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Abstract

The finite-volume hybrid-grid (FVHG) technique uses both structured and unstructured grid re-
gions in obtaining a solution to the time-domain Maxwell’s equations. The method is based on
explicit time differencing and utilizes rectilinear finite-difference time-domain (FDTD) and non-
orthogonal finite-volume time-domain (FVTD). The technique directly couples structured
FDTD grids with unstructured FVTD grids without the need for spatial interpolation across grid
interfaces. In this paper, the FVHG method is applied to simple planar microelectronic devices.
Local tetrahedron grids are used to model portions of the device under study, with the remainder
of the problem space being modeled with cubical hexahedral cells. The accuracy of propagating
microstrip-guided waves from a low-density hexahedron region through a high-density tetrahe-
dron grid is investigated.
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Local Tetrahedron Modeling of Microelectronics Using the Finite-Volume
Hybrid-Grid Technique

1. Introduction

Transient finite-difference, finite-element, and finite-volume methods represent powerful tools
for the analysis of complex geometries. The finite-difference time-domain (FDTD) method in-
troduced by Yee nearly 30 years ago [1] has been extensively applied to a wide variety of prob-
lems that range from microelectronics to biomedical applications. An extensive collection of
references can be found in [2]. The standard FDTD method is mature, conceptually simple, and
computationally efficient but possesses the well-known topological limitation of staircasing [3].
Finite-element and finite-volume methods provide increased geometrical flexibility by conform-
ing elements to complex features, but often at a prohibitively high computational cost. Finite-
element methods (FEM) have traditionally been applied in the frequency domain to electrostat-
ics, magnetostatics, and interior dynamic problems [4], but more general application is becoming
possible through the use of edge elements and accurate absorbing boundary conditions [5]. Fi-
nite-element formulations based on explicit and implicit time-differencing methods are also un-
der development [6,7]. Published work on transient finite-volume techniques has been based on
the application of computational fluid-dynamics (CFD) methods to Maxwell’s equations [8] and
on a direct generalization of rectilinear FDTD to arbitrary convex polyhedrons [9-15]. Both
techniques use explicit time differencing, but the CFD-based methods define the vector electric
and magnetic fields on a single grid, whereas the generalized-Yee formulations use two inter-
leaved grids referred to as primary and dual grids. It is noted that explicit finite-element formu-
lations using Whitney elements applied to Maxwell’s two curl equations also use a dual-type,
secondary grid to evaluate the electric field along edges [6].

Much of the previous work involving time-domain volumetric solvers applied to open-region
problems used mapped-meshing techniques. Primary grids of this type consist of skewed hexa-
hedral and/or wedge elements. The grids are generally block structured but can, of course, be
referenced in an unstructured manner. An example of mapped-meshing applied to microstrip
problems consists of forming a surface grid on a planar geometry, and then extruding the surface,
or shell, elements into solid elements. The resulting grid is considered to be 2-1/2 dimensional
because the grid can not accommodate geometry variations along the extrusion direction
(although different materials can be incorporated along this direction). The technique has been
successfully applied by Gedney and Lansing [15]. For general geometries, mapped-meshing re-
quires mapping, or projecting, one surface onto another. Geometries must be zoned using this
approach, generality is limited, and user intervention is often high. Free-meshing, on the other
hand, provides increased geometrical flexibility and generally lower user intervention. The re-
sulting grids typically consist of tetrahedral elements, although fully free-meshed hexahedral
grids are possible in some situations [16,17]. Tetrahedral grids are computationally expensive
because cell count can become exceedingly high for practical problems. Compared to cubical




hexahedral grids (FDTD), filling the same volume with free-meshed tetrahedra that possess an
average edge length close to that of the hexahedral cells will lead to approximately eight times
the number of cells. Consequently, it is desirable to minimize the number of tetrahedra in the
problem space. The present paper addresses using local tetrahedron grids interfaced with FDTD
grids and applied to microelectronics.

The software package VOLMAX (Volumetric Maxwell solver) is based on the finite-volume hy-
brid-grid (FVHG) technique. This technique permits non-orthogonal, unstructured grids to be
embedded in traditional rectangular-cell, structured-grid, FDTD [13,14]. The FVHG method en-
ables high complexity regions to be modeled and gridded using commercial solid-modeling
software. The resulting complex unstructured grid is interfaced to simple FDTD cells without
spatial interpolation across the grid interface. This is accomplished by forcing the unstructured
grid to terminate on a closed rectangular surface [14]. The FVHG technique is particularly use-
ful for open-region problems and/or geometries with local regions of high complexity. The
method has been shown to provide high accuracy in scattering applications.

Microelectronics applications are well suited to an FVHG formulation. This is because uniform
microstrips are often used at the input and output ports of the device under study. To obtain ac-
curate S-parameter data, these microstrips usually extend a long distance and require accurate
absorbing boundary conditions at the line terminations. This portion of the problem can be
modeled accurately and efficiently using FDTD. However, the device under study may be of
high complexity and require a conforming grid. This complex region can be designed using
solid-modeling software and then gridded with free-meshed, tetrahedral elements. The resulting
hybrid-grid will lead to an accurate and efficient description of the problem.

The finite-volume portion of the FVHG solver [13] is based on a generalization/simplification of
the modified finite-volume technique introduced in [9]. A (variably dissipative) time-averaging
scheme is used to obtain long-term stability. Achieving stability for tens-of-thousands of time
steps on arbitrary grids with explicit (and even implicit), time-domain, finite volume and finite
element schemes without using dissipation remains an open research issue across many disci-
plines. It is noted that the non-dissipative discrete surface integration (DSI) method [10] has
been found to delay, but not eliminate, late-time growth on complex grids [13]. The technique
used by the FVHG method permits either no dissipation, or a moderate amount of dissipation,
depending on the grid complexity. Unfortunately, the “right amount” of dissipation is generally
not known a priori, but guidelines are provided in the present paper that have been found to be
successful for complex tetrahedron grids.

This paper provides an overview of the finite-volume algorithm, the time-integration scheme,
boundary condition implementation, grid generation, and time-step definition. Three simple mi-
crostrip applications with well-known FDTD solutions are examined. The examples demonstrate
the accuracy that can be obtained by launching microstrip-guided waves on cubical hexahedron
(FDTD) grids and through a dense, unstructured linear tetrahedra region. More complex geome-
tries that fully exploit the power of the FVHG approach to microelectronics will be topics of fu-
ture papers.
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2. Analysis

The finite-volume method can accommodate arbitrary convex polyhedron-element primary grids.
The vector magnetic fields are defined at the centroids of the primary cells, whereas the vector
electric fields are defined at their vertices. Dual cells contain the vertices. The dual cells can be
extremely complex and typically possess many faces, edges and nodes. A preprocessor builds
the dual grid from the primary grid. The primary grid is equivalently labeled an H-grid, whereas
the dual grid is equivalently labeled an E-grid. A typical H-grid tetrahedral element, referenced

as H%, is shown in Fig. 2.1 (superscript t denotes total field). Dual cells (not shown) surround

t-, Jj = 1-4. The dual edge, s?, connects the centroids of

J
primary-cell, i, with a neighboring cell, £. The primary edge, sg, connects E} and EE The

the four vertices and are referred to as E

volume of primary cell, i, is denoted Vz'h’ while the volume of dual cell, j, is denoted ng . The

area of face, /, on primary cell, i, is denoted by Al.h , while the area of face, p, on dual cell, j, is
2

denoted A% h l and n% _ denote outward normals for each face of the primary and dual

JoP’

cells, respectively.

P

Maxwell’s equations are given by

Primary face,/, on
Primary cell,i. Area, A, 0
I, € EEt +G Et

u%Ht+cmHt =-V xEt

t
E
Volume, \.{'

vxHE

Dual edge, s
4 — L > where, €, Cg, U, and Gy de-
/ Hlt< note electric permittivity, electric
E? / conductivity3 magnetic .pf:nneability,
t ho s e and magnetic conductivity, respec-
J_/ E2 Primary edge,s <. tively. By integrating over each cell
Dual face,p, 0 — — - on the primary and dual grids, the
Dual cell,j. Area, e né finite-volume time-domain (FVTD)
j,p Jp

form of Maxwell’s equations is

Fig. 2.1. Cell definitions.

aJatmEthem] j'ngthe % I n% xHtads @1
vy Yy 4p

pzathf AV} +6 me th_—z‘ jj n’) <E* dal! 22
Vi Vz Azl
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All materials are defined relative to primary cells. For magnetic materials this is the natural
definition. However, electric materials are associated with the spatially staggered dual cells and
therefore the permittivity and electric conductivity require averaging. The average values are

denoted by € j and G, ej respectively. These are defined as follows. The average permittivity
on dual face, p, is defined by

an Vigl
=f_n 2.3)
Posuh
n

where the sums are taken over the primary cells associated with the dual face. The average
permittivity for the dual cell, j, is constructed by forming

y&)
o~ p

L 2.4
T
J

where the sum is taken over all dual faces on dual cell, j, and N ]f denotes the number of faces
on the cell. The electric conductivity is similarly defined.
Volume-Integral Approximation

The volume integrals are easily evaluated by assuming the vector field remains constant
throughout the cell volume. This leads to the following equations

~. 0 ot .~ wt_ 1 e t g4e 2.5
€j5,E +6¢,E _Vez [[ w8 ,xH"dd? 25

Jj P o4

J>D

0 1
HimHtﬂsmth:——hz [ nf?letdAlhl 2.6)
I/i l Ah b H
il

A first-order approximation to the vector fields within cells can be constructed by expanding the
fields in a first-order Taylor series and applying the relationship J‘”V\P dVv = I I ¥ ndd,

where W denotes a scalar field and n denotes an outward normal. This relationship enables the
field derivatives to be easily evaluated. The results in this paper are based on constant fields
throughout the cell volume. The effect of higher-order representations will be examined in a fu-

ture paper.
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Area-Integral Approximation

Similar to Madsen and Ziolkowski [9], the cross product in the area integral is expanded as a
vector triple product at each vertex and an average value for the integral is constructed by sum-
ming over all vertices of the face, dividing by the number of vertices, and multiplying by the face
area (which is not unique for non-planar faces). Note that for tetrahedral elements the faces are
triangles, which leads to the following simplification (cf. Fig. 2.2):

X
hoowt 147 oL t
j';{nl.’le ddy -3 %pr PPl
41 Pl

.
1 t h h 1 t.h h t. . h h
oy %pr S %552 © ¢ %\ E S S0~ E Soo |Sp1 2.7

nI] The summation is taken over all vertices

il of primary face, (i, ) (cf. Figs. 2.1, 2.2).
The symbol, ~, represents an average
field along the edge (defined below).
An expression similar to (2.7) applies to
t _h quadrilateral faces, with the overall face

S p1 normal often becoming an average di-
rection. For faces with an arbitrary
number of vertices, as is generally the
case on the dual grid, the faces are sub-
divided into triangles from which the
overall area is computed. For these
faces, the face-normal generally be-
comes an average direction.

Primary face (i)

Fig. 2.2. Evaluation of surface integral around boundary.

Time-Advancement Scheme

The application of explicit time-domain methods to complex cell shapes often leads to a well
known, late-time, weak instability in the simulation [13,18]. This occurs in both finite-element
and finite-volume formulations across many disciplines. The true nature of the instability is not
fully understood but is believed to be due to a shifting of the eigenvalues of the discrete formula-
tion relative to the continuous equations [18]. CFD-based methods rely on a dissipative term in
the discrete equations to suppress problematic high-frequency modes [8]. The impact of this
term as applied to Maxwell’s equations has not been thoroughly addressed in the literature. For
generalized-Yee formulations, the use of time-averaging to create a variably dissipative time-
integration scheme has been found to be effective [13]. However, dissipative time-integration
can lead to “over-damping” of the simulation. This is particularly true when applied to lossless,
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closed, cavities. Problems that possess natural dissipation, such as radiation, can exhibit slightly
enhanced attenuation in the higher frequencies due to the artificial dissipation, particularly as the
grid resolution becomes less than approximately 20 cells per wavelength. For such problems, the
artificial dissipation is often a second-order loss effect.

Traditional FDTD uses a second-order, centered time difference for the time derivatives. Sec-
ond-order accuracy requires that the differences are offset in time between the electric and mag-
netic fields which gives rise to the well-known “leap-frog” time-differencing scheme. Applied to
the magnetic field (with the electric field similar), the usual centered time difference is written as

¢ n+3/2 ¢ n+1/2
H - H
) () o5
At

-

Ol |i—(n+D)At

n+1/2
where A ¢ denotes the time step. A (first-order) time average for (H ) is the following

¢ n+l/2 1 ¢ n+3/2 ¢ n+1/2 ¢ n—-1/2
() =g | (m ) afm) {w) 29

where o = 0, but practical values are dependent on A f. The average corresponds to discrete

time samples of the magnetic field. The magnitude of the Fourier Transform of the sampling
function

o+2

L [6(1—(n+§2—)At)+oc8(t—(n+%)At)+6(t—(n—%)At)] 2.10)

where O (+) represents the Dirac delta function, is given by

R cos(o At) 2.11)

o
1+a 1+§

Here, @ corresponds to radian frequency. For values of Ot less than infinity, the time average
provides increasing attenuation with increasing frequency (with practical upper frequencies se-
lected considerably below the Nyquist sampling requirement). Consider a uniform grid in free

space. Define At=A/(c N) , where ¢ denotes the speed of light in vacuum, A denotes the
spatial step throughout the grid, and N represents a positive real constant required for stability.
® At can now be written as (2rn / N)(A/A) , where A denotes free-space wavelength.
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Writing the grid resolution as A=A/ M, where M is a pusiuve constant, leads to the result,
0At=2n/(N-M). A graph of Eq. 2.11 as a function of N - A/ is shown in Fig. 2.3.

1.0000 =

As an example of using Fig. 2.3,
consider a grid resolution of 20
cells per wavelength (M = 20)
and N = 2 (which is typical for
three-dimensional FDTD on a
uniform grid); thus, NV- M =
40. Choosing oL =40 leads to

I \ an  attenuation value of
IR S—— kY 0.999400. At 80 cells per
Decreasing Grid Resolution wavelength with the same N

08650 , _ Increasing Time Step and O, the attenuation factor is

160 140 120 100 8o & a0 0.999963. Although these val-

N*M ues may seem insignificant, they

Fig.2.3. Filter spectrum. become cumulative in a time-

advancement scheme. Just as

the standard Yee algorithm is dispersive, leading to increased phase error over propagation dis-

tance [19], the presented time-averaging scheme gives rise to frequency-dependent attenuation.

Consider pulse propagation in one dimension over a distance of 100 cells with N = 2; thus, 200

time steps are required to travel the line. Using ot = 40, the frequency content of the signal at

the end of the line is attenuated by approximately 12% (1 dB) at 20 cells per wavelength and

0.8% (0.06 dB) at 80 cells per wavelength compared to lossless propagation. These results were
obtained by raising the appropriate value from Fig. 2.3 to the required number of time steps.

0.9990 |-

0.9980 |-

. Increasing Grid Resolution
Decreasing Time Step
N P PR ]

For fixed values of Ot and M, increasing N (corresponding to decreasing A ) leads to decreasing
dissipation. Although this may appear desirable, the resulting dissipation may be insufficient to
damp the growth of problematic high-frequency modes, and consequently, a smaller value of 0
may be required. For embedded, free-meshed, tetrahedron grids, numerical experiments have
lead to the required relationship, N -o. < 80, for long-term stability over tens-of-thousands of
time steps. Taking N -o in the range 60-80 has generally been found to be successful.

The advancement equations based on time-averaging are the following:

n+l
t Be |_
(Ej J [Ae_ocf2]—

B n n-1 1
e t t - e t 4e =~ Ft
OL(EJ. ] +(E]. J + ez gj n]’pr dA Ge; E (2.12)

o+2 .]:p— J

/ A]:P
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n+3/2
Ht Ap -k |
i a+2

B n+1/2 n-1/2 \
=n t t t _ t
p— a(Hi ] +[Hl. j th j‘gn, xE dAi,l om; H (2.13)

! A

il

where
g; Oe g§: Oe; G - G s
_| &% |\ 2] __"] Hi omi i _“mi
Ae_[At+ 7 J Be [Ar 2 ] Ap = {At M) J Bp = [At 3 J

The effect of the time average on the usual Courant condition for a uniform, free-space, three-
dimensional FDTD grid is easily established by performing a Fourier (von Neumann) stability
analysis [20] of the advancement equations. The analysis is straightforward to implement and
only the final result is presented here. In terms of the filter parameter, O, the resulting equation
for determining the relationship between the time and spatial steps is given by

B4 (a+1)2 +283 [2 +2)2 n—o (o + D]+ B2 [0l =2 (@ +D]+ 20 B+1=0  (2.14)

where |B| <1 for stability, and cAt=\/§ A . Sample calculations are shown in Table 2.1.

a \/n— It is seen that the Courant condition slightly tightens with
0 1 decreasing ot. Although it is not possible to derive a
80 0.975 similar rigorous relationship for arbitrary unstructured
40  0.952 grids, a similar conclusion has been observed numerically.
10 0.833

5 0.714 FDTD Contribution and Edge-Projected Field
Knowledge of the vector fields at cell vertices enables the
Table 2.1 calculation of an average field projected along connecting
Effect of Time Average on Uniform- edges. Arithmetic or volumetric averaging can be used.
Grid Courant Condition However, the approach does not guarantee that the fields

are divergence free on a single cell level, and the algo-
rithm does not reduce identically to an FDTD form when cells become orthogonal. These issues
are rectified by incorporating an FDTD correction to the edge-projected vector field. With refer-
ence to Fig. 2.1, Ampere’s and Faraday’s laws specialized to the field components normal to
primary-face (i, /), and dual-face, (j, p), are

16



o) 2 [] Epads 467 | Epads = ch : 2.15)

0t > J>P
AJEP A]ap ,P
~f 0
i/ 2 I adly +67 I, dalt = - 4E -dl @.16)
Al A
l,l Z,Z lal

Where H] and E ¥% denote the (face) normal components of the magnetic and electric fields

(traditional FDTD). The fields are assumed to remain constant over the area integrals. The time-
averaging scheme discussed in the previous section is used for the time derivatives. The “face
average” permittivity and electric conductivity discussed above have been used (cf. Eq. (2.3)). In

f f

addition, a face average for the permeability ( ﬁl ) and magnetic conductivity (G - ) has been

introduced. This is because the evaluation face is located at the interface of two cells. The av-

erage permeability is defined by ﬁlf = (Vlh L + V/f nr)/ (Vlh + V]? ), with & ’;; : similar.

The magnetic field projected along dual-edge, s?, is finally constructed by forming

St e Lot t |. e 1t t | W/ h e
H -s5 —-2—(Hl- +Hk) ] +I:Hl 2(Hi +Hk) ni,l][ni,l Sl) (2.17)

This expression directly incorporates the FDTD term into the average vector field. Note that

h e
n;1°8]

vector fields at the edge endpoints has been used. The average electric field, Et, projected along

when = 1, the expression returns only the FDTD result. Arithmetic averaging of the

primary-edge, Sélg, is similar. Note the use of edge-projected fields in Egs. (2.7, 2.15, 2.16).

Boundary-Condition Implementation for Open Conductors

When a primary grid is generated for an inhomogeneous region, nodes lie along the material in-
terfaces (cf. Fig. 2.4). Dual cells associated with these nodes extend across the interface which is
why material averaging is used. In the case of a conducting sheet, the boundary dual cells be-
come split, either completely or partially, depending on the location of the primary-cell node.
Direct computation for the vector electric field is no longer possible in the usual sense for these
cells. Of course, the tangential component of the vector field is zero, but the normal component
generally is not. A similar situation occurs with traditional FDTD, but due to its rectilinear na-
ture, no complication occurs. However, a complication does occur with non-orthogonal cells

h

whenever the computation of Et -S%, where sh denotes a primary edge with one node on the
p p
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conductor, doesn’t simplify to the FDTD term, E D In this case, the following alternative ex-

. =t ) h - . ~ t _
pression for E' -s pis used (noting n Sp xE]. =0)

E ’Sp_i(EiJ”(nSp'Ei )nspj.sp+
ot (~ t | e e h
[Ep"i(Ei“L(“Sp E; j“sp)'“j,pﬂnj,p'sp @18)

where T » denotes an average

i Primary Cells

surface normal at the boundary
node and Ef denotes the known

vector field associated with edge,

Sél). The average surface normal is

constructed by forming a weighted
average of neighboring face nor-
Conducting mals using only those faces resid-
Interface ing on the conductor. Note that
expression (2.18) incorporates the
known zero tangential field at the
boundary node, but relies upon the
vector field off the surface to provide the estimate for the (surface) normal component. As be-
fore, the FDTD contribution is used to correct the (face) normal component (which has been
found to be a critical contribution). Improved representations remain an active area of research.

Fig. 2.4. Dual cells along a conducting interface.

Grid Generation and Selection of Time Steps

The FVHG algorithm implemented here uses the CAD package I-DEAS [21] to generate solid
models, free-meshed linear tetrahedron grids, and/or mapped-mesh hexahedral/wedge grids. The
method to terminate the tetrahedron grid and connect a structured FDTD grid can be found in
Ref. [14]. The method is based on embedding the geometry of interest in a series of rectangular
boxes that are partitioned with quadrilateral sub-surfaces. These surface partitions force the tet-
rahedron grid to terminate such that the surface nodes will spatially align with the nodes of the
structured FDTD grid that will be connected. The creation of the proper surface partitions is
easily automated within I-DEAS. The direct interface to hexahedral cells is realized through the
use of seven-faced, six-sided elements called “wrapper cells.” These cells are generated through
the pre-processor as a consequence of the topology of a hexahedral element being interfaced to
the bases of two tetrahedra. The wrapper completely encloses the unstructured region. The re-
sulting grid (including the wrapper) represents the unstructured primary grid. The corresponding
dual grid is constructed during the pre-processing phase. It is noted that because the use of
wrapper cells enables the connection of mapped-mesh hexahedral elements to free-meshed tetra-
hedra, these two gridding methods can be logically combined within I-DEAS.
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The primary and dual grids are scanned to determine their maximum, minimum, and average
edge lengths. The time step to be used in the unstructured region is related to the minimum edge
length, but it can generally be chosen considerable larger than what the absolute smallest edge
length would dictate. The following provides guidelines for the choice of the unstructured-grid
time step obtained through numerical experiments.

Define the ratio of the maximum to minimum edge lengths on the primary and dual grids to be

Rp and R, respectively, and let Ny, = [[ € max([[Rp]],[[Rg]]) ]]. with [[-]] denoting
the closest integer greater than the argument, and % <& <1. Define At;, = Aty / N,;, where

Aty denotes the time step in the unstructured grid and Afg denotes the time step in the struc-
tured (FDTD) grid. The unstructured-grid time step becomes an integral sub-division of the
FDTD time step which enables this region to be advanced several sub-time steps for each time
step in the FDTD grid. Second-order time-interpolation has been found to be an effective means
to time-couple the two regions [13]. Assuming a uniform, free-space FDTD grid with spatial

step, A, Aty = A /(¢ Ng). For this type of grid, Ng is typically defined to be equal to 2 (but

could be taken as small as ~/3). In a free-space unstructured region, Aty = A / (c Ng Ny).
It is assumed that time averaging is only used in the unstructured region, and as previously
shown, time averaging slightly tightens the Courant condition. This is why the parameter f; can

not be uniquely defined. As the filtering effect increases (corresponding to decreasing ), &
generally needs to be chosen toward the upper end of the defined range. Having defined the time

step, the dissipation effect is easily estimated from Fig. 2.3 by setting N = Ny, - N.

3. Microstrip Applications

Three well known rectangular microstrip geometries have been selected to study the effect of lo-
cal embedded tetrahedron grids on accuracy. Issues involving grid reflection at the hexahedron-
tetrahedron interfaces, propagation through dense tetrahedron regions, sub-time stepping, and the
effect of dissipation in the unstructured grid, are examined through these examples.

Uniform Microstripline

As a first example, the simple microstrip shown in Fig. 3.1 was investigated. The substrate rela-
tive permittivity was 2.2. The geometry was modeled by a uniform collection of hexahedral
elements with an edge length of 0.1985 mm, along with an embedded tetrahedron region with an
average edge length of 0.1985 mm. The location and form of the tetrahedron region are shown in
Figs. 3.1 and 3.2. The microstrip was locally terminated with a simple first-order Mur absorbing
boundary condition (ABC). Both the hexahedron and tetrahedron grids shown in Fig. 3.2 were
created within I-DEAS and jointly define the unstructured grid (excluding the wrapper). Upon
adding the wrapper during the preprocessing phase, the unstructured grid was embedded in a uni-
form FDTD mesh that measured 202 x 68 x 88 cells in the X, y, and z directions, respectively.
The FDTD cell size was also 0.1985 mm. The FDTD mesh was terminated with second-order

Mur boundaries. In the FDTD mesh, N s was setto 2, and O = 00. In the unstructured region,
Ny, =3 (3 sub-time steps), and o0 = 12 (based on the previous guideline, Ng - Ny, -o0 < 80).
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-tet interfaces. As shown in Fig.

Dimensions in mm

Fig. 3.1. Uniform microstrip test geometry. (Dimensions in mm.)

The microstrip was driven by adding a gaussian source between the power and ground plincs at
the location shown in Fig. 3.1. Fig. 3.3 shows the voltage under the midpoint of the power trace
at the input and output observer planes. A comparison is made by replacing the FVHG tetrahe-
dron region with cubical hexahedral cells so that the finite-volume algorithm resorts exclusively
to the FDTD term. Although this comparison mesh is now exclusively FDTD, the microstrip
remains unstructured with the same values for Ny, and O ; this permits a careful examination of

guided-wave propagation through tetrahedrons and across hex
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Fig. 3.4a. Difference of Fig. 3.3 results at input

Fig. 3.4b. Normalized spectrum.
observer.

The difference between the FDTD and FVHG results at the input observer is shown in Fig. 3.4a.
This reveals the subtle propagation differences between the grid types. The (peak) voltage dif-
ference is seen to be nearly three orders of magnitude below the peak voltage in Fig. 3.3. Itis
believed that this can be further reduced with improved boundary conditions for open conductors
(cf. Section 2). The spectrum of the difference field, normalized to the incident-field spectrum, is
shown in Fig. 3.4b. This result can be considered the return loss (S11) of the tetrahedra region.
In the substrate, the FVHG grid resolution is approximately 20 “cells” per wavelength at 50 GHz
based on the maximum of the average edge lengths of the primary and dual grids.
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Low-Pass Filter

The second example is the well known low-pass filter originally studied by Sheen, et al., [22]. A
portion of the filter modeled in the current paper is shown in Fig. 3.5a. Linear microstrip lines
connect to the input and output ports. The geometry shown in Fig. 3.5a was modeled with tetra-
hedral elements with an average edge length of 0.264667 mm. This portion of the overall grid
contained approximately 50,000 tetrahedra and is shown in Fig. 3.5b. Uniform hexahedral ele-
ments with an edge length of 0.264667 mm were used to model the microstrips that connect to
the input and output ports depicted in Fig. 3.5a; these element were created using mapped-mesh
techniques within I-DEAS. It is noted that some modeling flexibility has been lost by forcing the
tetrahedra to interface with these hexahedral elements; this accounts for the slight shifting of the
port locations and the reduced trace widths relative to the actual geometry shown by Sheen, ef
al., [22]. The complete unstructured grid, including the wrapper, is shown in Fig. 3.6. This grid
was embedded in a large, uniform FDTD grid that measured 180 x 66 x 148 cells. Second-order
Mur boundaries terminated the FDTD grid. The FDTD cell size was 0.264667 mm. The mi-
crostrip was driven and terminated similar to the previous example. The source plane was lo-
cated 16 cells from the left side of the unstructured grid shown in Fig. 3.6. The number of sub-
time steps in the unstructured grid was 4, and the stabilization parameter was set to 10.

The location of the observer on the input microstrip was under the midpoint of the power trace
and placed three cells from the edge of the left side of the unstructured grid shown in Fig. 3.6.
The observer on the output microstrip was located 16 cells from the right side of this grid. The
operating range for this circuit is less than 10 GHz. The time response at the input observer is
shown in Fig. 3.7a. The corresponding result for S11 is shown in Fig. 3.7b. Results at the output
observer are shown in Figs. 3.8a,b. The simulation ran for 20,000 time steps in the u= {ructured
grid (5,000 in *he 'DTD grid) and required approximately 8 hours using 8 processors of a Sun
Sparcserver 1t )0 (with 50 MHz Sparc-51 chips, which are no: . ctor processors).
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e,

Fig. 3.6. Full unstructured grid for low-pass filter including connecting traces at input and output ports.
Tetrahedra region shown in Fig. 3.5b is enclosed in the mid-section.
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Microstrip Patch Antenna

The final example is the well-known patch antenna originally studied by Sheen, ef al., [22]. A
portion of the antenna modeled here is shown in Fig. 3.9. For this problem, a low-density hexa-
hedron grid, with an edge length equal to the substrate width (0.794 mm), was used with a high-
density tetrahedron grid of the geometry shown in Fig. 3.9. A surface grid with an average edge
length of 0.3 mm was placed on the patch antenna. A portion of the unstructured grid showing
the grid transition is shown in Fig. 3.10. The driving microstrip, including the source, observer,
and termination planes, was in the low-density hexahedron region. The observer was located un-
der the midpoint of the power trace and positioned 2 cells from the left edge of the grid shown in
Fig. 3.10. A local first-order Mur boundary condition was applied at the left edge of this grid,
and the source plane was located 15 cells from the left edge. Upon adding the wrapper, the un-

[T AN

Fig. 3.9. Madel of patch antenna. Substrate relative permittivity is 2.2. The input pori 1 af the trace
“stub” on the left side of the figure. (Dimensions in mm.)

structured grid was placed in a uniform FDTD grid that measured 96 x 44 x 60. The FDTD grid
used a uniform cell size of 0.794 mm and was terminated with second-order Mur boundaries.

Note that the hexahedral grid only provides about 13 cells per wavelength in the substrate at 20
GHz.

Using the high-density surface grid gave rise to a maximum to minimum edge length ratio on the
primary grid of 11.4 (Rp), while on the dual grid this ratio was 17.25 (R/). Twelve sub-time

steps were required in the unstructured grid (Ny; =12), Ng = 2, and the stabilization parame-

ter, 0L, was set to 3 (based on the guideline, N - Ny -t < 80). The unstructured grid con-
tained approximately 36,000 tetrahedra and 520 hexahedra (excluding the wrapper). Results at
the input observer are shown in Figs. 3.11a,b. The simulation ran for 36,000 time steps in the
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Volts

High density tetrahedrons

Low density hexahedrons

Fig. 3.10. Partial grid of patch antenna. The feeding trace, modeled with uniform quadrilateral
shell elements, resides in the low-density hexahedron mesh and connects to the input

port of the patch antenna. At this point, the grid transitions to a dense triangular-element
surface mesh surrounded by tetrahedral elements.

unstructured grid (3,000 in the structured grid) and required approximately 6 hours using 6 proc-
essors of the Sun Sparcserver 1000. It is noted that the patch antenna required approximately 1
hour to generate the solid model, tetrahedra grid, and mapped-mesh hexahedra grid for the input

trace extension using I-DEAS (cf. Fig. 3.10), as well as all primary and dual grid information
from the preprocessor.
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for patch antenna.
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4. Conclusions

This paper has examined the effect of local, free-meshed tetrahedron grids in uniform-grid FDTD
as applied to microstrip geometries. By comparing with well known FDTD solutions, the FVHG
approach was shown to provide very accurate results when specialized to rectangular geometries.
Numerical reflections at the hexahedron-tetrahedron interfaces have typically been found to be
suppressed by at least 40 dB. Much of the reflection is believed to be due to current boundary
condition approximations in the finite-volume formulation as applied to open conductors. Im-
proved approximations remain an active topic of research. Abrupt changes in grid density and
different dispersion characteristics between hexahedrons and tetrahedrons also contribute. How-
ever, the dynamic range that is currently obtainable is sufficient for most practical microstrip
applications. Extensive numerical experimentation has revealed that a good indicator for the grid
resolution of a tetrahedron primary grid is based on the maximum of the average edge lengths of
the primary and dual grids. The upper frequency resolution is then obtained by equating this
distance to the wavelength divided by twenty. Because the FVHG approach uses commercial
solid-modeling and local free-meshed grids, the efficient modeling of high complexity devices is
possible. Examples will be discussed in future papers.

The development and application of unstructured finite volume and finite element methods to
transient computational electromagnetics is only beginning to evolve. Important research areas
in FDTD such as radiation boundary conditions and sub-grid models will undoubtedly be revis-
ited in this context. Additional research into the late-time stability of explicit difference schemes
on complex grids is also needed. This paper has utilized an effective, variably dissipative time-
averaging scheme to obtain stability in the unstructured grid, but non-dissipative time-
differencing is ultimately desired.
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