controllable
events (e.g., actions) and wncontrollable events (e.g.,
environmental responses). On the other hand, the dynamic
component is the tuple W: (d,f;h,I) with d: possible events
function, f: the state transition function, g: the internal
evolution function, h: associated constraints function, and
I: initial conditions. Each object verifies that its set of
current activities is consistent, with their progress following
this hybrid model. In particular, an activity being in a given
node precisely defines the operational conditions and
possible responses that could be observed to occur in the
event of operational changes. To specify the requirements,
real-time logic techniques are being investigated [1, 2]. It
is expected that the limited and similar responsibility
attached to each object and the formal modeling strategy
characterizing their behaviors will increase the overall
quality of the implemented software. Further discussion of
the system will be given in subsequent papers.

V. Acknowledgments

The author would like to acknowledge the
assistance offered by the staff at ANL-West and, in
particular, the efforts of R. Carlson, L. Christensen, D.
Cutforth, C. Livengood, S. Start, and R. Washburn.

References
1. Hybrid Systems, Lecture Notes in Computer

Science 736, Springer-Verlag, the Netherlands, 1993.

2. _Real-Time: Theory in Practice, Lecture Notes in
Computer Science , Springer-Verlag, 1991.

3. H.E. Garcia, et al, A Reconfigurable Hybrid System
and Its Application to Power Plant Control, IEEE Trans. on
Control Systems Technology, Vol. 3, No. 2, June 1995.

