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Disclaimer:

“This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any

agency thereof.”



Summary:

This project provides a neural network-based interaction force model for gas-solid flows
from low to intermediate Reynolds numbers and concentration, which can be linked to MFiX-
DEM. We have constructed a database of the interaction force between the irregular-shaped
particles using a spherical harmonic method and the fluid phase based on the particle-resolved
direct numerical simulation (PR-DNS) with immersed boundary-based gas kinetic scheme.
Unsupervised learning method, i.e., variational auto-encoder (VAE) has been applied to extract
the primitive shape factors determining the drag force, lifting forces, and torque. The interaction
force model has been trained and validated with a simple but effective multi-layer feed-forward
neural network: multi-layer perceptron (MLP), which will be concatenated after the encoder of the
previously trained VAE for geometry feature extraction for single, irregular particles. We have
trained transpose convolutional neural networks with the PR-DNS data to predict the velocity and
pressure gradient of the single particle systems and utilized them to calculate drag force of multi-
particle systems. This model can provide high computational efficiency because it does not require

collecting multiparticle system data from PR-DNS.

Project Schedule

Tasks [ Yearl | Year2 | Year3 |
Start Data |[EndData [QL Q2 |Q3 [Q4 [QL [Q2 |Q3 [Q4 QL Q2 |Q3 [Q4
1[Project M: and Planning 8/1/2020[8/1/2023
2[Developing Code for Non-spherical Particles. 8/1/2020 [2/1/2021
2.1|{Coupling the non-spherical particle-particle collision module, 8/1/2020 [11/1/2020
22| Efficiency improvement of the code. 11712020 [2/1/2021
A Code and v tion for herical particles 2/112021
Decision Point 1: Validation of highly efficient simulation for gas-particle systems with non-spherical particles 2112021
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Decision Point 2. Validation of MLP Archi for i ion force model in low Reynolds number 8/1/2022
6.2|Training, Validation and Optimization of MLP. 212023 [8/1/2023
6.3|Linking of the model to MFiX and Final Reporting. 5/1/2023 [8/1/2023
AMilestone F: Training and verification of interaction force model and Likning to MFiX 8/1/2023




Task 2 Developing Code for Non-spherical Particles.

Subtask 2.1. Coupling the non-spherical particle-particle collision module.

The module to simulate the non-spherical particles is now integrated into the developed code. The
collision module of non-spherical particles will be implemented in the further development of the
project since we found this is not an essential part of the machine learning training process. Instead
of simulating a fully fluidized bed with non-spherical particles to generate the required data for the
drag and lifting force, we proposed to separate the model development into two independent steps.
Firstly, the fluid flow prediction and interaction force prediction model for a single non-spherical
particle in an infinite domain will be developed based on the un-supervised auto-encoder based
machine learning method. Secondly, the force model which could consider the neighboring effect
and Stokes number effect will be developed based on superposition, e.g., the linear Pair-wise
interaction force model. Through such two progressive steps, the training process and data
generation are greatly simplified, and we can be firstly focused on the force model for single non-

spherical particles.

Subtask 2.2. Efficiency improvement of the code.

The original in-house IB-LBM code can only handle the 3-D structured grids. However, for a
single-particle simulation, gradients of the flow field mainly concentrate around the near
boundaries. Adaptive mesh refinement technique can greatly reduce the computational grid
number and improve the efficiency of the simulation code. Thus, an adaptive mesh refinement
(AMR) based immersed boundary (IB) framework was first developed. Considering the robustness,
instead of the lattice-Boltzmann method, a finite volume method with gas-kinetic flux solver is
coupled into the AMR framework. The efficiency of the developed method is evaluated through

benchmark tests.

2.2.1 Theory of the Gas-kinetic scheme.

Boltzmann equation for the molecules is the starting point of the incompressible solver for our
project. The Bhatnagar—Gross—Krook (BGK) collision model is the most widely used one

described as follows:



T

where f is the gas distribution function and g is the equilibrium state approached by f through

particle collisions within a collision time scale 7. g? is the particle velocity in the phase space. The
mass and momentum conservation law could be obtained by multiplying Eq. (2-1) with ¢ =

{1,&,,&,, &} on both sides and integrating over the velocity space, i.e.,
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where U = {p, puy, puy, pus}, and F is the corresponding flux F = [ 3 f dé.

Different from the LBM method, in the gas-kinetic scheme, macroscopic variables U are stored
and evolved along time. The flux of computational grids can be obtained by firstly reconstructing
the distribution function through Champman-Enskog expansion near cell interfaces and then

integrating over the velocity space.

2.2.2 Gas kinetic scheme based on continuous or discrete velocity space.

Instead of considering the Maxwellian distribution function for the gas phase, in this work, a
simplified sphere function-based model which is continuous in velocity space and a D3Q15 lattice
model which is discrete in velocity space are considered to construct the flux solver of the

incompressible flow.
Sphere function-based gas kinetic scheme

Firstly, a simplified sphere function-based model proposed by Yang [Phys. Fluids 29, 083605

(2017)] is considered. The equilibrium distribution function can be expressed by

g={um VLT =c G

0 elsewise

and the integration over velocity space can be simplified by integration over the surface of the

space, i.e.,

[ ()dé = f f sin(y) ()dpdo,
0 0

with {&;, &,, €5} redefined by



{&1,6,,&3} ={u, + csinycos,u, + csinysinf,u; + c cosP}. (4)

In addition, through Chapman-Enskog analysis, the relationship between the kinematic viscosity

and collision time scale can be expressed as:
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Given the distribution of macroscopic variables at t", the initial equilibrium gas distribution

function can be expressed as:
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assuming that the cell interface is defined at x = 0.

At time t™ + §t, gas distribution function at cell interface can be expressed by

Z o 0.t" 4+ 8t = dg -
f(Ex=0t"+6t)=(g—7 E+§-Vg I(E,x:O,t“+6t)’
which can be further approximated by:

f(&x =0,t" + 6t) = g(&0,t" + 6t) —é(g(i—f&, t") — g(&,0,t" + 6t)). (5)

Eq. (5) can be further simplified into Eq. (6) with the simplified sphere function-based distribution

function, considering that the macroscopic velocities u <« ¢ in incompressible regime,

f@,0,x =0,t" +6t) = g(1h,6,0,t™ + 5¢)
_%(9(‘/" 0,—£6t,t™) — g(1,6,0,t™ + 51)). (6)

Further, in Eq. (6), g(¥, 8,0,t™ + §t) can be obtained through the compatibility condition, i.e.,

[ g@,0,0,t" + 8t) sin(y) dypdo

= ﬁ g“(, 6, —E5t, t") sin(y) dipdo
&n>0

+ﬁ gR(,0,—&8t,t™) sin(yh) dpdo.
&n<o



Then the flux at cell interface F = ) g? f dg? = [ 02n ) On sin(y) (5 f )dl/}d@ can be obtained eventually.

The detailed form of F can be found in the reference work by Yang [Phys. Fluids 29, 083605

Ax
(2017)] and the parameter 6t = 0.4 e
Discrete velocity-based gas-kinetic scheme.

The simplification from Eq. (5) to Eq. (6) means that, at low Mach number region, the following

terms:
{ul + csinypcosB,ub + csinysinf,ul + c cosy}
{ull + csinyp cosO,ull + csinysin,ul’ + c cosy}

are treated as the same in the velocity space where the superscript I and II denotes macroscopic
variables at different spatial locations even though the direction of them are slightly different. As
will be shown later in the benchmark test, such simplification leads to a smaller stable CFL number
which is only 0.5 for a single step scheme. As an alternative approach, the discrete velocity-based
scheme, i.e., the lattice Boltzmann flux solver, avoids such an incompatibility and greatly improves

the upper limit of the stable CFL number.

The velocity space is first discretized by the Taylor expansion near zero-velocity. In this project,

the D3Q15 model is adopted. The discrete velocities can be expressed as:

)

0 a=20
8, = {(il,0,0)c, (0,+1,0)c, (0,0, +1)c, a=1,---6 (7)
(+1,+1,+1)c a=714

and the equilibrium density distribution is

~ 1+5ia+1 gu\’ u-u ®
gi = pi c2 2\ c? 2cz )’
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where the weights are expressed as wg = 5 Wi = 5, W7-14 = > and ¢, =

Then the integration over the velocity space can be replaced by the summation over discrete

velocities, e.g.,
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The construction of the flux is the same as in Eq. (5), i.e.,

£0,t" + 6t) = g;(0, t" + 5t) — é(gi(—é}&, t") — g (0, ¢" + 6¢)). 9

Figure 1. [llustration of the D3Q15 discrete velocity model.

At time t™, the distribution of the macroscopic variables can be firstly obtained through

reconstruction. g;(—¢;68t, t™) is calculated according to the direction of e;, i.e.,

gLk(—8é,ot,t") if eq1>0
R(_23 n ;
Ju(—8,0t,tm) = | 9a(=eBLED,  if a1 <0 (10)

\5 (9 +90)(©0,t") if eqy =0



At time t™ + §t, the conserved variables at the cell interface are obtained through compatibility

equations, i.e.,
14
U= gi(-2.0ttM9, (11)
i=0

with U = {p, puy, pup, pus} and ¢ = {1,&;,&,,&53".

Then f;(0,t™ + t) can be obtained through Eq. (9), and the flux can be further derived. To have
a second order of accuracy in a single time step, when then time is At, 6t = % in Eq. (9).
Benchmark tests of Taylor-Green vortex.

The efficiency and stability of the two schemes are studied and compared through a Re = 300
Taylor-Green vortex tests. The computational domain is a 3-D periodic domain with length L. The

initial condition is:

. 2mx\ . (2my\ . (27mz
u, (X, t = 0) = ugycos <—) sin <—) sin (—) ,

L L L
Gt=0)= ) (an) (Zny) ) <27TZ)
U, (x,t =0) = —uy,sin I cos L sin )

Reynolds number is defined as

Defining the reference time as

L

t= :
21U,

. . . o « kK . . . « L.
the evolution of the dimensionless kinetic energy k™ = . along dimensionless time t* = 718
0

shown in Fig. 2. The maximum stable CFL number for both schemes and the computational time
consumptions for a single step are all listed in Tab. 1 and 2. As shown, the dissipation of the
continuous velocity-based flux is smaller than the discrete velocity-based scheme. However, for
the discrete velocity-based gas-kinetic scheme, a stable single step scheme can be obtained even

with CFL number to be 1. On the other hand, the continuous velocity-based gas-kinetic scheme,



i.e., the scheme based on the spherical distribution function, a stable single step scheme can be
obtained only with a maximum CFL number to be 0.5. The computational consumptions in a single
step for the continuous velocity-based flux solver is smaller than the discrete velocity-based solver
because for the continuous velocity-based scheme, we do not need to calculate the discrete velocity
distribution one by one. However, if a larger CFL number, i.e., CFL >= 0.73 is adopted, the
efficiency of the discrete velocity-based scheme is higher than the continuous model. Thus, to
improve the efficiency for our later simulation, the discrete velocity-based gas kinetic scheme is

chosen in this project.
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Figure 2. Comparison of the evolution curves between the spherical function-based gas kinetic

scheme (SGKS) and the discrete velocity-based gas kinetic scheme (LBFS) under CFL = 0.5.

Table 1. Comparison of the simulation time [s] between different schemes for a single step.

LBM SGKS LBFS CLBFS
N=64 0.095 0.095 0.134 0.147
N=128 0.696 0.706 1.03 1.1
N=203 2.67 2.72 4.07 4.29




Table2. Maximum stable CFL number for different scheme.

SGKS LBFS CLBFS
CFLnax 0.5 1.0 0.5

2.2.3 Implementation of Adaptive mesh refinement (AMR).

Several AMR techniques exist in the literature, e.g., the patch-based AMR technique, the cell-
based AMR technique. in this project, the fine-grained cell-based AMR library, i.e., the p4est is
used for the underline grid management. The p4est is based on octree data structure, where each
node can be divided into eight children and the cells are encoded in an unstructured way. The AMR
process of p4est can be separated into four steps. Firstly, a refinement indicator is calculated in
each cell. Secondly, based on the indicator, the cells will be merged together if all children are
tagged as to be coarsened. Thirdly, if a cell is tagged to be refined, it will be divided into eight
children’s cells and the physical variables will be mapped into these children cells. Fourthly, a

balance procedure will be done to ensure the maximum 2:1 level ratio between neighboring cells.
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Figure 3. Illustration of the AMR process.



2.2.4 Reconstruction matrix free method coupling with the AMR technique.

When on the structured Cartesian grids, the gradient reconstruction is quite simple, like,
Wy = (W1 — Wisq)/(28%). (12)

However, when coupling with adapted unstructured grids like in Fig. 3, special care should be
taken for the reconstruction procedure. Different strategies exist for the reconstruction procedure.

Take Cell 13 in Fig. 3(d) as an example.

In the first approach, virtual children’s cells are generated in Cell 6 firstly. After that, the
reconstruction in Cell 13 can be implemented like in the structured grids. However, this requires
generation and management of virtual grids between different layers, which could be quite
cumbersome when coding. In the second approach, instead of Eq. (12), a least squares problem is

solved for each cell, i.c.,
a = argmin(Ma — b)?,

where a = {W}C‘, Wy, WZ‘} are gradients to be determined for Cell i; M is a matrix of dimension

1 1 1
nx3 and M= V—jfcv]_(x —x)dV; , Mj; = V—jfwj(y —y)dV; and M;; = V—]f (z —

CUj
z;)dV;,j =1,2,---n and n is the number of face neighboring cells for Cell i; b is a vector of
dimensionn X 1 and b; = W; — W;. However, for this approach, the least squares reconstruction
matrix, and a list of reconstruction stencils should be managed, which could also be very memory

consuming and cumbersome in coding especially when the mesh is dynamically refined and

coarsened.

Thus, in this project, a novel finite volume method is proposed which can be applied in the
cartesian based AMR framework while eliminating the management of virtual grids or least-
squares reconstruction matrices. The method is based on the second order time stepping properties

of the discrete velocity-based gas-kinetic scheme.

In addition to the cell averaged physical variables defined for each cell like in the traditional FV

method, 6 point-values defined at the geometrical center of each face are introduced for each face.



Take the 2-D cases as an example in Fig. 4, 0 is the cell center; 1-4 are points where the point

values are defined. Meanwhile, 1-4 are also the flux points for the second-order scheme.

e ] o() D e

Figure 4. Illustration of the reconstruction matrix free FV method.

The updating steps are listed as:
1. Obtaining the cell averaged gradients using Gaussian theorem, i.e.,

JWEav = ¢ Wn,dS, [ WfdV =7§ Wn,dS, [ WfdV = ¢ Wn,dS.
ov v av

2. For the flux calculation of the left edge in Fig. 4, the conserved variables defined at point

1 are directly used. The gradients are calculated by

_ 2(Wo — Wy)
x Ax ’

W, = Wy,

W, = Wf.

For the flux calculation of the bottom edge, the conserved variables defined at point 3 are

directly used. The gradients are calculated by

W, = Wy,
_2(Wo = Ws)

y Ay ’
W, = Wy

The same approach is applied for the right and upper edges.

3. Updating the cell averaged value by



t
W(;1+1 = WJ" __(Fi+l el F

.+F . 1—F 1).
> j

.1 . ‘s
I_E' 1] +E l']_i

Wil = 2w — Wik = 1,2,3,4.

where W) are the conserved values obtained with Eq. (11) by setting 6t = %, which is second

order of accuracy in time.

Such a scheme is stable under the maximum CFL number of 0.5, which corresponds to CFL = 1
considering the sub-cell resolution, i.e., the point values at each cell interface when combined with

the discrete velocity-based gas-kinetic scheme.

The benchmark result of Taylor-Green vortex is shown in Fig. 5. and the computational time are
also listed in Table. 1 in the last column. When compared with the traditional FV scheme, the
proposed scheme is a little more dissipative with the same number of cell numbers while

maintaining the same computational time for a single step.
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Figure 5. Comparison of the Taylor-Green Vortex result between the LBFS of traditional finite
volume method and the proposed scheme, i.e., compact LBFS (CLBFS).



2.2.5 Coupling the immersed boundary method into the AMR framework.

The direct forcing based immersed boundary method is coupled with the proposed FV scheme and
the AMR framework. To keep the simplicity of the scheme, a finest grid level is ensured around

the Lagrangian marker.

In the proposed scheme, the inner degrees of freedom can be utilized in the immersed boundary

method.

Firstly, for cells that will be used as the stencil of surface Lagrangian points, physical variables are
firstly interpolated to eight children’s cells, which is shown as the cells separated by dashed lines
in Fig. 6. Then interpolate back and forth the physical variables from the children’s cells to the
Lagrangian points and correct the velocities in the children’s cells. Eventually, interpolated back
the cell averaged cells and face variables from the eight children’s cells. The directly forcing
scheme is the same as the work proposed by Uhlmann [J. Comput. Phys. 209, 448 (2005)] and will

not be further reviewed in this report.

Figure 6. Illustration of the proposed immersed boundary method.



Figure 7. Illustration of the AMR result. Contours are the velocity magnitude.

Fig. 7 shows the result of flows around a spherical particle when the Reynolds number is 0.2. The
developed AMR framework can capture the gradients of the flow around particles. The ratio
between the cell number with and without AMR technique is approximately 1:22.4, which means

that the computational efficiency is greatly improved through the AMR technique.

2.2.6 Efficiency Verification

Table 3 lists the computational consumptions for a single particle with computational domain
being 20 diameters with the AMR technique based on the SGKS method. The non-spherical
particle with the spherical descriptor, 0.5, is used. The Re is 10 and the CFL number is 0.2. The
total time steps used here is 5,000. The required time steps should be large enough to achieve the

steady state. The steps depend on the particle resolution and the Reynolds number.

Table 3. Computation time for the different particle resolutions.

Particle Resolutions (D/dx) | Computation time (min/CPU)
6 55.7
9 85.6
12 131.3




Task 3 Geometric Database for Non-spherical particles

In this Task, collecting 3-D shapes of non-spherical particles was finished. The spherical harmonic

method was used to represent the irregular surface shape of the particles.

Subtask 3.1 — Collecting 3-D Shapes of Particles

Non-spherical particles to be used in the neural network model and the numerical simulation are
created using the spherical harmonic method. A variety of non-spherical particles can be generated
by using the super-ellipsoid equation, but it is difficult to describe the non-smooth surface shape
of particles. However, by using the spherical harmonic method, the shape, roundness, and

compactness of the particles can be described in various ways with few parameters.

Spherical harmonic functions(Y) are composed of functions that are orthogonal to each other on a
spherical surface, and the real values of some functions are shown in the table below. In the table
below, the jet scale represents the real value of the Y. / and m denote the degree and order of the
spherical harmonic function (Y). As the / value increases, a more localized surface shape is

expressed. In this task, the maximum value (/) of / is set to 8.

Table 4. Real value distribution for some spherical harmonic functions.

I/m 0/0 1/0 2/0 3/1 3/3
Real Y values - , o
on the sphere . ' . ‘ ’
surface . ; / ‘

As can be seen from the table above, each of the Y values has a distribution that is orthogonal to
each other on a spherical surface, and various non-spherical surfaces can be described by adding
them with appropriate weights. Here, we used three parameters, elongation index (E7), flatness
index (F1) and spherical descriptor (d). The d value ranges from O to 1, and the closer it is to 1, the

higher the degree is weighted, which results in a rougher surface particle. The basic coordinates to



be converted by the spherical harmonic function are obtained by dividing the faces based on an
icosahedron. The more the faces are divided, the more points are obtained, and it will be checked

in the future by simulation how many points are needed.

Even if the same d value is used, particles of the exact same shape cannot be obtained because
random numbers are used when calculating the spherical harmonic coefficients. The volume of the
particle, the center and area of each face are calculated using the “Trimesh” library. The center
points are the Lagrangian points, and the face area will be considered for IBM force density
calculation. In addition, voxel data is obtained, and it is used for getting the inertia and primary

axes of the particle.

Subtask 3.2 — Generation of Diverse Non-spherical Shapes

In this Subtask, d values (0.0 ~ 0.5), EIs (0.5 ~ 1.0) and aspect ratios (1.0 ~2.0) of non-spherical
particles were randomly chosen, and FIs were calculated from Els and aspect ratios. In addition,
the rotation matrix was used to orientate the particle and the Euler angles, a, £ and y, were randomly
chosen. The orientation can be included in the latent space by using the rotation matrix. This
strategy is beneficial in terms of reducing the number of DNS datasets because the rotational angles

do not need to be included in the DNS sensitivity analysis.

If the particle rotation is included in the latent space, a new latent vector needs to be updated at
every time step in CFD-DEM application. If the surface coordinates are used for the particles, it is
required to convert them into 48° voxels. By testing through 17-7700 3.6 GHz CPU, it took about
10 to 30 seconds depending on the £/ and FT indexes used. This can be heavy for simulation with
many particles. Therefore, it would be better to use voxels instead of the surface coordinates for

the particles in the DEM calculation.

The VAE model developed was used to get the latent vectors to represent the shapes of the particle.
By using 1,200 datasets for the training and 400 validation datasets, the reconstruction error has

been reduced to 0.9%.
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Figure 8. Reconstruction error for the decoded particles of train and validation data.

Fig. 9 shows the validation error according to the number of training datasets. The error converged

when the number of datasets is in between 1,200 and 2,000.
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Figure 9. Validation error according to the number of datasets.



By using the trained VAE model from the 1,200 training datasets, the particles from the validation
datasets can be reproduced as follows. The VAE model represents orientation, elongation, and

flatness well. However, the roughness tended to be smoothened.
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Figure 10. Input and output voxel data of validation datasets.

Subtask 3.3 — Generation of Lagrangian Markers

Lagrangian points with the tri-faces areas and volume were generated in the configuration file form
for the DNS calculation. We collected the database for the 2,000 particles based on the method
explained in the previous section. 1,200 particles were sufficient to train the VAE model, but we

generated more particles to assign different Re numbers to the different shapes.

Task 4 Data collection by PR-DNS Method

Subtask 4.1 — Simulation in Low-Reynolds Numbers

The AMR method was used to reduce the computation cost with the IGKS method. The calculation
speed is faster by using GPU, but it is more economical not to use GPU because of the much higher
cost of the OSC GPU node. Furthermore, the LBFS was stable for Taylor-Green vortex experiment,
but it turned out unstable for low Re flows. It will be studied further to be optimized in the future,

but for the low Re flow, the IGKS was used because it is sufficiently fast to collect the. In the later



part of this Subtask, convergences according to the grid resolution were studied for a spherical

particle.

4.1.1. AMR method and computation conditions

To use the AMR method, the following equations were used to quantify the degree of refinement.

de dxl-

1(dy; du 1(/dy; duy; Y Y, Bij?
) l]_ ) w

Joo2\dx;  dx 2 ZiZin]-2+2iZ]-BU2

o value in the above equation decreases to zero as the flow field becomes uniform. The mesh will
move to the higher level and be divided into 8§ cells when the cell has higher w than the threshold.
We set the threshold as 0.04 and the highest and lowest levels are 4 and 0.

The length of the entire domain is 20D(diameter) and the far field boundary condition with the
dimensionless velocity, 1, in x direction is used. The Re numbers ranged between 0.1 and 10 by
changing viscosity. The CFL number and Mach number are 0.1 and 0.15, respectively. 1280
Lagrangian points are used with the corresponding face areas and the retraction lengths is 0.1665

to consider the length of the sub-cells.

The following modified convergence limit is used to determine the ending point of the calculation.

Zcells Zsubcells nyz(un+1 _un)z 5tref
Zcells Zsubcells nyz(un+1)2 ot

residual =

u is the macroscopic velocity and ¢ in the equation is dimensionless time scaled by the reference
length over the reference velocity. We decided to use ¢ to consider the time span difference
according to the Re numbers and the resolutions. The simulation was conducted without the AMR

until the residual approached 2x10°¢ and used AMR until to the residual, 1x10.



4.1.2. Convergence Studies for spherical particles

Before collecting the flow field database, we needed to confirm the particle resolution. Therefore,
drag coefficients for Re =1 and 10 were calculated according to the various grid resolutions (D/dx
= 3 ~ 20). The drag coefficients (Cp) were obtained through the equation below. F;. and A4V

indicate the force in x direction and volume of the Lagrangian point, respectively.

. = — 2 Fi AV,
D™ 0.5mpv24

By applying the Richardson extrapolation method using the coefficients at D/dx = 6, 12 and 20,
the following error plots were obtained. D/dx = 4 and 6 make the error below 2% for Re =1 and
10. Due to sub-cell points, low error can be obtained with relatively low grid resolutions. However,

if a particle is not spherical, elongated and or flattened, higher resolution may be required.
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Figure 11. Errors of the drag force coefficients of the spherical particle according to the grid
resolutions at Re =1 and 10.

The drag force coefficients for the some Re numbers below 10 were obtained using the D/dx as 6
as shown below. The coefficients (CD_DNS) are close to the reference values (CD_ref) [Kaskas,
Doctoral dissertation, 1970].

24 4
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Figure 12. Drag coefficients for low Re numbers.

4.1.3. Convergence study of non-spherical particles.

For non-spherical particles, lifting force and torque should be calculated with the drag force. The
coefficients of lifting force and torque were calculated by the equation below. The y and z
components of the force coefficients vector (Cy) are the lifting force coefficients, and the x
component is the drag force coefficient. D., is the equivalent spherical diameter. For this
convergence study, we used the absolute value of the force and torque coefficients vectors, but the
components will be used as the target outputs for the MLP study in the future.

— 21 F AV, — T X FAV,
¢ = 2 F1AV C, = 2 1AV

s Deg..,’ s D

7PV (5 7PV

We have found the grid resolutions required for low Re region based on the drag force. However,
when the particle is elongated or flattened, the required grid resolution can be increased. To figure
out this, a randomly oriented particle having the aspect ratio 2 was generated and the convergence
study was conducted considering drag force, lifting force and torque. The length of the entire

domain is 20D., and the other conditions remained the same as the previous studies. Fig. 13 shows



the Lagrangian points of the particle and the velocity magnitude on the center x-z plan with D/dx

=12 at Re =10.
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Figure 13. (a) Lagrangian points of the particle having d = 0.5 and AR =2 and (b) the velocity
magnitude of the flow at Re = 10 with D/dx = 12.

We applied the Richardson extrapolation method using the datasets at D/dt = 6, 12 and 20. D is
the longest length of principal axis before the spherical harmonic transformation above order of 1.
Fig. 14 indicates the errors of the force coefficients. Like the spherical particle, the errors of the
force reduced exponentially according to the grid resolution. When D/dx = 6 was used, the error
of forces was higher than the error of the spherical particle’s case. For future data collection, the
grid resolution will be multiplied by the aspect ratio so that the resolution can be based on the

shortest dimension of the particle and the error can be below 3%.
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Figure 14. Errors of the force coefficients of the non-spherical particle having d = 0 and 0.5 and
AR =1 and 2 according to the grid resolutions at Re = 10.

4.1.4. Data collection from a low to moderate Re numbers

The grid resolution of the PR-DNS varies from 6 to 12 according to the aspect ratios of spherical
harmonic particles. We collected 5,200 DNS datasets with the random Re number between 0.1 and
10. The shape and rotation angle of the particles are random and different from the particles used
in VAE calculation. Therefore, when we develop the ANN model, the calculated latent vector will
not be in the training datasets of VAE. The number of the datasets was decided based on the error

of the ANN model which will be described at the end of the section.

Fig. 15 shows the drag force coefficients according to the Re numbers. The color bar indicates the
d values of the particles. The overall trend (a) follows the typical drag force — Re number
correlation. When we see the coefficients in detail (b), there is about 20% variation between data
points which are caused by the particle shapes and orientation. The particles with higher d values
tend to have higher drag force which makes sense because the rougher surface will make higher

resistance against the flow.
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Figure 15. Drag force coefficients according to Re numbers.
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Figure 16. Lifting force and torque coefficients according to Re numbers.

Fig. 16 indicates the lifting force (C;) and torque coefficients (C;) from the PR-DNS calculation
according to the Re numbers. The lifting force coefficient is the magnitude of the y and z
components of force coefficient vector, and the torque coefficient is the magnitude of the torque
coefficient vector. Unlike the drag force, lifting force coefficients are proportional to the aspect

ratio (AR) and the variations are from the orientation. On the other hand, the torque coefficient is



affected by the d values, and this is because the magnitude of the drag force is larger than the lifting

force and it affects to the outer product calculation for the torque coefficient.

4.1.5. The ANN (MLP) model development

As we explained earlier, the ANN calculation was conducted to correlate the particle and flow
condition with the force and torque coefficient. By doing that, we found the number of datasets we
need to develop the ANN model. The ANN model development was planned to be done in Task 6
but we conducted in advance to figure out the number of the datasets we needed. In Task 6, we
will evaluate the ANN model with the high Re number datasets and develop a new model which

can predict the interaction force for multiple particles system.

The ANN model includes two hidden layers with the dimensions of 32, 8. The input has the
dimensions of 129 which contains the Re number and the latent vector of the non-spherical
particles. The latent vector has the dimension of 128 and was calculated through the encoder of
the trained VAE model. The hidden layers use the exponential linear units for the activation and
the output layer uses the linear function for the regression. The output has the dimension of 6
including all direction components for the force and torque. We used the Adam optimizer and the

mean square error (MSE) for the loss function.

We changed the number of the training datasets from 1,000 to 4,000 to check the loss according
to the size of the datasets. 1,200 datasets were used for the validation and evaluation datasets. The
validation datasets have been used to determine the parameter showing the minimum MSE. Note
that loss of the lifting force and torque coefficient are the average values of the components. As
the training proceeded, the validation losses were reduced, and overfitting was not observed. As
we used the larger datasets, the minimum loss tended to be lower, and 4,000 datasets shows the
converged minimum values. When the spherical particle is assumed, the lifting force and torque
are zero if the fluid flows symmetrically. The dashed line in Fig. 17 indicates the MSE when we

assume there is no lifting force and torque.
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Figure 17. MSE of the validation datasets for the drag force, lifting force and torque coefficients
according to the training steps and the number of the training datasets.

4.1.6. The ANN model evaluation

To evaluate the accuracy of the ANN model, we applied the following drag force model by G.H.
Ganser [Powder technology, 77(2), 143-152 (1993)] for the non-spherical particle.

Ca = ——{1 + 0.1118(ReK, K;) %7} + 2002
ReKq +

ReK1K,

K1 = [(;Z;—:q) + 2/311)—0.5]—1, Kz — 101-8148(—log1/))°-5743

The above equation considers the sphericity (1) and the diameter of the projected area (d,) of the
non-spherical particle against the flow direction which means it considers the orientation of the
particle. D, is the equivalent volume diameter of the non-spherical diameter. These parameters
for the datasets we used for the ANN were calculated and the drag force coefficients for the

validation datasets were obtained. As a result, the MSE was calculated as 21.8 which is higher than



the minimum value from the ANN, 12.7. We can see that Fig. 17 shows that accurate models can

be obtained when the number of datasets is large enough.

Fig. 18 shows the parity plots for the drag force and y-direction lifting force and z-direction torque.
The first plot (a) indicates the ANN model shows higher accuracy than the drag force model from
the literature. Furthermore, lifting force and torque coefficients show low variation from the DNS
calculation. Compared to the lifting force, torque coefficients indicate higher error. It seems

because when we extract the geometrical features through the VAE model, the sharp shapes of the

particles were smoothened.
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Figure 18. The parity plots for the drag force, y-lifting force and z-torque from the ANN and
DNS.

To evaluate the accuracy of the lifting force and torque coefficients from the ANN, we utilized the
following equations from another literature by M. Zastawny [International Journal of Multiphase

Flow, 39, 227-239. (2012)]. In the equation, 0 indicates the incidence angle which is the angle

between the flow direction and the longest axis of a particle.
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In the literature, the authors fitted the coefficients with the results from DNS calculations. They
used four different non-spherical particles. In this study, we selected one of them, the ellipsoidal
particle having the E7 of 0.8. For the evaluation, we collected DNS datasets for the non-spherical
particles with the same E7 value, not only a smooth particle but also rough particles with d values
of 0.25 and 0.5. The Re number for the evaluation is 1. We conducted the calculation by rotating
the particles in a direction and applied the ANN model to the rotated particles with the Re number
of 1. Fig. 19 indicates the drag force and lifting force and torque coefficient prediction from the
ANN, the PR-DNS, and the literature according to the incidence angle at Re = 1.

(b) (c)

30 A1

0.8 -
29
28 Bl —e— d=0(DNS)
—e— d=0.25(DNS)
Y 061 —e— d=0.5(DNS)
z ~ -m- d=0(ANN)
(@) O
26 1 0.5 -~ d=0.25(ANN)
-E- d=0.5(ANN)
25 0.4 ) —— eq
24 4 |
0.3 ,
23 -
0.2
25 50 75 25 50 75 25 50 75
6 (°) 6 (°) e (°)

Figure 19. (a) The non-spherical particle with an incidence angle, (b) drag force, (c) lifting force,
and (d) torque coefficients from the equation, the DNS and the ANN according to the incidence
angle.

Fig. 19 demonstrates the ANN can predict the drag force coefficients for the particles much more
accurately than the equations. The ANN model can predict the lifting force and torque including

the surface shape effect which contributes to the deviations according to the incidence angles, even



though input data does not belong to the training and validation data. The main limitation of the
equations is that new constants or equations are required for particles with higher d values since it
is fitted for the ellipsoid particle with d = 0. On the other hand, this study has the advantage of

making a more universal model through the neural network approach.

Subtask 4.2 — Simulation in Moderate-Reynolds Numbers

4.2.1. PR-DNS data collection

To identify grid resolutions, we perform PR-DNS and apply the Richardson extrapolation for the
datasets at D/dt = 6, 12 and 20. We assume the error based on the magnitude of force at D/dt = 30.
Fig. 20 indicates the errors of the force coefficients. Like the data for low-Re flows, the errors
increase as the aspect ratio (4R) and roughness increase. On the other hand, the trend toward
decreasing errors is not stable. For the ANN model development, the grid resolutions are chosen
by multiplying the aspect ratio with 6 so that the grid resolution can be based on the shortest
dimension of the particle and the error can be below 3%. The required grid resolution for PR-DNS

does not increase compared to the low-Re conditions.
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Figure 20. PR-DNS errors according to grid resolutions.



With the grid resolution conditions, we collect 5,200 DNS datasets with random Re numbers
between 10 and 100. The random shape and rotation angle of the particles are chosen, and the
particles for the VAE are excluded. Fig. 21 show the force coefficients from PR-DNS according
to the Re numbers. Unlike the low-Re conditions, the force coefficients are less dependent on Re

numbers, but are still affected by the orientations and shapes (spherical descriptor (d) and AR).
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Figure 22. (a) Lifting force and (b) torque coefficient according to Re numbers.

4.2.2. ANN models for a single, non-spherical particle in moderate-Re flows




Using the PR-DNS datasets, the ANN model is developed. The same procedure and structure from
the low-Re conditions are utilized to train the model. 4,000 datasets are used as training data, and
1,200 datasets are applied as validation and evaluation data. The number of epochs is decided by
the minimum mean square error of the validation datasets. Fig. 23 shows the parity plots for the
force coefficients, and they indicate high accuracy of prediction. Equation (1) indicates the drag
force model by G.H. Ganser. The torque model showed relatively higher error for the model in
low Re flows, but it shows more accurate result for the moderate Re region. The same result can
be observed by comparing it to Equation (2) by M. Zastawny. When high d is applied, it shows
force coefficients that deviate from the trend from Equation (2), but the ANN model can predict
it. MSEs of drag force, lift force, and torque coefficients are 0.0014, 0.00085, and 0.00095,

respectively. A MAPE of the prediction on Cys is 1.1%, which is lower than the MAPE for the low
Re regime (4.5%). The overall MAPE of the Cd prediction for low to moderate Re region is 2.8%.
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Figure 23. Parity plots for the force coefficients.
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Figure 24. Force coefficients at Re = 50 according to incidence angles.

Task 6 Training of MLP-based Regressor and Final Reporting

Subtask 6.1 — Construction of the MLP architecture

6.1.1. PIEP method for multi-particles system

The PIEP model is a method which can consider the neighboring effect. This model evaluates
undisturbed flows as a linear superposition induced by the neighboring particles. Here, the
undisturbed flow is defined as the flow that would exist at the particle location in the absence of
that particle with neighboring particles. Based on the PIEP model by G. Akiki [Journal of
Computational Physics, 351, 329-357. (2017)], the drag force of the ith particle (deg,i) can be

expressed as follows:

N
Fdrag.i = Fdrag(Rei; @) + {3mud; Z u]_ns (1+ 0-15Rei0'687)}
j=1
JEL
In the above equation, Fy,44(Re;, @) is the mean drag force of the ith particle with the Reynold

number, Re; and the volume fraction, ¢. u]_)ls is the velocity perturbation due to jth neighbor, and



itis averaged over the surface of the ith particle. The equation of the drag force can be reformulated

in terms of the drag force coefficient (Cp) as follows.
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In the above equation, we know the drag force coefficient for a single particle (Cp(Re;)) from the
previous studies, and assume that the mean drag force can be separated independently into Cp (Re;)
and a function (f) in respect to ¢ and/or Re;. In this study, the macroscopic velocity (umac) of the
flow is dimensionless unity in x-direction, and the x-components of the velocity perturbation is
only considered. The velocity perturbation will be calculated from superposition and an ANN
model, which can predict a flow field of a single particle based on Re numbers and shapes (latent
vectors). Because we can obtain the drag force coefficient of the ith particle in the poly-dispersed
particle array from DNS, f (¢, Re;) can be calculated. The second term of the above equation
indicates an undisturbed flow force, which requires superposed pressure fields. For the DNS
simulation, mean Re numbers will be applied based on the mean diameter of the particles, and then,
Re; will be calculated with the corresponding diameter (d;). The next section shows how to
configure the ANN to predict the flow-fields from latent vectors and the Re numbers. Fig. 25 shows
the scheme of this study with the ANN models and PIEP method.



uy,i(x, Re;)

MLP
(x,Re;)
Latent pt( ’ [) .
—,_:.’.co;
;”f@

Irregular shaped
particles

Superposing with PIEP and
obtaining CDJE(RE'!')

Figure 25. The scheme of PIEP method for the drag force with neighboring effects.

6.1.2. Development of a neural network model for flow-field prediction

To predict the flow-fields, we develop multi-layer neural network model using de-convolutional
layers. The input of the model has 132 parameters including 128 parameters from the latent vector,
a spherical descriptor (d), E1, FI and a Re number. The latent vector is obtained through the encoder
of the VAE model. For the velocity fields, the ANN model includes five de-convolutional hidden
layers with the number of channels of 256, 128, 64, 32, and 8, respectively. Each layer uses ELU
for the activation function and the number of strides of 2. The input layer is fully connected and
utilizes ELU to convert the input to the 3-D datasets. The output layer is also a fully connected
layer but uses linear activation function because this is a regression model to predict the continuous
data of the velocity. On the other hand, the pressure model uses the output dimension of 40°, which
is smaller than that of the velocity (160°) because the pressure gradient is only effective near the
particles. The training is conducted with the ADAM optimizer by using Python and Keras library,
and the datasets from the previous studies (10,400 datasets, 0.1 < Re < 100) are utilized. Note that
the particles for the ANN training are independent of the particles for the training of the VAE. The
output data are from DNS and are converted into the dimension of 160° or 40° based on the finest
resolution of the adaptive refinement method. Because this dimension is too large to be loaded,
data generator is utilized. The length of axis of the DNS data depends on the size of the particle.

This is because the length was specified as 20 times the average diameter for the DNS. In this



study, to match the length of the training data equally, the median value of 160 is chosen. For data
with a length of less than 160 on the data axis, edge data are calculated through extrapolation to
match the dimension for the training, but they will not be used for PIEP because this study ignores
the neighboring effect farther than 10 times the average diameter. With being shuftled, 8000, 1200,
and 1200 datasets are used for training, validation, and evaluation, respectively. Mini-batch
training is applied with the batch size of 5, and the optimum model is chosen based on the accuracy
of the validation data in 10 epochs with an early stopping method. The VAE model to extract the

latent vector is the same model with a model which was used for the prediction of Cp (Re;).

Fig. 26 shows the cross-sectional flow-fields (z = zua/2) from the evaluation data and the
predictions from the trained ANNs (TCNN 1 and TCNN 2). The ANN models show the mean
absolute error of 0.00091 and 0.013 for the velocities in the x direction and pressure, respectively.
The accuracy of the overall model needs to be confirmed after applying the superposition in terms

of the drag force coefficient.
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Figure 36. Evaluation and predicted flow fields from the DNS and the ANN models,

respectively.

When the Re number is close to 100, the wake of the flow appears long to the boundary. This
means that neighboring particles can affect the centered particle even from far distance, but in this

study, the effect of particles farther than 10 times the average diameter is ignored.

We have tried to obtain the flow filed model using the decoded 3D voxel data from the VAE model.

However, it has turned out that applying latent vector shows better accuracy. Another strategy we



have tried is applying VAE to the flow fields, but the latent vector to represent the fields only has
shown about 95% of reconstruction error. Because the total error will be higher than the

reconstruction error after correlating with the particle shapes, we choose the de-convolutional

ANN to model the flow fields.

6.1.3. PIEP application for sparse multi-particle systems

Five irregular-shaped particles are randomly chosen from the evaluation data of the ANN. The PR-
DNS, in this study, adjusts the viscosity of the flow (us) with the density (ps) and the macroscopic
flow velocity (u,,qc) of unities. Each particle has a different Re number, and the averaged Re
numbers for the tests are 5 (2 particles) and 50 (3 particles) based on the following expressions.

The individual Re number (Re;) of each particle is applied to obtain the drag force coefficient and

the flow field from the ANN models.

u d Umacdi
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Fig. 27 shows the cross sectional (z = 0.5, L: length of domain) flow fields of 2 (Case 1, L =112)
and 3 particles (Case 2, L = 144) from the PR-DNS. Far-field boundary conditions are applied for
the cases. For Case 1, the first (1) and the second particles (2) are located at (0.5L, 0.5L, 0.5L) and
(0.6L, 0.5L, 0.5L), respectively. The three particles for Case 2 are located at (0.5L, 0.5L, 0.5L),
(0.6L, 0.6L, 0.5L), and (0.8L, 0.55L, 0.5L), respectively.
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Figure 27. DNS results of Case 1 (left) and Case 2 (right). The color bar indicates flow velocity
in x-direction.



To predict the drag force coefficients, the interaction force ANN model (MLP) is applied, and the
flow field ANNs (TCNN 1, 2) are utilized to superpose the flow field in the flow direction (x).
MLP and TCNN utilize the latent vector from the VAE, which was trained with independent

particles sets.

Figure 28. A superposed flow field (x-direction) of particle 1 and particle 2 of Case 3 using
TCNN 1. Note that the color bar varies between 0.1 and -1.1.

Fig. 28 shows the superposed velocity field of particle 1 and particle 2 of Case 3 with TCNN. This
perturbed velocity field is used to calculate the averaged velocity of the x-component on the surface
of particle 3. Even though the resolution of the grids is not high enough to represent the detailed
shape of particle 3, the resolution of the 48 X 48 X 48 from the input data of the VAE is reflected
to obtain the averaged velocity. Due to the sparse concentration of the system, the solid volume
fraction can be ignored. Therefore, the following equation is applied to obtain the predicted force
coefficients (Cp,;). We applied the same method for obtaining the superposed pressure field in the

following equation.
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The following table shows the drag force coefficients from the PR-DNS, and the results from the
ANN models and the PIEP model. The DNS results for a single particle regards the individual Re



number, Re;. The fourth row indicates the drag force coefficients just based on the MLP without
the neighboring effect. The table shows percentage errors of cases relative to the multi-particle
results from the DNS, and they are decreased after considering the neighboring effect. For the
particles located at the front, it can be observed that the error is not large even just with ANN 1
because of the least influence from neighboring particles. Whereas particle 2 of Case 1 shows a
higher error, the error of particle 2 of Case 2 is smaller due to the narrow wake. Instead, particle 3
of Case 2 indicates the highest error due to the neighboring effect. When the PIEP with TCNNS is
applied, the overall error reduces. A MAPE of 5 cases is reduced to 21.5% to 1.7%, and the errors
of particles under strong neighboring effect are significantly reduced. Due to the error of the MLP

(2.8%), TCNNSs (0.5%), and the superposition assumption, a certain amount of error is inevitable.

Table 5. The drag force coefficients and MAPEs of the sparse multi-particle systems, Case 1 and

Case 2.
Cp / error Case 1 (Re=15.0) Case 2 (Re =50.0)
1 2 1 2 3
DNS (multi-particle) 6.66 4.48 1.73 1.68 1.40
DNS (single particle) 7.48 7.21 1.75 1.71 1.63
MLP 7.53/13.1% | 7.37/64.5% | 1.75/1.11% | 1.71/2.3% | 1.62/16.3%
MLP+ TCNNs/PIEP 6.64/0.2% | 4.23/5.6% | 1.73/0.1% | 1.70/1.7% | 1.38/1.0%

If the multi-particle system contains many particles, solid volume fraction needs to be considered.
Several studies [Chemical Engineering Science, 192, 1157-1166. (2018)] have suggested the

model to regard the effect but there is no reference for the irregular-shaped particles.

6.1.4. Solid volume fraction effect

There are several studies to include the solid volume fraction (¢) effect on the drag force, but the

separate term is going to be applied to utilize the individual drag force model (MLP) in this study.



Hilton et al. [Chem. Eng. Sci., 65 (5) (2010)] showed the solid volume effect for particle

assemblies of ellipsoids and cuboids as follows:
Ff(Re;, ¢) = (1— (p)—3.7+0.6Sexp[0.5(1.5—logRei)2] (13)

Equation 13 is for an average drag force, but it will be investigated whether it can describe the
individual particle of this study. Fig. 29 shows the solid volume fraction effect according to Re;
and ¢. When ¢ is 0.5% with Re =50.0, the volume fraction factor is only about 1.4%. As the solid
fraction increases, the effect of the fraction and the dependence of Re increases. We employ one
hundred irregular particles with ¢ = 0.005 to ignore solid volume fraction effect and investigate

neighboring particle effect.

Figure 29. Volume fraction factors according to Re and ¢.

6.1.5. Dilute multi-particle system

The PR-DNS is applied to collect the drag force coefficients of sparse systems with ¢ = 0.005.
100 irregular particles in the evaluation data of TCNNSs are included. Particles have a length of 6
for the smallest axis, and as in training the ANN models, the AR is between 1 and 2. The particles
are located randomly, and the particle voxel data are utilized to inhibit overlaps between particles.
For the DNS, the AMR update is applied after the velocity residual approaches to 1.2x10°¢, and

then the simulation stops when the residual is 1.0x10®. Periodic boundary conditions are applied



for all directions, and the driving force is applied based on Equation (14), where p. is a parameter

used to adjust the magnitude of the pressure gradient.

Vpe = expcpvz/<d)3 (14)

For the systems with the initial Res of 1, 5, 25 and 50, 0.05, 0.5, 5 and 15 are chosen for Vp,,
respectively. The first row in Fig. 30 indicates the velocity field in x-direction with z = 0.5z
from the DNS. Converged Res shows the average values of 0.5, 4.2, 24.0 and 49.8 of Res. The
second row of Fig. 30 shows the predicted, superposed flow fields from TCNN 1 using the PIEP
method.

1.5
1.0
0.5
0.0
-0.5

Figure 30. Velocity fields (x-direction) from DNS (top) and TCNN 1/PIEP (bottom) for 100
irregular shaped particles with Re = 0.5, 4.2, 24.0, and 49.8 (left to right).

For the 100 irregular-shaped particles, the MLP is applied to obtain Cp, and TCNNs and PIEP are
utilized to regard the neighboring effect (Cp). In this study, we first find the sum of the velocity
fields for all particles, and then subtract only the velocity field of the corresponding particle.
Because the predicted flow fields from ANN 2 have limited domain size, linear summation of the
fields accumulates an error, which cannot be ignored when there are a lot of particles. Therefore,

incidence velocity of the combined domain is utilized to compensate for the error as follows.



fe = (Zlivzl(ui,ANNZ — Umac)x=0 (15)
Z?Izl,j:ti Ujsi = Z?Izl(uj,ANNZ — Umac) = (Wi, annz — Uimac) — fe (16)

In Fig. 31, the prediction with the MLP, TCNNs and PIEP shows higher accuracy than the model
only with the MLP. The data are arranged in ascending order based on the true values, and when
only the MLP is used, the plot shows a small tendency according to the index due to the absence
of the neighbor effect, but in the case of PIEP, positive correlations can be observed. Some studies
[Big Data, 8(5), 431-449 (2020)] used a moving average to smoothen the noise of the prediction
according to the particle index, but this approach is impossible without the true values. Table 6
shows MAPEs and R’ scores of the cases. It shows higher accuracy with TCNNs/PIEP than the
prediction only with the MLP. Predictions for smaller Re show higher accuracy because the flow
domain from TCNNss is large enough to include the flow pattern. However, for higher Re, the wake
is larger than the domain, and it makes strong interaction over far distance. Because this study only
considers the interaction within 10 de,, high Re shows relatively higher error. If solid volume
fraction is higher, the effective distance can be smaller, but the solid volume fraction effect needs

to be investigated according to Re, ¢, AR and d.



(a) (b)
—— ANN1 14 4
801 — ANN1 + ANN 2/PIEP
124
Q 10
8 .
6 -
0 20 60 100 0 20 40 60 80 100
(c) index (d) index
2.2
3.5
2.0
3.0 181
o) - G116
1.4 A
2.01 1.2
1.5 1.0 1
0 20 60 100 0 20 40 60 80 100
index index
Figure 41. Cgs from DNS, MLP, and TCNNs/PIEP for 100 irregular shaped particles at Re = 0.5
(a), 4.2 (b), 24.0 (c), and 49.8 (d).
Table 6. R? score and MAPE with MLP, TCNNs/PIEP.
<Re> Remin Remax R? (MLP/TCNNs) MAPE (%, MLP/TCNNs)
0.51 0.42 0.68 0.19/0.62 12.8/9.8
4.2 3.5 5.7 0.16/0.65 14.5/9.8
24.0 20.0 323 0.26/0.62 13.4/9.5
49.8 40.8 66.9 0.24/0.48 13.4/11.1




Subtask 6.2 — Training, Validation, and Optimization of MLP

6.2.1. Solid volume effect formulation

Because the existing solid volume effect factors (f) are for spherical or smooth particles, we need
to collect the data for high d particles and validate the factors. To do that, we have created four
particles as follows. Please note that the spherical harmonic method provides different shapes with

the same shape factors, so we create Particle 4 to compare with Particle 1.

Table 7. Shape factors of the particles for validating solid volume effect factor.

Particle D AR
1 0.5 2
2 0 1
3 0.3 2
4 0.5 2

To generate packed systems, we apply a simple Monte Carlo packing algorithm to most cases
except the case with ¢ = 0.2. For the high concentration condition, The Monte Carlo-based
algorithm shows extremely heavy computation time. Therefore, we utilize the advancing packing
algorithm for the systems with ¢ = 0.2. To achieve even higher concentration, additional methods
such as a minimum potential method can be applied, but we just applied the simple advancing

method to obtain the concentration up to ¢ = 0.215.
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Figure 32. Solid fraction factors of homogeneous particle systems according to Re, d, and ¢.



By using Res between 0.1 and 100 and ¢ between 0.01 and 0.215 for the PR-DNS, we plot the
results in Fig. 32 based on the equation in the literature [Powder Technology, 401, 117303 (2023)].

Fy = Fyf(Re, @, d) = Fpqp~37+065exp(~05(1.5-log(Re))?) an
180 = (=37 + 0.65 exp(~0.5(1.5 — log(Re))?) (18)

The plots for Particle 1 in Fig. 32 (blue, orange, gray, and yellow markers) show solid fraction
dependency as opposed to the tendency shown in Equation 2. Moreover, the factors vary much
more than the range from Equation 18. This implies that we need to modify Equation 17 and 18.
In addition, the trend below Re = 1 does not follow the relationship of Equation 18. We will narrow
down the Re range between 1 and 100 because it seems we need to collect intensive data for the
low Re regime. It has shown a much higher computational cost for the Re regime around 0.1. Lastly,
it seems there is no big impact of roughness on the solid fraction effect. Particle 4 also does not
show much difference to other particles including Particle 1 having the same d value. Note that we
are applying the same orientation for all same particles to obtain the /. We have assumed that f
depends on Re, ¢, and averaged d of surrounding particles. If it turns out that d does not affect the
f, we will not need to add any additional parameters to Equation 17 and 18, but just modify them

based on the PR-DNS results.

We have shown that particle shape does not affect the solid fraction effect much. With the data of
Particle 2, 3, and 4, we have formulated the solid fraction effect. We collect more data of Particle
1 using the PR-DNS, and Fig. 33. shows the result. Note that the red and black boarder indicate
the particles other than Particle 1 and we have ignored the low Re data for simplicity. Particles
with back border have AR of one instead of two. These data show smaller ffactors and cause error
on the following PIEP results. It will be discussed further in the next section. Note that the Re

number is the particle Re number based on superficial velocity.

Based on the data collected, we assume the following formulation by referring to the literature

[International journal of multiphase flow, 20(1), 153-159. (1993)].

x = (In(Re) — 3.5)2 (19)



log() _
oal—gy — ¢(@)x + b(p) (20)

a(p) = 0.181In(¢p) + 0.23 (21)
b(p) = 18.1¢p — 10.4 (22)

The regression using Equation (20) shows R2 scores between 0.44 and 0.99, and it shows 0.97 and
0.99 with Equation (21) and (22), respectively. Using the regression parameters, Equation (19-22)

shows mean absolute percentage error of 5.3% and R2 score of 0.97.
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Figure 33. Solid fraction effect (homogeneous) according to concentration and Re.

6.2.2. High concentration systems

To test the solid fraction effect from the previous study, we generate three high concentration
systems (Case 1: 6.1% and Case 2: 5.1%, Case 3: 13.2%) using random packing method. We
assume we can apply the previous model for f factor can be applied to random, polydisperse
systems because the particle shape does not affect f factor much. With Re numbers of 1.81, 2.25
and 49.1, respectively, we compare the predicted results from the PIEP-based method with the
results from the PR-DNS. Case 2 uses monodisperse system using particles with d = 0.49 and AR
= 1.1. Case 1 and 3 utilize polydisperse particles with d = 0 — 0.5 and AR =1 - 2. Fig. 34. shows



the x-velocity fields from the PR-DNS and TCNN for Case 1, and Fig. 35. shows the ascending
order data of the drag force coefficients of Case 1, 2 and 3. Note that for calculating the f factor,
we have used the average Re instead of individual Re. The results show MAPEs of 12%, 7% and
24.9%, and R2 scores 0f 0.46, 0.7 and -0.56, respectively. Without the PIEP method, the prediction
shows 4 — 9% lower accuracy. Case 3 shows low accuracy because the f factor prediction is not
accurate, and when we apply a modified value from the PR-DNS, it shows much better prediction.
It implies that f factor prediction is important, and we believe the reason of error is due to the high
AR of the monodisperse particles using for the f factor regression. It makes aligned arrangement
of the particles, and it shows higher f factors than those of random particles. As a result, we can
see lower f factors for low AR particles in Fig. 33 because they do not make strong alignment.
Therefore, the ffactor model should be re-formulated with random oriented particles, and this will

be provided in the next section.

Case 1 Case 2 Case 3

”“f“ :
TCNN 3 - 0

Figure 54. DNS and TCNN results for high concentration systems.



Table 8. Prediction results with MLP, TCNN and PIEP for high concentration systems.

Case 1 Case 2 Case 3 | Case 3-1

dispersity poly- mono- poly- poly-

conc. (%) 6.1 5.1 13.2 13.2

Re 1.82 2.25 49.1 49.1

f 2.02 1.84 2.98 2.46

MAPE
(MLP-+PIEP/MLP, %) 11.2/20.3 | 7.0/13.2 | 24.9/28.6 | 12.7/17.4
R2 0.53/- 0.70/- -0.56/-
(MLP+PIEP/MLP, %) | 046 | 006 | 101 | 048006
(a) (b) (c)
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Figure 35. Prediction results using MLP or/and TCNN+PIEP method for (a) Case 1, (b) Case 2,
and (c) Case 3-1. Note that (¢) is using the modified f factor driven from the PR-DNS.

6.2.3. Solid volume effect for random particles and evaluation

To modify the solid volume effect factors with random particles (d = 0~0.5, AR = 1~2), we have
performed the PR-DNS with the concentrations (¢) of 0.5%, 2.0%, 6.1%, 10.8%, 14.7%, and
20.0%. We have applied random packing algorithm for the systems except the system with 20.0%,
which need to use the advanced packing method. Resolution has been adjusted to contain at least
one hundred particles for all cases. The MLP is utilized to calculate the Cp for each particle for
given Res rather than applying the PR-DNS to all individual particles. It is because the MLP has
shown good predictions. Once the PR-DNS is converged with a certain value of Re, then the MLP



is applied to obtain the average Cp taking the particle size into consideration, and the f can be
calculated by dividing the Cp with the true average Cp from the PR-DNS. Table 9 shows the f

factors, and the f'exceeds 10% when the solid volume fraction is higher than 2%.

Table 9. Solid volume fraction effect factors according to Re and volume fraction.

Re 0.5% | Re 1.0% | Re 2.0% | Re 6.1%
0.96 1.102 1.286 1.077 | 0.9216 1.358 1.12 1.993
1.751 1.061 2.238 1.1 ] 1.7313 1.266 8.62 1.878

5.718 1.092 15.28 1.042 11.4 1.237 22.13 1.621
10.164 1.101 38.93 1.006 | 44.832 1.146 54.74 1.568
46.71 1.026 59.1 1.011 | 57.774 1.14
57.3 1.017

Re 10.8% | Re 14.7% | Re 20.0%
1.17 2.84 1.25 3.594 | 0.8218 4.457
2.278 2.691 12.64 2928 | 1.6156 3.933
11.17 2415 49.65 2612 | 11.677 3.573
15.48 2.262 69.84 2.637 | 29.895 3.218

26.74 2.157 52.935 3.26
43.47 2.125
69.47 2.144

Fig. 36 shows In(f) /In(1 — @) according to Re, and it shows @-dependency like homogeneous
systems, but also shows linearity depending on log (Re) when ¢ is equal to or higher than 2%. It
represents packing or alignment of particle array affects the interaction force, and to evaluate the

PIEP method for random arrays, we need to re-formulate the solid volume effect factors.
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Figure 37. Solid fraction effect (random arrays) according to concentration and Re.

When ¢ is lower than 2%, the results are inconsistent with the tendency when the volume fraction
is higher than 2%. Using the data between 2 and 20.0% and the same approach in the previous

section, the f factor can be formulated as follows:

log(f) _
g9} — a(p) In(Re) + b(¢p) (23)
a(p) = —0.67In(p) — 0.79 (24)
b(¢) = —/—68.35In(¢p) — 65.62 (25)

The regression shows good fit, and the R2 scores for Eq. (23) are all above 0.89. Eq. (24, 25) show
R2 scores above 0.99. Using Eq. (23-25), we apply the MLP, TCNN, and PIEP model to the cases
in the previous section. Table 10 shows that Eq. (23-25) can provide better prediction than the
results in the previous section for all cases without modifying the average drag force coefficient.
If the solid volume fraction is lower than 2%, an error up to 10% should be tolerated, and to prevent

this, it is necessary to develop another formulation for the f factors for low concentration conditions.



Table 10. Prediction results with MLP, TCNN and PIEP for high concentration systems with Eq.

(23-25).

Case 1 Case 2 Case 3
dispersity poly- mono- poly-
conc. (%) 6.1 5.1 13.2

Re 1.82 2.25 49.1

f 1.89 1.77 2.53
MAPE (%) 10.3 6.1 12.2
R2 (%) 0.60 0.76 0.47

To sum up, the results show that the neural network-based model can predict high concentration,
poly-dispersed systems with irregular particles. Besides providing a drag force model for irregular
particles, this study has the great advantage of being efficient in terms of data collection. The
current study has mainly required to collect single particle data to predict multi-particle system,
and it makes this method significantly efficient compared to other machine learning studies for
multi-particle systems, which require huge data collection [Big Data, 8(5), 431-449 (2020),
Powder technology, 345, 379-389 (2019)]. The current study can be coupled with a collision model
for CFD-DEM calculation, and our group published another machine learning-based collision
model, which can be coupled for irregular particles [Chemical Engineering Science, 251, 117439

(2022)].

Outcomes

The current study provides a comprehensive drag force model for irregular-shaped particles in gas-
solid flows. By applying the VAE, we have been able to describe the irregular particles from
spherical harmonics with random numbers. Even though the VAE has the tendency to smoothen
the particle shapes, the trained MLP has shown good predictions on interaction forces, especially
on the drag force. Instead of setting orientation angles as input parameters for the MLP, we have
included the angles in the latent vector of the VAE, so that we don’t need to make additional
combinations other than Re and shapes. The MLP has been evaluated with datasets, which have
not been used for training in terms of incidence angle. It matches well with the PR-DNS results
and allows us to predict the interaction forces of the irregular particles. Whereas existing models
[Chemical Engineering Science, 192, 1157-1166 (2018)] are only able to predict the interaction

forces of spherical or regular-shaped particles, the current model can cover a variety of particle



shapes. Furthermore, the existing models need additional data to obtain new parameters for the
prediction, but the current approach can be applied to other data if we train the model with proper
range of conditions. This single particle study was published in Powder Technology at the

beginning of the second year of this project [Powder Technology, 392, 632-638 (2021)].

To expand the scope of this study to multi-particle systems, we have chosen the PIEP method to
apply linear superposition. This approach has an advantage in terms of data collection. Because
the superposition method does not require the data for multi-particles systems. Only small datasets
have been collected to evaluate the PIEP model in this study, and we have used the same data from
the previous, single particle study. To apply the PIEP method, velocity field in flow-direction and
pressure field of single particle are required. Therefore, we have developed the TCNN model,
which can predict the flow fields from the latent vector and Re. The TCNN model predicts the
flow pattern well with low error and shows the asymmetric flows for oriented, irregular particles.
TCNN has been utilized to calculate the undisturbed flow force, and low concentration systems up
to 0.5% are calculated. Because the average drag force is affected by the concentration, we choose
to study low concentration systems first to explore the eligibility of PIEP method. By assuming
the solid fraction factor as unity, we have been able to predict the low concentration systems with
mean absolute percentage error between 9 and 10% and R2 score between 0.56 and 0.62. Due to
the nonlinear nature of the multi-particles flows and error from the machine learning-based models,
the prediction is not perfect, but this method is much more efficient because the models can be
trained with small number of datasets. This is because we put the PIEP, physics-based model at
the end of the whole model structure, and it gives us much more flexibility in leveraging the neural
network models. This study about low concentration systems was published in Chemical
Engineering Science around the middle of the third year of this project [Chemical Engineering

Science, 266, 118299 (2023)].

We have collected some datasets for higher concentration systems up to 21.5% and developed the
model for the solid fraction effect. For homogeneous systems, the PR-DNS results have shown
that the particle shapes do not affect much the solid fraction effect. However, it has shown that it
is affected much by voidage, so we need to modify the existing model [International journal of
multiphase flow, 20(1), 153-159. (1993), International Journal of Multiphase Flow, 39, 227-239
(2012)]. to satisfy the PR-DNS results. We assume the modified, regressed model can be applied



to polydisperse systems as well, and it shows moderate prediction on the systems with errors
between 7 and 13% and R2 score between 0.48 and 0.7. Unlike the previous models, we only
provide the model, which can predict the flows with Re numbers between 1 and 100 because the
high concentration flows with Re below than 1 have shown complicated trends of the f factor, and
computational cost is expensive for data collection. However, the above results show a high
probability that a wider range of flows can be predicted with the PIEP model if there is an

appropriate model for the solid fraction effect.

This study provides neural network-based, interaction force model including an unsupervised
model for irregular-shaped particles in incompressible flows. From low to moderate Re numbers
and solid volume fraction, we have been able to develop a cost-effective prediction model for drag
force. This approach can be applied to a wider range of flow conditions and other force components
including lift force and torque we have presented for single particle systems. This study is
significant in that it increases the efficiency of data collection by utilizing machine learning-based
models, which are considered a black box, to obtain intermediate physical values required for a

physics-based model. For the future study, we can:

1. Expand the model by collecting more data of other Re number regime and lower St
number,

2. Develop a TCNN model for y, z-direction velocity to model lifting force and torque,
and

3. Resolve nonlinear behavior of PEIP model to improve the accuracy,

to broaden the scope of the current study. Because all the machine learning study has been
conducted with TensorFlow package using Python, the model should be able to be incorporated in

MFiX Al platform just with simple data transformation algorithm.



