

UCRL-JC-122573

PREPRINT

CONF-960421-11

Uranium Dioxide Dissolution Under Acidic Aqueous Conditions

S. A. Steward
E. T. Mones

RECEIVED
FEB 20 1996
O S T I

This paper was prepared for submittal to the
1996 International High Level Radioactive Waste Management Conference
Las Vegas, NV
April 29 - May 3, 1996

November 20, 1995

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

 Lawrence
Livermore
National
Laboratory

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

URANIUM DIOXIDE DISSOLUTION UNDER ACIDIC AQUEOUS CONDITIONS

S. A. Steward and E. T. Mones
Lawrence Livermore National Laboratory
P.O. Box 808, L-325
Livermore, California 94550
(510) 423-1767

I. INTRODUCTION

Understanding of the long-term dissolution of waste forms in groundwater is required for the safe disposal of high level nuclear waste in a geologic repository, because waste-form radionuclides could be released by dissolution and transported in groundwater. The dissolution of the uranium dioxide (UO_2) matrix in spent nuclear fuel is considered the rate-limiting step for release of radioactive fission products. The intrinsic UO_2 dissolution rate sets an upper limit on the aqueous radionuclide release rate.

Unsaturated spent fuel tests (1) have shown that pH's of leachates have decreased to a range of 4 to 6, presumably due to air radiolysis that oxidizes nitrogen, producing nitric acid. Dissolution rates under such acidic conditions may be different than those previously reported for alkaline groundwater conditions. No dissolution rate measurements of UO_2 or spent fuel have been reported for acidic conditions possibly relevant to a geologic repository.

The purpose of our work has been to measure the intrinsic dissolution rates of uranium dioxide under acidic conditions that are relevant to a repository and allow for modeling. Experiments have been completed at room-temperature and 75 °C, pH's of 4 and 6, and air and oxygen saturated aqueous solutions. These are compared with earlier work on spent fuel and UO_2 using alkaline solutions.(2)

II. DESCRIPTION

A planned set of 27 UO_2 dissolution experiments was developed using statistical experimental design methodology. These experiments would allow a systematic evaluation of the effects of temperature (25-75 °C), pH (4-6)

and dissolved oxygen (80-8000 ppb) concentrations on the uranium dissolution rate. The initial results reported here include dissolution rates for two UO_2 polycrystalline samples at 25 and 75 °C, and pH's 4 and 6, all at atmospheric oxygen conditions, 8 ppm dissolved oxygen.

The experiments use single-pass flowthrough conditions to prevent precipitation and other competing reactions from distorting dissolved uranium concentration measurements. The samples were from the same batch of polycrystalline UO_2 used in previous experiments.(2) Nitric acid was used to adjust pH.

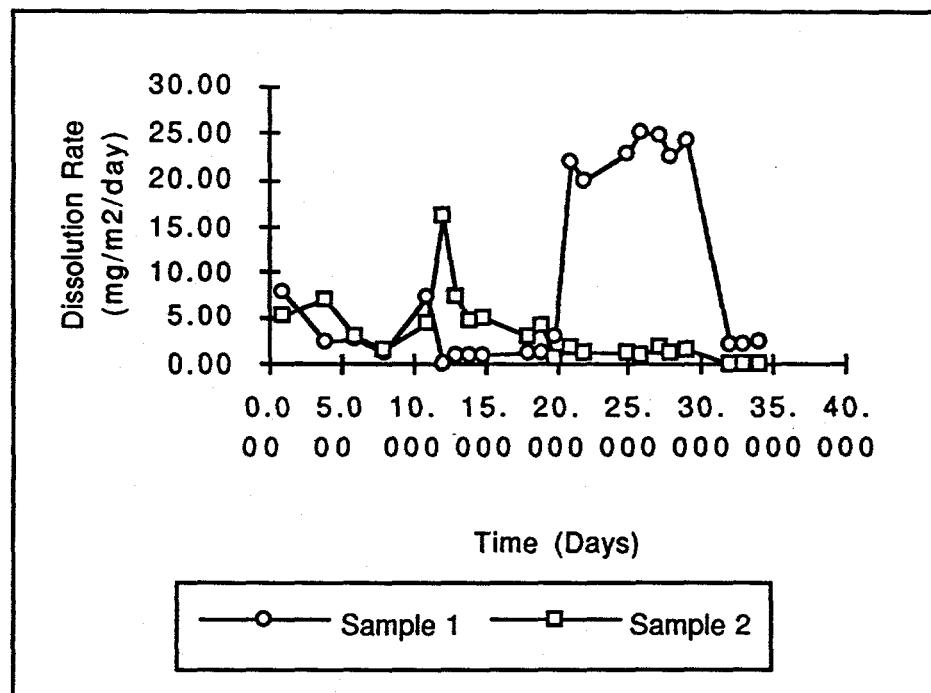
III. RESULTS AND CONCLUSIONS

Figure 1 shows a time history of the dissolution results. The sample 1 (S1) leaching solution was initially at a pH of 3.8 (4), while the sample 2 (S2) leaching solution initially had a pH of 5.9 (6). Both samples were initially at room temperature (~20 °C). The dissolution rates (DR) appear similar in the range of 2 to 6 mg/(m²·day). After day 11 the buffer solutions were switched. Sample 2, now at pH=4, initially increased its dissolution rate and sample 2, switched to pH=6, decreased. They both returned closer to their earlier value, although the ratio of dissolution rates [DR(pH=4)/DR(pH=6)] seems to have increased. After day 20 the leaching solutions were switched back to their original samples and the temperature increased to 75 °C. The dissolution rate of sample 1, again at pH=4, increased about ten-fold while sample 2 at pH=6 unexpectedly remained about the same. After four more sampling days the sparge gas was switched to air, with its small fraction of CO₂. This did not have any readily apparent affect on the dissolution rates. The samples were returned to room temperature after day 30. The

pH= 4 dissolution rate returned to near its original room-temperature value. The pH=6 sample rate dropped below its previous room-temperature amount to a barely detectable level.

Previously measured room-temperature UO₂ dissolution rates in alkaline, low-carbonate waters yield a uranium dissolution rate of 3.9 mg/(m²·day) at a leaching solution pH of 8 and 2.6 mg/(m²·day) at a pH of 10. For the pH ranges of 4 to 6 and 8 to 10, these early results indicate that there is no significant effect of acidity versus alkalinity on room-temperature UO₂ dissolution rates. The ten-fold effect on dissolution rate of increasing temperature of the pH=4 sample seems closer to the outcome from the high-carbonate alkaline conditions reported earlier.²

ACKNOWLEDGMENTS


Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48. This work was supported under activities D-20-53 of the Yucca Mountain Project Spent Fuel Waste Form Task (YMP

WBS element 1.2.2.4.1) and the AECL/USDOE Cooperative Project sponsored by the DOE Office of Civilian Radioactive Waste Management.

REFERENCES

1. P.A. Finn, J.K. Bates, J.C. Hoh, J.W. Emery, L.D. Hafenrichter, E.C. Buck, and M. Gong, "Elements Present in Leach Solutions from Unsaturated Spent Fuel Tests," Materials Research Society Fall Mtg, Nov. 29-Dec. 3, 1993, Boston MA, MRS Symp. Proc., Vol. 333, Scien. Basis for Nucl. Waste Mgmt XVII, pp. 399-407, A. Barkatt and R. A. Van Konynenburg [Eds.] (1994).
2. S. A. Steward and W. J. Gray, "Comparison of Uranium Dissolution Rates from Spent Fuel and Uranium Dioxide," Proc. 5th Annual Intl. High-Level Radio. Waste Mgmt. Conf., Las Vegas, Nevada, May 22-26, 1994, Vol. 4, pp. 2602-8, [Lawrence Livermore National Laboratory Report UCRL-JC-115355 (February 1994)].

Figure 1. Acidic Dissolution Rates of Uranium Dioxide

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U.S. Department of Energy and the AECL/USDOE Cooperative Project by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.