

ANL/ET/CP-84915
CONF-950722--16

Fabrication and Texture Characterization of Bulk
(Bi,Pb)₂Sr₂Ca₂Cu₃O_x and Bi₂Sr₂CaCu₂O_x Superconductors*

K. C. Goretta, Nan Chen, A. C. Biondo, B. L. Fisher, and M. T. Lanagan
Argonne National Laboratory, Argonne, IL 60439 USA

J. S. Kallend

Illinois Institute of Technology, Chicago, IL 60616 USA

May 1995

RECEIVED

JAN 11 1995

OSTI

The submitted manuscript has been authored by
a contractor of the U.S. Government under
contract No. W-31-109-ENG-38. Accordingly,
the U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the
published form of this contribution, or allow
others to do so, for U.S. Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Submitted to 1995 International Cryogenic Materials Conference, Columbus,
OH, July 17-21, 1995.

*Work supported by the U.S. Department of Energy (DOE), Energy Efficiency and
Renewable Energy, as part of a DOE program to develop electric power
technology, and Basic Energy Sciences (Materials Sciences), under Contract
W-31-109-Eng-38.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED DT

MASTER

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

FABRICATION AND TEXTURE CHARACTERIZATION OF BULK $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$ and $Bi_2Sr_2CaCu_2O_x$ SUPERCONDUCTORS*

K. C. Goretta, Nan Chen,^a A. C. Biondo,^b B. L. Fisher,
M. T. Lanagan, and J. S. Kallend¹

Argonne National Laboratory, Argonne, Illinois 60439

¹Illinois Institute of Technology, Chicago, Illinois 60616

ABSTRACT

Bulk $(Bi,Pb)_2Sr_2Ca_2Cu_3O_x$ (Bi-2223) and $Bi_2Sr_2CaCu_2O_x$ (Bi-2212) superconductors were fabricated by sinter forging. Bi-2223 ($\approx 90\%$ Bi-2223, 10% $(Bi,Pb)_2Sr_2CaCu_2O_x$ + other phases) and Bi-2212 (nearly phase pure) powders were first synthesized and then cold pressed into bars that were $\approx 50\%$ dense. These bars were surrounded by Ag foil, heated in air to $\approx 845^\circ C$, and compressed for 3–6 h. The resultant bars were dense and highly textured. At 77 K, the Bi-2223 exhibited transport critical current density (J_c) values of 2000–8000 A/cm²; the Bi-2212 exhibited very low J_c . Extent of texture was evaluated by three X-ray diffraction methods: 2θ scans, rocking curves, and orientation distribution functions. It was found that J_c correlated best with the orientation distribution functions.

INTRODUCTION

It has been shown that J_c of bulk high-temperature superconductors is strongly related to texture. Because of the anisotropic nature of each of the high-temperature superconductors,¹ c-axis alignment is required for high J_c ,^{2–6} and there are indications that alignment within a-b planes may also be required.^{6–9}

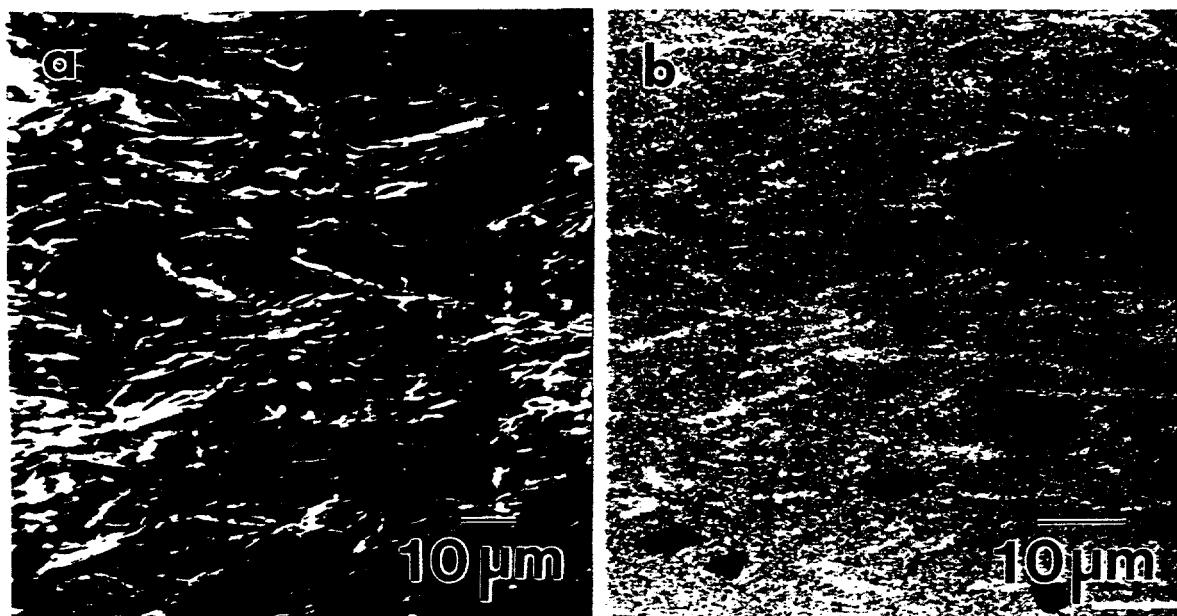
The texture of a bulk superconductor can be described in many ways. Standard 2θ X-ray diffraction scans yield qualitative information.¹⁰ Quantitative information on grain orientation can be obtained from diffrac-

*Work supported by the U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, as part of a DOE program to develop electric power technology, and Basic Energy Sciences (Materials Sciences), under Contract W-31-109-Eng-38.

^aNan Chen is now with Illinois Superconductor Corporation, Mt. Prospect, Illinois.

^bA. C. Biondo is now with Nalco Chemical Company, Naperville, Illinois.

tion information by rocking curves,^{4,10} pole figures,¹⁰⁻¹² or orientation distribution functions (ODFs).¹⁰⁻¹⁴ These techniques all sample large numbers of grains at once. Texture data can also be obtained on a grain-by-grain basis by, for example, transmission electron microscopy⁹ or electron backscatter methods in scanning electron microscopy (SEM).⁶


In previous work on sinter forging of Bi-based high-temperature superconductors, it was confirmed that strong c-axis alignments were produced in dense specimens of good phase purity.¹⁵⁻¹⁷ The work reported here summarizes correlations made between J_c and texture, as measured by 20 X-ray diffraction scans, rocking curves, and ODFs.

EXPERIMENTAL PROCEDURES

Specimen preparation

$\text{Bi}_2\text{Sr}_{1.7}\text{CaCu}_2\text{O}_x$ (Bi-2212) and $(\text{Bi},\text{Pb})_{2.2}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_x$ (Bi-2223) powders were synthesized from mixtures of oxides and carbonates.^{16,18} X-ray diffraction and differential thermal analysis revealed that the Bi-2212 was virtually phase pure and the Bi-2223 $\approx 90\%$ phase pure. The powders were cold pressed in dies 44.5×7.6 mm. The resultant bars were $\approx 50\%$ dense and moderately textured.

Ag foil was placed on top and bottom of the bars. Each bar was then heated in air to $840-850^\circ\text{C}$, and compressed for 3-6 h. Compression rates were 0.001-0.01 mm/min, with the fastest rates being used at the beginning of the compression cycle. Immediately after compression was completed, each bar was cooled to room temperature at $\approx 3^\circ\text{C}/\text{min}$. The Bi-2212 and Bi-2223 bars were $> 95\%$ dense and exhibited obvious c-axis texture in SEM (Fig. 1).¹⁶⁻¹⁸

Figure 1. SEM photomicrographs of (a) fracture surface of typical Bi-2212 bar and (b) polished cross section of Bi-2223 bar (light-gray streaks are Bi-2212 phase and dark regions are alkaline-earth cuprates).

J_c and texture measurements

J_c was measured at 4.2 K for the Bi-2212 and 77 K for the Bi-2223. The criterion was 1 μ V/cm. Because of the high currents needed for the Bi-2223, a pulsed DC current source was used.

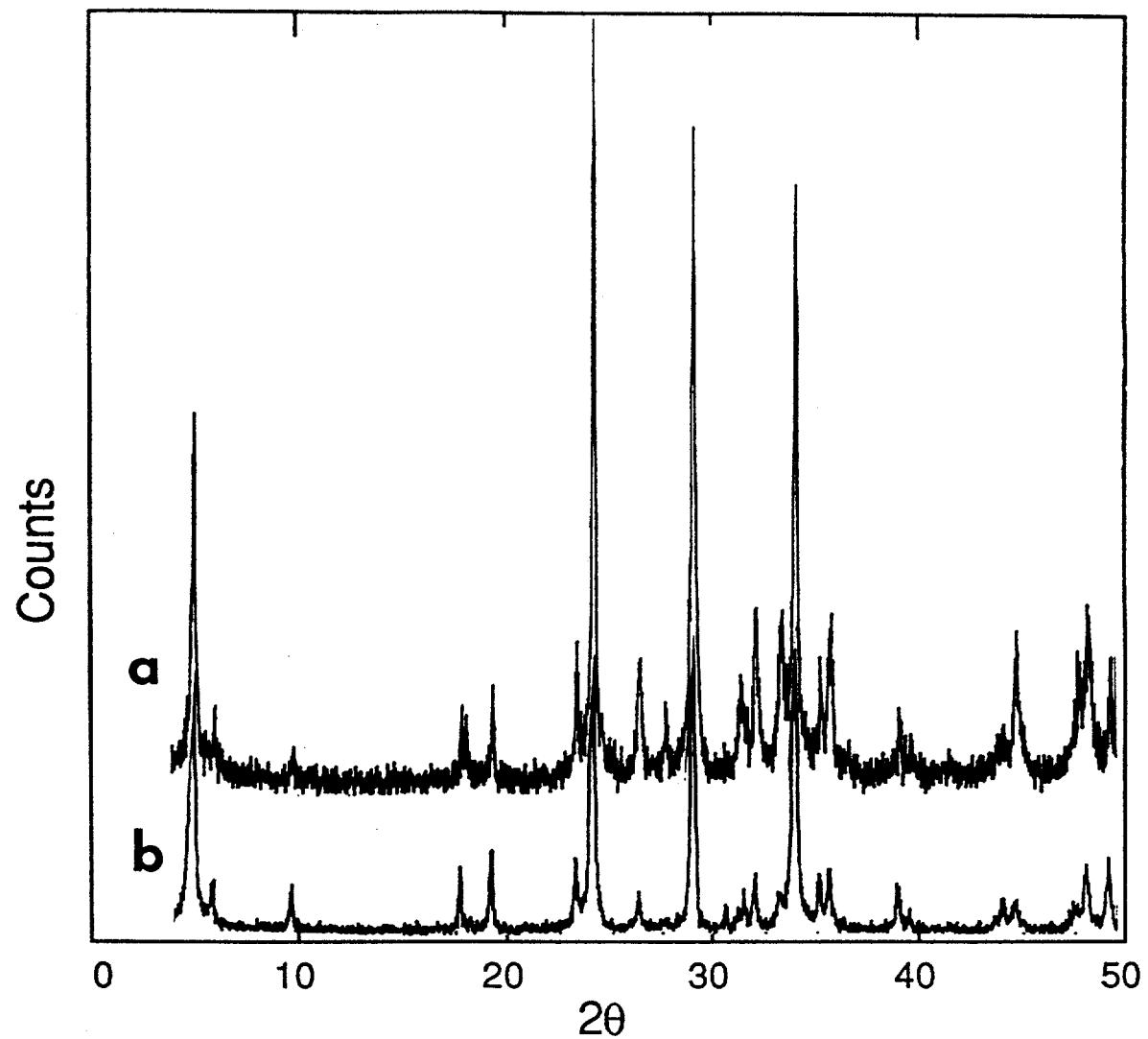
For each bar examined, the Ag was removed and a compression face was polished. X-ray 2 θ scans and rocking curves were obtained with a Phillips rotating anode diffractometer. The 0 0 10 peak at 24.0° was selected for the rocking-curve analysis. At least two measurements were made for each selected bar. Full width at half maximum (FWHM) was determined for each rocking curve.

Pole figures needed to generate the ODFs were obtained with a Siemens three-circle goniometer unit. The methods used have been described.^{15,16,19}

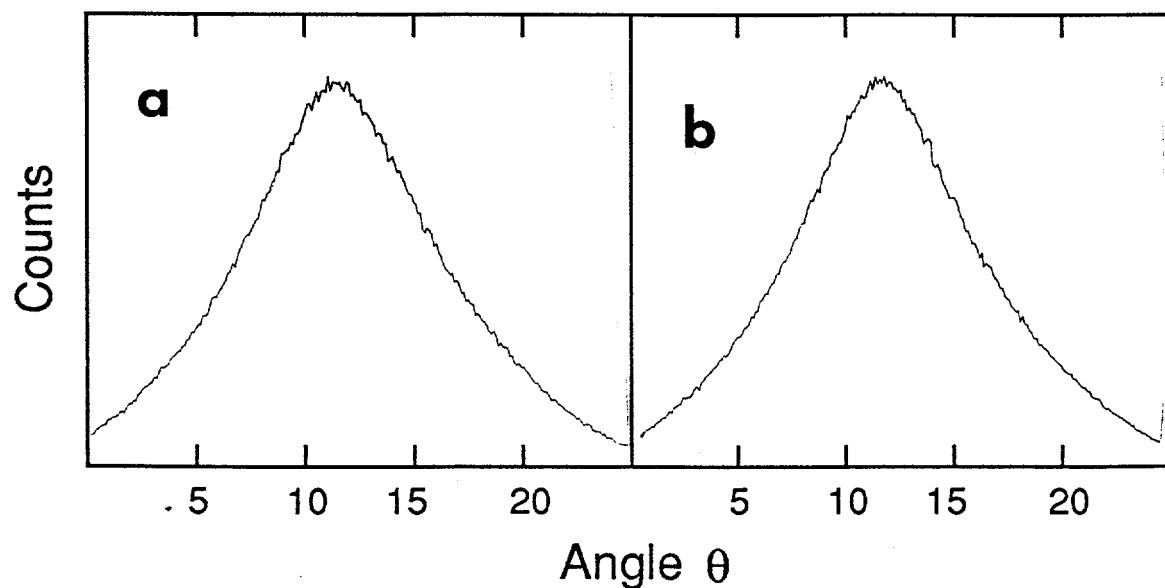
RESULTS AND DISCUSSION

Despite the excellent texture, density, and phase purity of the Bi-2212 bars, J_c values were very low. Even at 4.2 K, J_c did not exceed 1000 A/cm². It has been observed previously that the presence of a liquid phase during processing appears to be necessary to produce high transport J_c values in polycrystalline superconductors.^{16,20} The Bi-2212 bars were virtually phase pure, and thus very little or no liquid was present during sinter forging. The resultant transport properties were dominated by weak links. It is of interest that, although the J_c values of the Bi-2212 bars were very poor, the elastic properties were equal to those of single crystals.²⁰ Therefore, the weak links cannot be attributed to obvious defects such as cracks or second phases.

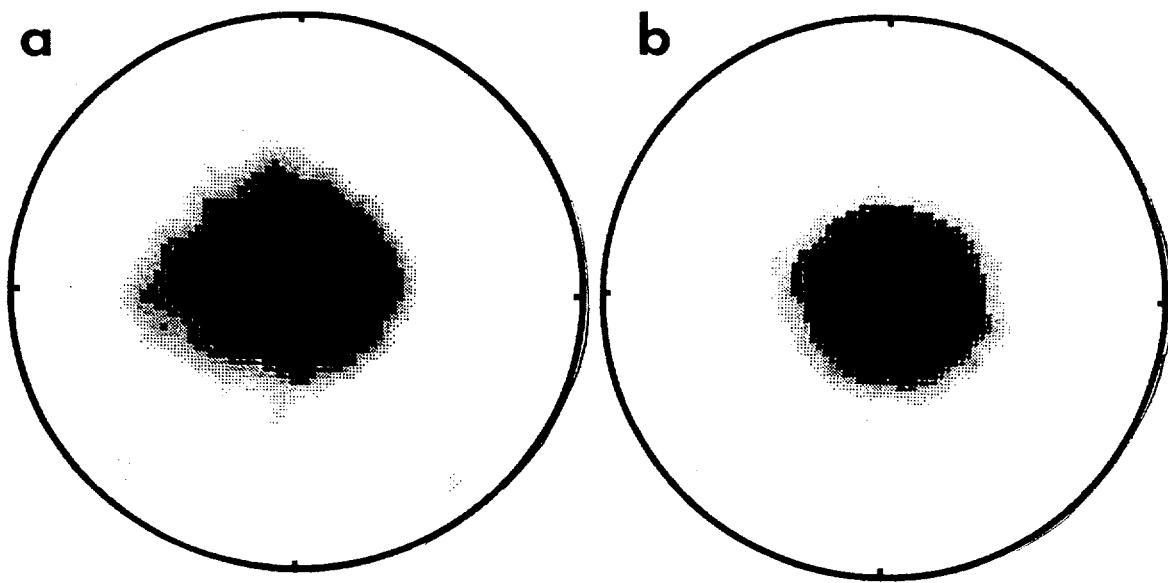
Because the Bi-2212 was weak linked, the Bi-2223 was used for relating texture to J_c . Although the Bi-2223 was less phase pure than the Bi-2212, reactions to form Bi-2223 occurred during the forging process, and liquid was present during the reactions.¹⁶ Transport J_c values at 77 K in self-field were found to be 2000–8000 A/cm².


Bi-2223 bars with J_c values of 3000 and 7600 A/cm² were selected for detailed texture analysis. Each had a microstructure similar to that shown in Fig. 1b. As shown in Fig. 2, both exhibited strong c-axis texture. There was little obvious difference between the two diffraction patterns.

Rocking curves of the 0 0 10 peak of the two bars were also similar. All FWHM values were 8.6–9.1° (Fig. 3). No clear trend was observed for J_c vs. FWHM.


Rocking-curve analysis has proved to be quite successful in comparing the quality of single crystals and thin films.²² For such materials, the c-axis texture is not merely strong, it is nearly perfect. It does not appear that rocking curves correlate equally well with properties of a bulk, polycrystalline superconductor.

Pole figures for the two Bi-2223 bars are shown in Fig. 4. These pole figures were used to generate ODFs for each bar (Fig. 5). It is clear that the higher J_c bar exhibited superior c-axis texture.


An ODF is a complete statistical description of the orientation of grains within a volume. Thus, in addition to information on texture normal to the plane, information on in-plane texture is incorporated. ODFs of high-

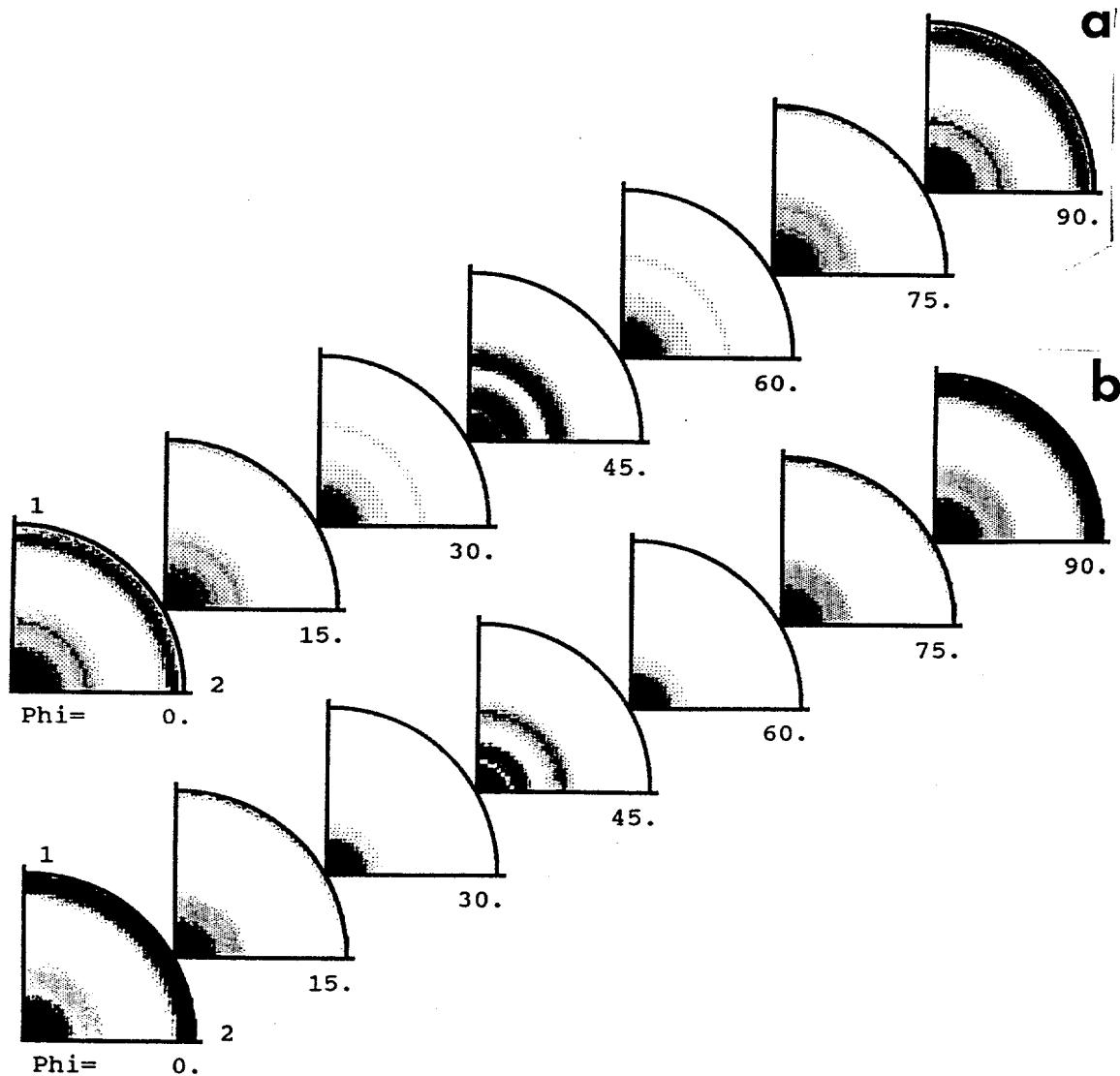

Figure 2. 2θ X-ray diffraction scans of Bi-2223 bar: (a) $J_c = 3000 \text{ A/cm}^2$, (b) $J_c = 7600 \text{ A/cm}^2$.

Figure 3. Rocking curves of $0\ 0\ 10$ peak of Bi-2223 bars: (a) $J_c = 3000 \text{ A/cm}^2$, (b) $J_c = 7600 \text{ A/cm}^2$.

Figure 4. X-ray (0 0 1) pole figures of Bi-2223 bars: (a) $J_c = 3000 \text{ A/cm}^2$, (b) $J_c = 7600 \text{ A/cm}^2$.

Figure 5. ODFs of Bi-2223 bars: (a) $J_c = 3000 \text{ A/cm}^2$, (b) $J_c = 7600 \text{ A/cm}^2$.

temperature superconductors have been obtained with X-rays^{12,15,19} and neutrons.^{19,23} In either case, large numbers of grains are sampled. Coupled with microstructural observations by electron microscopy, ODFs can be an effective tool in determining the quality of a bulk high-temperature superconductor. Transport J_c has been shown to correlate well with texture for Ag-clad tapes^{14,19} and, as shown here, monolithic Bi-2223 superconductors.

CONCLUSIONS

Bi-2212 and Bi-2223 superconductors were fabricated by sinter forging. The Bi-2212 bars were weak linked and exhibited low transport J_c . The Bi-2223 bars exhibited J_c values at 77 K of 2000–8000 A/cm². J_c for the Bi-2223 correlated strongly with texture as quantified by orientation distribution functions.

REFERENCES

1. R. Beyers and T. M. Shaw, The structure of $Y_1Ba_2Cu_3O_{7-\delta}$ and its derivatives, *Sol. State Phys.* 42:135 (1989).
2. S. Jin and J. E. Graebner, Processing and fabrication techniques for bulk high-T_c superconductors: a critical review, *Mater. Sci. Eng.* B7:243 (1991).
3. L. N. Bulaevskii, J. R. Clem, L. I. Glazman, and A. P. Malozemoff, Model of the low-temperature transport of Bi-based high-temperature superconducting tapes, *Phys. Rev. B* 45:2545 (1992).
4. J. O. Willis, J. Y. Coulter, E. J. Peterson, G. F. Chen, L. L. Daemen, L. N. Bulaevskii, M. P. Maley, G. N. Riley, W. L. Carter, S. E. Dorris, M. T. Lanagan, and B. C. Prorok, Dependence of the angular anisotropy of the critical current density on texture in silver-sheathed Bi-2223 tapes, *Adv. Cryo. Eng.* 40:9 (1994).
5. K. W. Lay and J. E. Tkaczyk, Critical current density of bulk, aligned Tl-1223 superconductor, *Appl. Supercond.* 2:677 (1994).
6. D. M. Kroeger and A. Goyal, Models for long-range current flow in bulk oxide superconductors, *J. Met.* 46[12]:14 (1994).
7. D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues, Orientation dependence of grain-boundary critical currents in $YBa_2Cu_3O_{7-\delta}$ bicrystals, *Phys. Rev. Lett.* 61:219 (1988).
8. Y. Zhu, M. Suenaga, and R. L. Sabatini, Misorientation angle distributions for large-angle grain boundaries in $Bi_2Sr_2CaCu_2O_8$ and $Bi_2Sr_2Ca_2Cu_3O_{10}$ composite tapes, *Appl. Phys. Lett.* 65:1832 (1994).
9. D. M. Kroeger, A. Goyal, E. D. Specht, Z. L. Wang, J. E. Tkaczyk, J. A. Sutliff, and J. A. DeLuca, Local texture and percolative paths for long-range conduction in high critical current density $TlBa_2Ca_2Cu_3O_{8+x}$ deposits, *Appl. Phys. Lett.* 64:106 (1994).
10. B. D. Cullity, *Elements of X-ray Diffraction*, Addison-Wesley, Reading, MA, 1978.
11. D. B. Knorr, H. Weiland, and J. A. Szpunar, Applying texture analysis to materials engineering problems, *J. Met.* 46[9]:32 (1994).
12. H.-R. Wenk and D. S. Phillips, Highly textured Bi-2223 aggregates produced by cold pressing of powders, *Physica C* 200:105 (1992).
13. J. S. Kallend, U. F. Kocks, A. D. Rollett, and H.-R. Wenk, Operational texture analysis, *Mater. Sci. Eng.* A132:1 (1991).

14. A. C. Biondo, J. S. Kallend, C.-T. Wu, W. L. Knapp, M. T. Lanagan, and K. C. Goretta, Texture analysis of critical current density in $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_x$ tapes, *Appl. Supercond.* 3:in press (1995).
15. C.-Y. Chu, J. L. Routbort, N. Chen, A. C. Biondo, D. S. Kupferman, and K. C. Goretta, Mechanical properties and texture of dense polycrystalline $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_x$, *Supercond. Sci. Technol.* 5:306 (1992).
16. N. Chen, A. C. Biondo, S. E. Dorris, K. C. Goretta, M. T. Lanagan, C. A. Youngdahl, and R. B. Poeppel, Sinter-forged $(\text{Bi},\text{Pb})_2\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_x$ superconductors, *Supercond. Sci. Technol.* 6:674 (1993).
17. K. C. Goretta, L. J. Martin, D. Singh, R. B. Poeppel, N. Chen, C.-Y. Chu, J. L. Routbort, and R. A. Gleixner, Mechanical properties of fiber-reinforced $\text{YBa}_2\text{Cu}_3\text{O}_x$ and $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_x$ bars, *Adv. Cryo. Eng.* 40:63 (1994).
18. F. A. Karbarz, O. D. Lacy, K. C. Goretta, U. Balachandran, D. Shi, J. G. Chen, M. Xu, and M. C. Hash, Synthesis of 85 K Bi-Sr-Ca-Cu-O superconductor, *Mater. Res. Bull.* 25:251 (1990).
19. A. C. Biondo, Texture analysis of high T_c superconductors, Ph.D. thesis, Illinois Institute of Technology, Chicago, Illinois (1992).
20. D. Shi, Transport critical currents and grain boundary weak links in bulk $\text{YBa}_2\text{Cu}_3\text{O}_x$, *Appl. Supercond.* 1:61 (1993).
21. Chang Fanggao, P. J. Ford, G. A. Saunders, Li Jiaquing, D. P. Almond, B. Chapman, M. Cankurtaran, R. B. Poeppel, and K. C. Goretta, Anisotropic elastic and non-linear acoustic properties of very dense textured $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_x$, *Supercond. Sci. Technol.* 6:484 (1993).
22. T. Minamikawa, T. Suzuki, K. Segawa, A. Morimoto, and T. Shimizu, Laser-irradiation induced a-axis orientation in c-axis oriented $\text{YBa}_2\text{Cu}_3\text{O}_x$ films prepared by pulsed laser ablation, *Jpn. J. Appl. Phys.* 33:L98 (1994).
23. A. C. Biondo, J. S. Kallend, A. J. Schultz, and K. C. Goretta, Texture analysis of bulk $\text{YBa}_2\text{Cu}_3\text{O}_x$ by neutron diffraction, in 2nd World Congress on Superconductivity, ed. C. G. Burnham, World Scientific, Singapore, 1992, p. 361.