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Disclaimer: 
“This report was prepared as an account of work sponsored by an agency of the United 

States Government. Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility 

for the accuracy, completeness, or usefulness of any information, apparatus, product, or process 

disclosed, or represents that its use would not infringe privately owned rights. Reference herein to 

any specific commercial product, process, or service by trade name, trademark, manufacturer, or 

otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring 

by the United States Government or any agency thereof. The views and opinions of authors 

expressed herein do not necessarily state or reflect those of the United States Government or any 

agency thereof.”  



Summary: 

This project provides a neural network-based interaction force model for gas-solid flows 

from low to intermediate Reynolds numbers and concentration, which can be linked to MFiX-

DEM. We have constructed a database of the interaction force between the irregular-shaped 

particles using a spherical harmonic method and the fluid phase based on the particle-resolved 

direct numerical simulation (PR-DNS) with immersed boundary-based gas kinetic scheme. 

Unsupervised learning method, i.e., variational auto-encoder (VAE) has been applied to extract 

the primitive shape factors determining the drag force, lifting forces, and torque. The interaction 

force model has been trained and validated with a simple but effective multi-layer feed-forward 

neural network: multi-layer perceptron (MLP), which will be concatenated after the encoder of the 

previously trained VAE for geometry feature extraction for single, irregular particles. We have 

trained transpose convolutional neural networks with the PR-DNS data to predict the velocity and 

pressure gradient of the single particle systems and utilized them to calculate drag force of multi-

particle systems. This model can provide high computational efficiency because it does not require 

collecting multiparticle system data from PR-DNS.  
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Task 2 Developing Code for Non-spherical Particles. 

Subtask 2.1. Coupling the non-spherical particle-particle collision module. 

The module to simulate the non-spherical particles is now integrated into the developed code. The 

collision module of non-spherical particles will be implemented in the further development of the 

project since we found this is not an essential part of the machine learning training process. Instead 

of simulating a fully fluidized bed with non-spherical particles to generate the required data for the 

drag and lifting force, we proposed to separate the model development into two independent steps. 

Firstly, the fluid flow prediction and interaction force prediction model for a single non-spherical 

particle in an infinite domain will be developed based on the un-supervised auto-encoder based 

machine learning method. Secondly, the force model which could consider the neighboring effect 

and Stokes number effect will be developed based on superposition, e.g., the linear Pair-wise 

interaction force model. Through such two progressive steps, the training process and data 

generation are greatly simplified, and we can be firstly focused on the force model for single non-

spherical particles. 

Subtask 2.2. Efficiency improvement of the code.  

The original in-house IB-LBM code can only handle the 3-D structured grids. However, for a 

single-particle simulation, gradients of the flow field mainly concentrate around the near 

boundaries. Adaptive mesh refinement technique can greatly reduce the computational grid 

number and improve the efficiency of the simulation code. Thus, an adaptive mesh refinement 

(AMR) based immersed boundary (IB) framework was first developed. Considering the robustness, 

instead of the lattice-Boltzmann method, a finite volume method with gas-kinetic flux solver is 

coupled into the AMR framework. The efficiency of the developed method is evaluated through 

benchmark tests. 

2.2.1 Theory of the Gas-kinetic scheme. 

Boltzmann equation for the molecules is the starting point of the incompressible solver for our 

project. The Bhatnagar–Gross–Krook (BGK) collision model is the most widely used one 

described as follows: 



��
��

+ �⃗ ∙ ∇� = − ���
�

           (1)  

where � is the gas distribution function and � is the equilibrium state approached by � through 

particle collisions within a collision time scale �. �⃗ is the particle velocity in the phase space. The 

mass and momentum conservation law could be obtained by multiplying Eq. (2-1) with � =

{1, ��, ��, ��}� on both sides and integrating over the velocity space, i.e., 

∫ ���
��

� d�⃗ + ∇ ⋅ ∫ ��⃗��d�⃗ = 0 ⟹ ��
��

+ ∇ ⋅ ��⃗� = 0      (2) 

where � = {�, ���, ���, ���}, and �⃗ is the corresponding flux �⃗ = ∫ �⃗�d�⃗. 

Different from the LBM method, in the gas-kinetic scheme, macroscopic variables � are stored 

and evolved along time. The flux of computational grids can be obtained by firstly reconstructing 

the distribution function through Champman-Enskog expansion near cell interfaces and then 

integrating over the velocity space. 

2.2.2 Gas kinetic scheme based on continuous or discrete velocity space. 

Instead of considering the Maxwellian distribution function for the gas phase, in this work, a 

simplified sphere function-based model which is continuous in velocity space and a D3Q15 lattice 

model which is discrete in velocity space are considered to construct the flux solver of the 

incompressible flow. 

Sphere function-based gas kinetic scheme 

Firstly, a simplified sphere function-based model proposed by Yang [Phys. Fluids 29, 083605 

(2017)] is considered. The equilibrium distribution function can be expressed by 

� = �
�

��
�� ��⃗ − ��⃗ � = �

0 ��������
,         (3) 

and the integration over velocity space can be simplified by integration over the surface of the 

space, i.e.,  

∫ (⋅)d�⃗ = � � sin(�) (⋅)����
�

�

��

�
, 

with {��, ��, ��} redefined by  



{��, ��, ��} = {�� + � sin � cos � , �� + � sin � sin � , �� + � cos �}. (4) 

In addition, through Chapman-Enskog analysis, the relationship between the kinematic viscosity 

and collision time scale can be expressed as: 

� =
3 �
�� . 

Given the distribution of macroscopic variables at �� , the initial equilibrium gas distribution 

function can be expressed as: 

�(�⃗) = �
�� �� ��⃗ − ��⃗ � = � ��� � < 0
�� �� ��⃗ − ��⃗ � = � ��� � > 0

, 

assuming that the cell interface is defined at x = 0. 

At time �� + ��, gas distribution function at cell interface can be expressed by 

���⃗, � = 0, �� + ��� = �� − � �
��
��

+ �⃗ ⋅ ∇��� |���⃗ ,���,������, 

which can be further approximated by: 

���⃗, � = 0, �� + ��� = ���⃗, 0, �� + ��� −
�

��
����⃗, −�⃗��, ��� − ���⃗, 0, �� + ���� . (5) 

Eq. (5) can be further simplified into Eq. (6) with the simplified sphere function-based distribution 

function, considering that the macroscopic velocities � ≪ � in incompressible regime, 

�(�, �, � = 0, �� + ��) = �(�, �, 0, �� + ��)

−
�

��
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Further, in Eq. (6), �(�, �, 0, �� + ��) can be obtained through the compatibility condition, i.e., 

∫ �(�, �, 0, �� + ��) sin(�) ����

= � ����, �, −�⃗��, ��� sin(�) ����
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. 



Then the flux at cell interface �⃗ = ∫ �⃗�d�⃗ = ∫ ∫ sin(�) ��⃗�������
�

��
�  can be obtained eventually. 

The detailed form of �⃗ can be found in the reference work by Yang [Phys. Fluids 29, 083605 

(2017)] and the parameter �� = 0.4 ��
���(��,��,��)��

. 

Discrete velocity-based gas-kinetic scheme. 

The simplification from Eq. (5) to Eq. (6) means that, at low Mach number region, the following 

terms: 

 {��
� + � sin � cos � , ��

� + � sin � sin � , ��
� + � cos �}  

{��
�� + � sin � cos � , ��
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are treated as the same in the velocity space where the superscript I and II denotes macroscopic 

variables at different spatial locations even though the direction of them are slightly different. As 

will be shown later in the benchmark test, such simplification leads to a smaller stable CFL number 

which is only 0.5 for a single step scheme. As an alternative approach, the discrete velocity-based 

scheme, i.e., the lattice Boltzmann flux solver, avoids such an incompatibility and greatly improves 

the upper limit of the stable CFL number. 

The velocity space is first discretized by the Taylor expansion near zero-velocity. In this project, 

the D3Q15 model is adopted. The discrete velocities can be expressed as: 

�⃗� = �
0 � = 0

(±1,0,0)�, (0, ±1,0)�, (0,0, ±1)�, � = 1, ⋯ 6
(±1, ±1, ±1)� � = 7,14

, (7) 

and the equilibrium density distribution is 
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where the weights are expressed as �� = �
�

, ���� = �
�

, ����� = �
��

 and �� = �
√�

. 

Then the integration over the velocity space can be replaced by the summation over discrete 

velocities, e.g.,  
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The construction of the flux is the same as in Eq. (5), i.e.,  

��(0, �� + ��) = ��(0, �� + ��) −
�

��
���(−�⃗���, ��) − �(0, �� + ��)�. (9) 

 

 

Figure 1. Illustration of the D3Q15 discrete velocity model. 

 

At time �� , the distribution of the macroscopic variables can be firstly obtained through 

reconstruction. ��(−�⃗���, ��) is calculated according to the direction of ��, i.e., 

���(−�⃗���, ��) =

⎩
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��
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1
2
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� + ��

�)(0, ��) �� ��,� = 0
. (10) 



At time �� + ��, the conserved variables at the cell interface are obtained through compatibility 

equations, i.e., 

� = � ���(−�⃗���, ��)�
��

���

, (11) 

with � = {�, ���, ���, ���} and � = {1, ��, ��, ��}�. 

Then ��(0, �� + ��) can be obtained through Eq. (9), and the flux can be further derived. To have 

a second order of accuracy in a single time step, when then time is Δ�, �� = ��
�

 in Eq. (9). 

Benchmark tests of Taylor-Green vortex. 

The efficiency and stability of the two schemes are studied and compared through a Re = 300 

Taylor-Green vortex tests. The computational domain is a 3-D periodic domain with length L. The 

initial condition is: 
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2��
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� ,

��(�⃗, � = 0) = 0.

 

Reynolds number is defined as 

�� =
���
2��

. 

Defining the reference time as 

�̂ =
�

2���
, 

the evolution of the dimensionless kinetic energy �∗ = �
��

 along dimensionless time �∗ = �
��
 is 

shown in Fig. 2. The maximum stable CFL number for both schemes and the computational time 

consumptions for a single step are all listed in Tab. 1 and 2. As shown, the dissipation of the 

continuous velocity-based flux is smaller than the discrete velocity-based scheme. However, for 

the discrete velocity-based gas-kinetic scheme, a stable single step scheme can be obtained even 

with CFL number to be 1. On the other hand, the continuous velocity-based gas-kinetic scheme, 



i.e., the scheme based on the spherical distribution function, a stable single step scheme can be 

obtained only with a maximum CFL number to be 0.5. The computational consumptions in a single 

step for the continuous velocity-based flux solver is smaller than the discrete velocity-based solver 

because for the continuous velocity-based scheme, we do not need to calculate the discrete velocity 

distribution one by one. However, if a larger CFL number, i.e., CFL >= 0.73 is adopted, the 

efficiency of the discrete velocity-based scheme is higher than the continuous model. Thus, to 

improve the efficiency for our later simulation, the discrete velocity-based gas kinetic scheme is 

chosen in this project. 

 

Figure 2. Comparison of the evolution curves between the spherical function-based gas kinetic 

scheme (SGKS) and the discrete velocity-based gas kinetic scheme (LBFS) under CFL = 0.5. 

 

Table 1. Comparison of the simulation time [s] between different schemes for a single step. 

 LBM SGKS LBFS CLBFS 

N=64 0.095 0.095 0.134 0.147 

N=128 0.696 0.706 1.03 1.1 

N=203 2.67 2.72 4.07 4.29 

 

 



Table2. Maximum stable CFL number for different scheme. 

 SGKS LBFS CLBFS 

CFL��� 0.5 1.0 0.5 

 

2.2.3 Implementation of Adaptive mesh refinement (AMR). 

Several AMR techniques exist in the literature, e.g., the patch-based AMR technique, the cell-

based AMR technique. in this project, the fine-grained cell-based AMR library, i.e., the p4est is 

used for the underline grid management. The p4est is based on octree data structure, where each 

node can be divided into eight children and the cells are encoded in an unstructured way. The AMR 

process of p4est can be separated into four steps. Firstly, a refinement indicator is calculated in 

each cell. Secondly, based on the indicator, the cells will be merged together if all children are 

tagged as to be coarsened. Thirdly, if a cell is tagged to be refined, it will be divided into eight 

children’s cells and the physical variables will be mapped into these children cells. Fourthly, a 

balance procedure will be done to ensure the maximum 2:1 level ratio between neighboring cells.  

 

 

Figure 3. Illustration of the AMR process. 



 

2.2.4 Reconstruction matrix free method coupling with the AMR technique. 

When on the structured Cartesian grids, the gradient reconstruction is quite simple, like, 

�� = (���� − ����)/(2Δ�).         (12) 

However, when coupling with adapted unstructured grids like in Fig. 3, special care should be 

taken for the reconstruction procedure. Different strategies exist for the reconstruction procedure. 

Take Cell 13 in Fig. 3(d) as an example. 

In the first approach, virtual children’s cells are generated in Cell 6 firstly. After that, the 

reconstruction in Cell 13 can be implemented like in the structured grids. However, this requires 

generation and management of virtual grids between different layers, which could be quite 

cumbersome when coding. In the second approach, instead of Eq. (12), a least squares problem is 

solved for each cell, i.e.,  

a = argmin(�� − �)�, 

where � = ���
�, ��

�, ��
��

�
 are gradients to be determined for Cell i; � is a matrix of dimension 

� × 3  and ��� = �
��

∫ (� − ��)������
  ,  ��� = �

��
∫ (� − ��)������

  and  ��� = �
��

∫ (� −���

��)��� , � = 1,2, ⋯ �  and n is the number of face neighboring cells for Cell i; b is a vector of 

dimension � × 1 and �� = �� − ��. However, for this approach, the least squares reconstruction 

matrix, and a list of reconstruction stencils should be managed, which could also be very memory 

consuming and cumbersome in coding especially when the mesh is dynamically refined and 

coarsened. 

Thus, in this project, a novel finite volume method is proposed which can be applied in the 

cartesian based AMR framework while eliminating the management of virtual grids or least-

squares reconstruction matrices. The method is based on the second order time stepping properties 

of the discrete velocity-based gas-kinetic scheme.  

In addition to the cell averaged physical variables defined for each cell like in the traditional FV 

method, 6 point-values defined at the geometrical center of each face are introduced for each face.  



Take the 2-D cases as an example in Fig. 4, 0 is the cell center; 1-4 are points where the point 

values are defined. Meanwhile, 1-4 are also the flux points for the second-order scheme. 

 

 

Figure 4. Illustration of the reconstruction matrix free FV method. 

 

 The updating steps are listed as: 

1. Obtaining the cell averaged gradients using Gaussian theorem, i.e.,  

∫ ��
��� = � �����

��
, ∫ ��

��� = � �����
��

, ∫ ��
��� = � �����

��
. 

2. For the flux calculation of the left edge in Fig. 4, the conserved variables defined at point 

1 are directly used. The gradients are calculated by 

�� =
2(�� − ��)

Δ�
,

�� = ��
�,

�� = ��
�.

 

For the flux calculation of the bottom edge, the conserved variables defined at point 3 are 

directly used. The gradients are calculated by 

�� = ��
�,

�� =
2(�� − ��)

Δ�
,

�� = ��
�.

 

 The same approach is applied for the right and upper edges. 

3. Updating the cell averaged value by 



��
��� = ��

� −
Δ�
 Δ�

�F
���

�,�
− F

���
�,�

+ F
�,���

�
− F

�,���
�

�. 

��
��� = 2��

� − ��
∗, � = 1,2,3,4. 

where ��
∗ are the conserved values obtained with Eq. (11) by setting �� = ��

�
, which is second 

order of accuracy in time. 

Such a scheme is stable under the maximum CFL number of 0.5, which corresponds to CFL = 1 

considering the sub-cell resolution, i.e., the point values at each cell interface when combined with 

the discrete velocity-based gas-kinetic scheme. 

The benchmark result of Taylor-Green vortex is shown in Fig. 5. and the computational time are 

also listed in Table. 1 in the last column. When compared with the traditional FV scheme, the 

proposed scheme is a little more dissipative with the same number of cell numbers while 

maintaining the same computational time for a single step. 

 

Figure 5. Comparison of the Taylor-Green Vortex result between the LBFS of traditional finite 

volume method and the proposed scheme, i.e., compact LBFS (CLBFS). 

 

 

 



2.2.5 Coupling the immersed boundary method into the AMR framework. 

The direct forcing based immersed boundary method is coupled with the proposed FV scheme and 

the AMR framework. To keep the simplicity of the scheme, a finest grid level is ensured around 

the Lagrangian marker. 

In the proposed scheme, the inner degrees of freedom can be utilized in the immersed boundary 

method. 

Firstly, for cells that will be used as the stencil of surface Lagrangian points, physical variables are 

firstly interpolated to eight children’s cells, which is shown as the cells separated by dashed lines 

in Fig. 6. Then interpolate back and forth the physical variables from the children’s cells to the 

Lagrangian points and correct the velocities in the children’s cells. Eventually, interpolated back 

the cell averaged cells and face variables from the eight children’s cells. The directly forcing 

scheme is the same as the work proposed by Uhlmann [J. Comput. Phys. 209, 448 (2005)] and will 

not be further reviewed in this report. 

 

 

 

Figure 6. Illustration of the proposed immersed boundary method. 

 



 

Figure 7. Illustration of the AMR result. Contours are the velocity magnitude. 

  

Fig. 7 shows the result of flows around a spherical particle when the Reynolds number is 0.2. The 

developed AMR framework can capture the gradients of the flow around particles. The ratio 

between the cell number with and without AMR technique is approximately 1:22.4, which means 

that the computational efficiency is greatly improved through the AMR technique. 

2.2.6 Efficiency Verification 

Table 3 lists the computational consumptions for a single particle with computational domain 

being 20 diameters with the AMR technique based on the SGKS method. The non-spherical 

particle with the spherical descriptor, 0.5, is used. The Re is 10 and the CFL number is 0.2. The 

total time steps used here is 5,000. The required time steps should be large enough to achieve the 

steady state. The steps depend on the particle resolution and the Reynolds number. 

Table 3. Computation time for the different particle resolutions. 

Particle Resolutions (D/dx) Computation time (min/CPU) 

6 55.7 

9 85.6 

12 131.3 

 



Task 3 Geometric Database for Non-spherical particles  
In this Task, collecting 3-D shapes of non-spherical particles was finished. The spherical harmonic 

method was used to represent the irregular surface shape of the particles.  

Subtask 3.1 – Collecting 3-D Shapes of Particles 

Non-spherical particles to be used in the neural network model and the numerical simulation are 

created using the spherical harmonic method. A variety of non-spherical particles can be generated 

by using the super-ellipsoid equation, but it is difficult to describe the non-smooth surface shape 

of particles. However, by using the spherical harmonic method, the shape, roundness, and 

compactness of the particles can be described in various ways with few parameters. 

Spherical harmonic functions(Y) are composed of functions that are orthogonal to each other on a 

spherical surface, and the real values of some functions are shown in the table below. In the table 

below, the jet scale represents the real value of the Y. l and m denote the degree and order of the 

spherical harmonic function (Y). As the l value increases, a more localized surface shape is 

expressed. In this task, the maximum value (lmax) of l is set to 8. 

 

Table 4. Real value distribution for some spherical harmonic functions. 

l/m 0/0 1/0 2/0 3/1 3/3 

Real Y values 

on the sphere 

surface 

     

 

As can be seen from the table above, each of the Y values has a distribution that is orthogonal to 

each other on a spherical surface, and various non-spherical surfaces can be described by adding 

them with appropriate weights. Here, we used three parameters, elongation index (EI), flatness 

index (FI) and spherical descriptor (d). The d value ranges from 0 to 1, and the closer it is to 1, the 

higher the degree is weighted, which results in a rougher surface particle. The basic coordinates to 



be converted by the spherical harmonic function are obtained by dividing the faces based on an 

icosahedron. The more the faces are divided, the more points are obtained, and it will be checked 

in the future by simulation how many points are needed. 

Even if the same d value is used, particles of the exact same shape cannot be obtained because 

random numbers are used when calculating the spherical harmonic coefficients. The volume of the 

particle, the center and area of each face are calculated using the “Trimesh” library. The center 

points are the Lagrangian points, and the face area will be considered for IBM force density 

calculation. In addition, voxel data is obtained, and it is used for getting the inertia and primary 

axes of the particle.  

Subtask 3.2 – Generation of Diverse Non-spherical Shapes 

In this Subtask, d values (0.0 ~ 0.5), EIs (0.5 ~ 1.0) and aspect ratios (1.0 ~2.0) of non-spherical 

particles were randomly chosen, and FIs were calculated from EIs and aspect ratios. In addition, 

the rotation matrix was used to orientate the particle and the Euler angles, α, β and γ, were randomly 

chosen. The orientation can be included in the latent space by using the rotation matrix. This 

strategy is beneficial in terms of reducing the number of DNS datasets because the rotational angles 

do not need to be included in the DNS sensitivity analysis. 

If the particle rotation is included in the latent space, a new latent vector needs to be updated at 

every time step in CFD-DEM application. If the surface coordinates are used for the particles, it is 

required to convert them into 483 voxels. By testing through i7-7700 3.6 GHz CPU, it took about 

10 to 30 seconds depending on the EI and FI indexes used. This can be heavy for simulation with 

many particles. Therefore, it would be better to use voxels instead of the surface coordinates for 

the particles in the DEM calculation.  

The VAE model developed was used to get the latent vectors to represent the shapes of the particle. 

By using 1,200 datasets for the training and 400 validation datasets, the reconstruction error has 

been reduced to 0.9%.  

 



 

Figure 8. Reconstruction error for the decoded particles of train and validation data. 

 

Fig. 9 shows the validation error according to the number of training datasets. The error converged 

when the number of datasets is in between 1,200 and 2,000.  

 

 

 

Figure 9. Validation error according to the number of datasets. 
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By using the trained VAE model from the 1,200 training datasets, the particles from the validation 

datasets can be reproduced as follows. The VAE model represents orientation, elongation, and 

flatness well. However, the roughness tended to be smoothened.  

 

 

Figure 10. Input and output voxel data of validation datasets.  

Subtask 3.3 – Generation of Lagrangian Markers 

Lagrangian points with the tri-faces areas and volume were generated in the configuration file form 

for the DNS calculation. We collected the database for the 2,000 particles based on the method 

explained in the previous section. 1,200 particles were sufficient to train the VAE model, but we 

generated more particles to assign different Re numbers to the different shapes.  

 

Task 4 Data collection by PR-DNS Method  

Subtask 4.1 – Simulation in Low-Reynolds Numbers 

The AMR method was used to reduce the computation cost with the IGKS method. The calculation 

speed is faster by using GPU, but it is more economical not to use GPU because of the much higher 

cost of the OSC GPU node. Furthermore, the LBFS was stable for Taylor-Green vortex experiment, 

but it turned out unstable for low Re flows. It will be studied further to be optimized in the future, 

but for the low Re flow, the IGKS was used because it is sufficiently fast to collect the. In the later 



part of this Subtask, convergences according to the grid resolution were studied for a spherical 

particle. 

4.1.1. AMR method and computation conditions 

To use the AMR method, the following equations were used to quantify the degree of refinement.  
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ω value in the above equation decreases to zero as the flow field becomes uniform. The mesh will 

move to the higher level and be divided into 8 cells when the cell has higher ω than the threshold. 

We set the threshold as 0.04 and the highest and lowest levels are 4 and 0.  

The length of the entire domain is 20D(diameter) and the far field boundary condition with the 

dimensionless velocity, 1, in x direction is used. The Re numbers ranged between 0.1 and 10 by 

changing viscosity. The CFL number and Mach number are 0.1 and 0.15, respectively. 1280 

Lagrangian points are used with the corresponding face areas and the retraction lengths is 0.1665 

to consider the length of the sub-cells.  

The following modified convergence limit is used to determine the ending point of the calculation.  
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u is the macroscopic velocity and t in the equation is dimensionless time scaled by the reference 

length over the reference velocity. We decided to use t to consider the time span difference 

according to the Re numbers and the resolutions. The simulation was conducted without the AMR 

until the residual approached 2×10-6 and used AMR until to the residual, 1×10-6. 

 

 

 



4.1.2. Convergence Studies for spherical particles 

Before collecting the flow field database, we needed to confirm the particle resolution. Therefore, 

drag coefficients for Re =1 and 10 were calculated according to the various grid resolutions (D/dx 

= 3 ~ 20). The drag coefficients (CD) were obtained through the equation below. Fl,x and ΔVl 

indicate the force in x direction and volume of the Lagrangian point, respectively.   
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− ∑ ��,�∆���

0.5�����
 

By applying the Richardson extrapolation method using the coefficients at D/dx = 6, 12 and 20, 

the following error plots were obtained. D/dx = 4 and 6 make the error below 2% for Re =1 and 

10. Due to sub-cell points, low error can be obtained with relatively low grid resolutions. However, 

if a particle is not spherical, elongated and or flattened, higher resolution may be required.  

 

Figure 11. Errors of the drag force coefficients of the spherical particle according to the grid 
resolutions at Re = 1 and 10. 

The drag force coefficients for the some Re numbers below 10 were obtained using the D/dx as 6 

as shown below. The coefficients (CD_DNS) are close to the reference values (CD_ref) [Kaskas, 

Doctoral dissertation, 1970]. 
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Figure 12. Drag coefficients for low Re numbers. 

 

4.1.3. Convergence study of non-spherical particles.  

For non-spherical particles, lifting force and torque should be calculated with the drag force. The 

coefficients of lifting force and torque were calculated by the equation below. The y and z 

components of the force coefficients vector (Cf) are the lifting force coefficients, and the x 

component is the drag force coefficient. Deq is the equivalent spherical diameter. For this 

convergence study, we used the absolute value of the force and torque coefficients vectors, but the 

components will be used as the target outputs for the MLP study in the future.  
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We have found the grid resolutions required for low Re region based on the drag force. However, 

when the particle is elongated or flattened, the required grid resolution can be increased. To figure 

out this, a randomly oriented particle having the aspect ratio 2 was generated and the convergence 

study was conducted considering drag force, lifting force and torque. The length of the entire 

domain is 20Deq and the other conditions remained the same as the previous studies. Fig. 13 shows 
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the Lagrangian points of the particle and the velocity magnitude on the center x-z plan with D/dx 

= 12 at Re = 10. 

 

 

Figure 13. (a) Lagrangian points of the particle having d = 0.5 and AR = 2 and (b) the velocity 
magnitude of the flow at Re = 10 with D/dx = 12. 

 

We applied the Richardson extrapolation method using the datasets at D/dt = 6, 12 and 20. D is 

the longest length of principal axis before the spherical harmonic transformation above order of 1. 

Fig. 14 indicates the errors of the force coefficients. Like the spherical particle, the errors of the 

force reduced exponentially according to the grid resolution. When D/dx = 6 was used, the error 

of forces was higher than the error of the spherical particle’s case. For future data collection, the 

grid resolution will be multiplied by the aspect ratio so that the resolution can be based on the 

shortest dimension of the particle and the error can be below 3%.  



 

Figure 14. Errors of the force coefficients of the non-spherical particle having d = 0 and 0.5 and 
AR = 1 and 2 according to the grid resolutions at Re = 10. 

4.1.4. Data collection from a low to moderate Re numbers 

The grid resolution of the PR-DNS varies from 6 to 12 according to the aspect ratios of spherical 

harmonic particles. We collected 5,200 DNS datasets with the random Re number between 0.1 and 

10. The shape and rotation angle of the particles are random and different from the particles used 

in VAE calculation. Therefore, when we develop the ANN model, the calculated latent vector will 

not be in the training datasets of VAE. The number of the datasets was decided based on the error 

of the ANN model which will be described at the end of the section.  

Fig. 15 shows the drag force coefficients according to the Re numbers. The color bar indicates the 

d values of the particles. The overall trend (a) follows the typical drag force – Re number 

correlation. When we see the coefficients in detail (b), there is about 20% variation between data 

points which are caused by the particle shapes and orientation. The particles with higher d values 

tend to have higher drag force which makes sense because the rougher surface will make higher 

resistance against the flow. 



 

Figure 15. Drag force coefficients according to Re numbers. 

 

 

Figure 16. Lifting force and torque coefficients according to Re numbers. 

 

Fig. 16 indicates the lifting force (Cl) and torque coefficients (Ct) from the PR-DNS calculation 

according to the Re numbers. The lifting force coefficient is the magnitude of the y and z 

components of force coefficient vector, and the torque coefficient is the magnitude of the torque 

coefficient vector. Unlike the drag force, lifting force coefficients are proportional to the aspect 

ratio (AR) and the variations are from the orientation. On the other hand, the torque coefficient is 



affected by the d values, and this is because the magnitude of the drag force is larger than the lifting 

force and it affects to the outer product calculation for the torque coefficient.  

 

4.1.5. The ANN (MLP) model development 

As we explained earlier, the ANN calculation was conducted to correlate the particle and flow 

condition with the force and torque coefficient. By doing that, we found the number of datasets we 

need to develop the ANN model. The ANN model development was planned to be done in Task 6 

but we conducted in advance to figure out the number of the datasets we needed. In Task 6, we 

will evaluate the ANN model with the high Re number datasets and develop a new model which 

can predict the interaction force for multiple particles system.    

The ANN model includes two hidden layers with the dimensions of 32, 8. The input has the 

dimensions of 129 which contains the Re number and the latent vector of the non-spherical 

particles. The latent vector has the dimension of 128 and was calculated through the encoder of 

the trained VAE model. The hidden layers use the exponential linear units for the activation and 

the output layer uses the linear function for the regression. The output has the dimension of 6 

including all direction components for the force and torque. We used the Adam optimizer and the 

mean square error (MSE) for the loss function.  

We changed the number of the training datasets from 1,000 to 4,000 to check the loss according 

to the size of the datasets. 1,200 datasets were used for the validation and evaluation datasets. The 

validation datasets have been used to determine the parameter showing the minimum MSE. Note 

that loss of the lifting force and torque coefficient are the average values of the components. As 

the training proceeded, the validation losses were reduced, and overfitting was not observed. As 

we used the larger datasets, the minimum loss tended to be lower, and 4,000 datasets shows the 

converged minimum values. When the spherical particle is assumed, the lifting force and torque 

are zero if the fluid flows symmetrically. The dashed line in Fig. 17 indicates the MSE when we 

assume there is no lifting force and torque.  



 

Figure 17. MSE of the validation datasets for the drag force, lifting force and torque coefficients 
according to the training steps and the number of the training datasets. 

 

4.1.6. The ANN model evaluation 

To evaluate the accuracy of the ANN model, we applied the following drag force model by G.H. 

Ganser [Powder technology, 77(2), 143-152 (1993)] for the non-spherical particle.  
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The above equation considers the sphericity (�) and the diameter of the projected area (dn) of the 

non-spherical particle against the flow direction which means it considers the orientation of the 

particle. Deq is the equivalent volume diameter of the non-spherical diameter. These parameters 

for the datasets we used for the ANN were calculated and the drag force coefficients for the 

validation datasets were obtained. As a result, the MSE was calculated as 21.8 which is higher than 



the minimum value from the ANN, 12.7. We can see that Fig. 17 shows that accurate models can 

be obtained when the number of datasets is large enough.  

Fig. 18 shows the parity plots for the drag force and y-direction lifting force and z-direction torque. 

The first plot (a) indicates the ANN model shows higher accuracy than the drag force model from 

the literature. Furthermore, lifting force and torque coefficients show low variation from the DNS 

calculation. Compared to the lifting force, torque coefficients indicate higher error. It seems 

because when we extract the geometrical features through the VAE model, the sharp shapes of the 

particles were smoothened.  

 

Figure 18. The parity plots for the drag force, y-lifting force and z-torque from the ANN and 
DNS. 

 

To evaluate the accuracy of the lifting force and torque coefficients from the ANN, we utilized the 

following equations from another literature by M. Zastawny [International Journal of Multiphase 

Flow, 39, 227-239. (2012)]. In the equation, θ indicates the incidence angle which is the angle 

between the flow direction and the longest axis of a particle. 
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In the literature, the authors fitted the coefficients with the results from DNS calculations. They 

used four different non-spherical particles. In this study, we selected one of them, the ellipsoidal 

particle having the EI of 0.8. For the evaluation, we collected DNS datasets for the non-spherical 

particles with the same EI value, not only a smooth particle but also rough particles with d values 

of 0.25 and 0.5. The Re number for the evaluation is 1. We conducted the calculation by rotating 

the particles in α direction and applied the ANN model to the rotated particles with the Re number 

of 1. Fig. 19 indicates the drag force and lifting force and torque coefficient prediction from the 

ANN, the PR-DNS, and the literature according to the incidence angle at Re = 1.  

 

Figure 19. (a) The non-spherical particle with an incidence angle, (b) drag force, (c) lifting force, 
and (d) torque coefficients from the equation, the DNS and the ANN according to the incidence 

angle. 

 

Fig. 19 demonstrates the ANN can predict the drag force coefficients for the particles much more 

accurately than the equations. The ANN model can predict the lifting force and torque including 

the surface shape effect which contributes to the deviations according to the incidence angles, even 



though input data does not belong to the training and validation data. The main limitation of the 

equations is that new constants or equations are required for particles with higher d values since it 

is fitted for the ellipsoid particle with d = 0. On the other hand, this study has the advantage of 

making a more universal model through the neural network approach. 

Subtask 4.2 – Simulation in Moderate-Reynolds Numbers 

4.2.1. PR-DNS data collection 

To identify grid resolutions, we perform PR-DNS and apply the Richardson extrapolation for the 

datasets at D/dt = 6, 12 and 20. We assume the error based on the magnitude of force at D/dt = 30. 

Fig. 20 indicates the errors of the force coefficients. Like the data for low-Re flows, the errors 

increase as the aspect ratio (AR) and roughness increase. On the other hand, the trend toward 

decreasing errors is not stable. For the ANN model development, the grid resolutions are chosen 

by multiplying the aspect ratio with 6 so that the grid resolution can be based on the shortest 

dimension of the particle and the error can be below 3%. The required grid resolution for PR-DNS 

does not increase compared to the low-Re conditions. 

 

Figure 20. PR-DNS errors according to grid resolutions. 



With the grid resolution conditions, we collect 5,200 DNS datasets with random Re numbers 

between 10 and 100. The random shape and rotation angle of the particles are chosen, and the 

particles for the VAE are excluded. Fig. 21 show the force coefficients from PR-DNS according 

to the Re numbers. Unlike the low-Re conditions, the force coefficients are less dependent on Re 

numbers, but are still affected by the orientations and shapes (spherical descriptor (d) and AR).  

 

Figure 21. Drag force coefficients according to Re numbers. 

 

Figure 22. (a) Lifting force and (b) torque coefficient according to Re numbers. 

4.2.2. ANN models for a single, non-spherical particle in moderate-Re flows 



Using the PR-DNS datasets, the ANN model is developed. The same procedure and structure from 

the low-Re conditions are utilized to train the model. 4,000 datasets are used as training data, and 

1,200 datasets are applied as validation and evaluation data. The number of epochs is decided by 

the minimum mean square error of the validation datasets. Fig. 23 shows the parity plots for the 

force coefficients, and they indicate high accuracy of prediction. Equation (1) indicates the drag 

force model by G.H. Ganser. The torque model showed relatively higher error for the model in 

low Re flows, but it shows more accurate result for the moderate Re region. The same result can 

be observed by comparing it to Equation (2) by M. Zastawny. When high d is applied, it shows 

force coefficients that deviate from the trend from Equation (2), but the ANN model can predict 

it. MSEs of drag force, lift force, and torque coefficients are 0.0014, 0.00085, and 0.00095, 

respectively. A MAPE of the prediction on Cds is 1.1%, which is lower than the MAPE for the low 

Re regime (4.5%). The overall MAPE of the Cd prediction for low to moderate Re region is 2.8%. 

 

Figure 23. Parity plots for the force coefficients. 



 

Figure 24. Force coefficients at Re = 50 according to incidence angles. 

 

Task 6 Training of MLP-based Regressor and Final Reporting  

Subtask 6.1 – Construction of the MLP architecture  

6.1.1. PIEP method for multi-particles system 

The PIEP model is a method which can consider the neighboring effect. This model evaluates 

undisturbed flows as a linear superposition induced by the neighboring particles. Here, the 

undisturbed flow is defined as the flow that would exist at the particle location in the absence of 

that particle with neighboring particles. Based on the PIEP model by G. Akiki [Journal of 

Computational Physics, 351, 329-357. (2017)], the drag force of the ith particle (������,�) can be 

expressed as follows: 
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In the above equation, ������(���, �) is the mean drag force of the ith particle with the Reynold 

number, Rei and the volume fraction, �. ��→������� is the velocity perturbation due to jth neighbor, and 



it is averaged over the surface of the ith particle. The equation of the drag force can be reformulated 

in terms of the drag force coefficient (CD) as follows. 
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In the above equation, we know the drag force coefficient for a single particle (��(���)) from the 

previous studies, and assume that the mean drag force can be separated independently into ��(���) 

and a function (f) in respect to � and/or Rei. In this study, the macroscopic velocity (umac) of the 

flow is dimensionless unity in x-direction, and the x-components of the velocity perturbation is 

only considered. The velocity perturbation will be calculated from superposition and an ANN 

model, which can predict a flow field of a single particle based on Re numbers and shapes (latent 

vectors). Because we can obtain the drag force coefficient of the ith particle in the poly-dispersed 

particle array from DNS, �(�, ���) can be calculated. The second term of the above equation 

indicates an undisturbed flow force, which requires superposed pressure fields. For the DNS 

simulation, mean Re numbers will be applied based on the mean diameter of the particles, and then, 

Rei will be calculated with the corresponding diameter (di). The next section shows how to 

configure the ANN to predict the flow-fields from latent vectors and the Re numbers. Fig. 25 shows 

the scheme of this study with the ANN models and PIEP method.  



 

Figure 25. The scheme of PIEP method for the drag force with neighboring effects. 

 

6.1.2. Development of a neural network model for flow-field prediction 

To predict the flow-fields, we develop multi-layer neural network model using de-convolutional 

layers. The input of the model has 132 parameters including 128 parameters from the latent vector, 

a spherical descriptor (d), EI, FI and a Re number. The latent vector is obtained through the encoder 

of the VAE model. For the velocity fields, the ANN model includes five de-convolutional hidden 

layers with the number of channels of 256, 128, 64, 32, and 8, respectively. Each layer uses ELU 

for the activation function and the number of strides of 2. The input layer is fully connected and 

utilizes ELU to convert the input to the 3-D datasets. The output layer is also a fully connected 

layer but uses linear activation function because this is a regression model to predict the continuous 

data of the velocity. On the other hand, the pressure model uses the output dimension of 403, which 

is smaller than that of the velocity (1603) because the pressure gradient is only effective near the 

particles. The training is conducted with the ADAM optimizer by using Python and Keras library, 

and the datasets from the previous studies (10,400 datasets, 0.1 < Re < 100) are utilized. Note that 

the particles for the ANN training are independent of the particles for the training of the VAE. The 

output data are from DNS and are converted into the dimension of 1603 or 403 based on the finest 

resolution of the adaptive refinement method. Because this dimension is too large to be loaded, 

data generator is utilized.  The length of axis of the DNS data depends on the size of the particle. 

This is because the length was specified as 20 times the average diameter for the DNS. In this 



study, to match the length of the training data equally, the median value of 160 is chosen. For data 

with a length of less than 160 on the data axis, edge data are calculated through extrapolation to 

match the dimension for the training, but they will not be used for PIEP because this study ignores 

the neighboring effect farther than 10 times the average diameter. With being shuffled, 8000, 1200, 

and 1200 datasets are used for training, validation, and evaluation, respectively. Mini-batch 

training is applied with the batch size of 5, and the optimum model is chosen based on the accuracy 

of the validation data in 10 epochs with an early stopping method. The VAE model to extract the 

latent vector is the same model with a model which was used for the prediction of ��(���).  

Fig. 26 shows the cross-sectional flow-fields (z = zmax/2) from the evaluation data and the 

predictions from the trained ANNs (TCNN 1 and TCNN 2). The ANN models show the mean 

absolute error of 0.00091 and 0.013 for the velocities in the x direction and pressure, respectively. 

The accuracy of the overall model needs to be confirmed after applying the superposition in terms 

of the drag force coefficient.  

 

Figure 36. Evaluation and predicted flow fields from the DNS and the ANN models, 

respectively.  

When the Re number is close to 100, the wake of the flow appears long to the boundary. This 

means that neighboring particles can affect the centered particle even from far distance, but in this 

study, the effect of particles farther than 10 times the average diameter is ignored.  

We have tried to obtain the flow filed model using the decoded 3D voxel data from the VAE model. 

However, it has turned out that applying latent vector shows better accuracy. Another strategy we 



have tried is applying VAE to the flow fields, but the latent vector to represent the fields only has 

shown about 95% of reconstruction error. Because the total error will be higher than the 

reconstruction error after correlating with the particle shapes, we choose the de-convolutional 

ANN to model the flow fields.    

6.1.3. PIEP application for sparse multi-particle systems 

Five irregular-shaped particles are randomly chosen from the evaluation data of the ANN. The PR-

DNS, in this study, adjusts the viscosity of the flow (��) with the density (��) and the macroscopic 

flow velocity (����) of unities. Each particle has a different Re number, and the averaged Re 

numbers for the tests are 5 (2 particles) and 50 (3 particles) based on the following expressions. 

The individual Re number (Rei) of each particle is applied to obtain the drag force coefficient and 

the flow field from the ANN models. 
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Fig. 27 shows the cross sectional (z = 0.5L, L: length of domain) flow fields of 2 (Case 1, L = 112) 

and 3 particles (Case 2, L = 144) from the PR-DNS. Far-field boundary conditions are applied for 

the cases. For Case 1, the first (1) and the second particles (2) are located at (0.5L, 0.5L, 0.5L) and 

(0.6L, 0.5L, 0.5L), respectively. The three particles for Case 2 are located at (0.5L, 0.5L, 0.5L), 

(0.6L, 0.6L, 0.5L), and (0.8L, 0.55L, 0.5L), respectively. 

 

Figure 27. DNS results of Case 1 (left) and Case 2 (right). The color bar indicates flow velocity 
in x-direction. 



To predict the drag force coefficients, the interaction force ANN model (MLP) is applied, and the 

flow field ANNs (TCNN 1, 2) are utilized to superpose the flow field in the flow direction (x). 

MLP and TCNN utilize the latent vector from the VAE, which was trained with independent 

particles sets. 

 

Figure 28. A superposed flow field (x-direction) of particle 1 and particle 2 of Case 3 using 
TCNN 1. Note that the color bar varies between 0.1 and -1.1. 

 Fig. 28 shows the superposed velocity field of particle 1 and particle 2 of Case 3 with TCNN. This 

perturbed velocity field is used to calculate the averaged velocity of the x-component on the surface 

of particle 3. Even though the resolution of the grids is not high enough to represent the detailed 

shape of particle 3, the resolution of the 48 × 48 × 48 from the input data of the VAE is reflected 

to obtain the averaged velocity. Due to the sparse concentration of the system, the solid volume 

fraction can be ignored. Therefore, the following equation is applied to obtain the predicted force 

coefficients (���,�). We applied the same method for obtaining the superposed pressure field in the 

following equation.  
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The following table shows the drag force coefficients from the PR-DNS, and the results from the 

ANN models and the PIEP model. The DNS results for a single particle regards the individual Re 



number, Rei. The fourth row indicates the drag force coefficients just based on the MLP without 

the neighboring effect. The table shows percentage errors of cases relative to the multi-particle 

results from the DNS, and they are decreased after considering the neighboring effect. For the 

particles located at the front, it can be observed that the error is not large even just with ANN 1 

because of the least influence from neighboring particles. Whereas particle 2 of Case 1 shows a 

higher error, the error of particle 2 of Case 2 is smaller due to the narrow wake. Instead, particle 3 

of Case 2 indicates the highest error due to the neighboring effect. When the PIEP with TCNNs is 

applied, the overall error reduces. A MAPE of 5 cases is reduced to 21.5% to 1.7%, and the errors 

of particles under strong neighboring effect are significantly reduced.  Due to the error of the MLP 

(2.8%), TCNNs (0.5%), and the superposition assumption, a certain amount of error is inevitable. 

Table 5. The drag force coefficients and MAPEs of the sparse multi-particle systems, Case 1 and 
Case 2. 

CD / error Case 1 (Re = 5.0) Case 2 (Re = 50.0) 

1 2 1 2 3 

DNS (multi-particle) 6.66 4.48 1.73 1.68 1.40 

DNS (single particle) 7.48 7.21 1.75 1.71 1.63 

MLP 7.53/13.1% 7.37/64.5% 1.75/1.11% 1.71/2.3% 1.62/16.3% 

MLP+ TCNNs/PIEP 6.64/0.2% 4.23/5.6% 1.73/0.1% 1.70/1.7% 1.38/1.0% 

 

If the multi-particle system contains many particles, solid volume fraction needs to be considered. 

Several studies [Chemical Engineering Science, 192, 1157-1166. (2018)] have suggested the 

model to regard the effect but there is no reference for the irregular-shaped particles.  

6.1.4. Solid volume fraction effect 

There are several studies to include the solid volume fraction (�) effect on the drag force, but the 

separate term is going to be applied to utilize the individual drag force model (MLP) in this study. 



Hilton et al. [Chem. Eng. Sci., 65 (5) (2010)] showed the solid volume effect for particle 

assemblies of ellipsoids and cuboids as follows: 

�(���, �) = (1 − �)��.���.�����[�.�(�.��������)�]      (13) 

Equation 13 is for an average drag force, but it will be investigated whether it can describe the 

individual particle of this study. Fig. 29 shows the solid volume fraction effect according to Rei 

and �. When � is 0.5% with Re =50.0, the volume fraction factor is only about 1.4%. As the solid 

fraction increases, the effect of the fraction and the dependence of Re increases. We employ one 

hundred irregular particles with � = 0.005 to ignore solid volume fraction effect and investigate 

neighboring particle effect.  

 

Figure 29. Volume fraction factors according to Re and �. 

6.1.5. Dilute multi-particle system 

The PR-DNS is applied to collect the drag force coefficients of sparse systems with � = 0.005. 

100 irregular particles in the evaluation data of TCNNs are included. Particles have a length of 6 

for the smallest axis, and as in training the ANN models, the AR is between 1 and 2. The particles 

are located randomly, and the particle voxel data are utilized to inhibit overlaps between particles. 

For the DNS, the AMR update is applied after the velocity residual approaches to 1.2×10-6, and 

then the simulation stops when the residual is 1.0×10-6. Periodic boundary conditions are applied 



for all directions, and the driving force is applied based on Equation (14), where pc is a parameter 

used to adjust the magnitude of the pressure gradient.  

∇�� = �������/〈�〉�          (14) 

For the systems with the initial Res of 1, 5, 25 and 50, 0.05, 0.5, 5 and 15 are chosen for ∇��, 

respectively. The first row in Fig. 30 indicates the velocity field in x-direction with z = 0.5zmax 

from the DNS. Converged Res shows the average values of 0.5, 4.2, 24.0 and 49.8 of Res. The 

second row of Fig. 30 shows the predicted, superposed flow fields from TCNN 1 using the PIEP 

method.  

 

Figure 30. Velocity fields (x-direction) from DNS (top) and TCNN 1/PIEP (bottom) for 100 
irregular shaped particles with Re = 0.5, 4.2, 24.0, and 49.8 (left to right). 

 

For the 100 irregular-shaped particles, the MLP is applied to obtain CD, and TCNNs and PIEP are 

utilized to regard the neighboring effect (���). In this study, we first find the sum of the velocity 

fields for all particles, and then subtract only the velocity field of the corresponding particle. 

Because the predicted flow fields from ANN 2 have limited domain size, linear summation of the 

fields accumulates an error, which cannot be ignored when there are a lot of particles. Therefore, 

incidence velocity of the combined domain is utilized to compensate for the error as follows. 



�� = 〈∑ (��,���� − ����)�
��� 〉���         (15) 

∑ ��→�
�
���,��� = ∑ (��,���� − ����)�

��� − (��,���� − ����) − ��      (16) 

In Fig. 31, the prediction with the MLP, TCNNs and PIEP shows higher accuracy than the model 

only with the MLP. The data are arranged in ascending order based on the true values, and when 

only the MLP is used, the plot shows a small tendency according to the index due to the absence 

of the neighbor effect, but in the case of PIEP, positive correlations can be observed. Some studies 

[Big Data, 8(5), 431-449 (2020)] used a moving average to smoothen the noise of the prediction 

according to the particle index, but this approach is impossible without the true values. Table 6 

shows MAPEs and R2 scores of the cases. It shows higher accuracy with TCNNs/PIEP than the 

prediction only with the MLP. Predictions for smaller Re show higher accuracy because the flow 

domain from TCNNs is large enough to include the flow pattern. However, for higher Re, the wake 

is larger than the domain, and it makes strong interaction over far distance. Because this study only 

considers the interaction within 10 deq, high Re shows relatively higher error. If solid volume 

fraction is higher, the effective distance can be smaller, but the solid volume fraction effect needs 

to be investigated according to Re, �, AR and d.  

 



 

Figure 41. Cds from DNS, MLP, and TCNNs/PIEP for 100 irregular shaped particles at Re = 0.5 
(a), 4.2 (b), 24.0 (c), and 49.8 (d). 

Table 6. R2 score and MAPE with MLP, TCNNs/PIEP. 

<Re> Remin Remax R2 (MLP/TCNNs) MAPE (%, MLP/TCNNs) 

0.51 0.42 0.68 0.19/0.62 12.8/9.8 

4.2 3.5 5.7 0.16/0.65 14.5/9.8 

24.0 20.0 32.3 0.26/0.62 13.4/9.5 

49.8 40.8 66.9 0.24/0.48 13.4/11.1 



Subtask 6.2 – Training, Validation, and Optimization of MLP 

6.2.1. Solid volume effect formulation 

Because the existing solid volume effect factors (f) are for spherical or smooth particles, we need 

to collect the data for high d particles and validate the factors. To do that, we have created four 

particles as follows. Please note that the spherical harmonic method provides different shapes with 

the same shape factors, so we create Particle 4 to compare with Particle 1.  

Table 7. Shape factors of the particles for validating solid volume effect factor. 

Particle D AR 

1 0.5 2 

2 0 1 

3 0.3 2 

4 0.5 2 

 

To generate packed systems, we apply a simple Monte Carlo packing algorithm to most cases 

except the case with � = 0.2 . For the high concentration condition, The Monte Carlo-based 

algorithm shows extremely heavy computation time. Therefore, we utilize the advancing packing 

algorithm for the systems with � = 0.2. To achieve even higher concentration, additional methods 

such as a minimum potential method can be applied, but we just applied the simple advancing 

method to obtain the concentration up to � = 0.215.  

 

Figure 32. Solid fraction factors of homogeneous particle systems according to Re, d, and �. 
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By using Res between 0.1 and 100 and � between 0.01 and 0.215 for the PR-DNS, we plot the 

results in Fig. 32 based on the equation in the literature [Powder Technology, 401, 117303 (2023)].  

����� = ���(��,  �,  �) = �����.���.����� (��.�(�.�����(��))�)      (17) 

���(�)
��� (�)

= (−3.7 + 0.65 exp(−0.5(1.5 − log(��))�))      (18) 

The plots for Particle 1 in Fig. 32 (blue, orange, gray, and yellow markers) show solid fraction 

dependency as opposed to the tendency shown in Equation 2. Moreover, the factors vary much 

more than the range from Equation 18. This implies that we need to modify Equation 17 and 18. 

In addition, the trend below Re = 1 does not follow the relationship of Equation 18. We will narrow 

down the Re range between 1 and 100 because it seems we need to collect intensive data for the 

low Re regime. It has shown a much higher computational cost for the Re regime around 0.1. Lastly, 

it seems there is no big impact of roughness on the solid fraction effect. Particle 4 also does not 

show much difference to other particles including Particle 1 having the same d value. Note that we 

are applying the same orientation for all same particles to obtain the f. We have assumed that f 

depends on Re, �, and averaged d of surrounding particles. If it turns out that d does not affect the 

f, we will not need to add any additional parameters to Equation 17 and 18, but just modify them 

based on the PR-DNS results.  

We have shown that particle shape does not affect the solid fraction effect much. With the data of 

Particle 2, 3, and 4, we have formulated the solid fraction effect. We collect more data of Particle 

1 using the PR-DNS, and Fig. 33. shows the result. Note that the red and black boarder indicate 

the particles other than Particle 1 and we have ignored the low Re data for simplicity. Particles 

with back border have AR of one instead of two. These data show smaller f factors and cause error 

on the following PIEP results. It will be discussed further in the next section. Note that the Re 

number is the particle Re number based on superficial velocity. 

Based on the data collected, we assume the following formulation by referring to the literature 

[International journal of multiphase flow, 20(1), 153-159. (1993)]. 

� = (ln(��) − 3.5)�            (19) 



���(�)
��� (���)

= �(�)� + �(�)          (20) 

�(�) = 0.18 ln(�) + 0.23         (21) 

�(�) = 18.1� − 10.4         (22) 

The regression using Equation (20) shows R2 scores between 0.44 and 0.99, and it shows 0.97 and 

0.99 with Equation (21) and (22), respectively. Using the regression parameters, Equation (19-22) 

shows mean absolute percentage error of 5.3% and R2 score of 0.97. 

 

 

Figure 33. Solid fraction effect (homogeneous) according to concentration and Re. 

  

 

6.2.2. High concentration systems 

To test the solid fraction effect from the previous study, we generate three high concentration 

systems (Case 1: 6.1% and Case 2: 5.1%, Case 3: 13.2%) using random packing method. We 

assume we can apply the previous model for f factor can be applied to random, polydisperse 

systems because the particle shape does not affect f factor much. With Re numbers of 1.81, 2.25 

and 49.1, respectively, we compare the predicted results from the PIEP-based method with the 

results from the PR-DNS. Case 2 uses monodisperse system using particles with d = 0.49 and AR 

= 1.1. Case 1 and 3 utilize polydisperse particles with d = 0 – 0.5 and AR = 1 - 2. Fig. 34. shows 
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the x-velocity fields from the PR-DNS and TCNN for Case 1, and Fig. 35. shows the ascending 

order data of the drag force coefficients of Case 1, 2 and 3. Note that for calculating the f factor, 

we have used the average Re instead of individual Re. The results show MAPEs of 12%, 7% and 

24.9%, and R2 scores of 0.46, 0.7 and -0.56, respectively. Without the PIEP method, the prediction 

shows 4 – 9% lower accuracy. Case 3 shows low accuracy because the f factor prediction is not 

accurate, and when we apply a modified value from the PR-DNS, it shows much better prediction. 

It implies that f factor prediction is important, and we believe the reason of error is due to the high 

AR of the monodisperse particles using for the f factor regression. It makes aligned arrangement 

of the particles, and it shows higher f factors than those of random particles. As a result, we can 

see lower f factors for low AR particles in Fig. 33 because they do not make strong alignment. 

Therefore, the f factor model should be re-formulated with random oriented particles, and this will 

be provided in the next section.  

 

Figure 54. DNS and TCNN results for high concentration systems. 

 

 



Table 8. Prediction results with MLP, TCNN and PIEP for high concentration systems. 

 Case 1 Case 2 Case 3 Case 3-1 
dispersity poly- mono- poly- poly- 
conc. (%) 6.1 5.1 13.2 13.2 

Re 1.82 2.25 49.1 49.1 
f 2.02 1.84 2.98 2.46 

MAPE 
(MLP+PIEP/MLP, %) 11.2/20.3 7.0/13.2 24.9/28.6 12.7/17.4 

R2 
(MLP+PIEP/MLP, %) 

0.53/-
0.46 

0.70/-
0.06 

-0.56/-
1.01 0.48/0.06 

 

 

Figure 35. Prediction results using MLP or/and TCNN+PIEP method for (a) Case 1, (b) Case 2, 
and (c) Case 3-1. Note that (c) is using the modified f factor driven from the PR-DNS. 

 

6.2.3. Solid volume effect for random particles and evaluation 

To modify the solid volume effect factors with random particles (d = 0~0.5, AR = 1~2), we have 

performed the PR-DNS with the concentrations (�) of 0.5%, 2.0%, 6.1%, 10.8%, 14.7%, and 

20.0%. We have applied random packing algorithm for the systems except the system with 20.0%, 

which need to use the advanced packing method. Resolution has been adjusted to contain at least 

one hundred particles for all cases. The MLP is utilized to calculate the CD for each particle for 

given Res rather than applying the PR-DNS to all individual particles. It is because the MLP has 

shown good predictions. Once the PR-DNS is converged with a certain value of Re, then the MLP 



is applied to obtain the average CD taking the particle size into consideration, and the f can be 

calculated by dividing the CD with the true average CD from the PR-DNS. Table 9 shows the f 

factors, and the f exceeds 10% when the solid volume fraction is higher than 2%. 

Table 9. Solid volume fraction effect factors according to Re and volume fraction. 

Re 0.5% Re 1.0% Re 2.0% Re 6.1% 
0.96 1.102 1.286 1.077 0.9216 1.358 1.12 1.993 

1.751 1.061 2.238 1.1 1.7313 1.266 8.62 1.878 
5.718 1.092 15.28 1.042 11.4 1.237 22.13 1.621 

10.164 1.101 38.93 1.006 44.832 1.146 54.74 1.568 
46.71 1.026 59.1 1.011 57.774 1.14 

    57.3 1.017         
Re 10.8% Re 14.7% Re 20.0%   

1.17 2.84 1.25 3.594 0.8218 4.457 

  

2.278 2.691 12.64 2.928 1.6156 3.933 
11.17 2.415 49.65 2.612 11.677 3.573 
15.48 2.262 69.84 2.637 29.895 3.218 
26.74 2.157 

    

52.935 3.26 
43.47 2.125 

    69.47 2.144 
 

Fig. 36 shows ln(�) /ln (1 − �) according to Re, and it shows �-dependency like homogeneous 

systems, but also shows linearity depending on log (Re) when � is equal to or higher than 2%. It 

represents packing or alignment of particle array affects the interaction force, and to evaluate the 

PIEP method for random arrays, we need to re-formulate the solid volume effect factors.  



 

Figure 37. Solid fraction effect (random arrays) according to concentration and Re. 

 

When � is lower than 2%, the results are inconsistent with the tendency when the volume fraction 

is higher than 2%. Using the data between 2 and 20.0% and the same approach in the previous 

section, the f factor can be formulated as follows: 

���(�)
��� (���)

= �(�) ln (��) + �(�)         (23) 

�(�) = −0.67 ln(�) − 0.79         (24) 

�(�) = −�−68.35 ln(�) − 65.62        (25) 

The regression shows good fit, and the R2 scores for Eq. (23) are all above 0.89. Eq. (24, 25) show 

R2 scores above 0.99.  Using Eq. (23-25), we apply the MLP, TCNN, and PIEP model to the cases 

in the previous section. Table 10 shows that Eq. (23-25) can provide better prediction than the 

results in the previous section for all cases without modifying the average drag force coefficient. 

If the solid volume fraction is lower than 2%, an error up to 10% should be tolerated, and to prevent 

this, it is necessary to develop another formulation for the f factors for low concentration conditions.   
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Table 10. Prediction results with MLP, TCNN and PIEP for high concentration systems with Eq. 
(23-25). 

 Case 1 Case 2 Case 3 
dispersity poly- mono- poly- 
conc. (%) 6.1 5.1 13.2 

Re 1.82 2.25 49.1 
f 1.89 1.77 2.53 

MAPE (%) 10.3 6.1 12.2 
R2 (%) 0.60 0.76 0.47 

 

To sum up, the results show that the neural network-based model can predict high concentration, 

poly-dispersed systems with irregular particles. Besides providing a drag force model for irregular 

particles, this study has the great advantage of being efficient in terms of data collection. The 

current study has mainly required to collect single particle data to predict multi-particle system, 

and it makes this method significantly efficient compared to other machine learning studies for 

multi-particle systems, which require huge data collection [Big Data, 8(5), 431-449 (2020), 

Powder technology, 345, 379-389 (2019)]. The current study can be coupled with a collision model 

for CFD-DEM calculation, and our group published another machine learning-based collision 

model, which can be coupled for irregular particles [Chemical Engineering Science, 251, 117439 

(2022)].  

Outcomes 
The current study provides a comprehensive drag force model for irregular-shaped particles in gas-

solid flows. By applying the VAE, we have been able to describe the irregular particles from 

spherical harmonics with random numbers. Even though the VAE has the tendency to smoothen 

the particle shapes, the trained MLP has shown good predictions on interaction forces, especially 

on the drag force. Instead of setting orientation angles as input parameters for the MLP, we have 

included the angles in the latent vector of the VAE, so that we don’t need to make additional 

combinations other than Re and shapes. The MLP has been evaluated with datasets, which have 

not been used for training in terms of incidence angle. It matches well with the PR-DNS results 

and allows us to predict the interaction forces of the irregular particles. Whereas existing models 

[Chemical Engineering Science, 192, 1157-1166 (2018)] are only able to predict the interaction 

forces of spherical or regular-shaped particles, the current model can cover a variety of particle 



shapes. Furthermore, the existing models need additional data to obtain new parameters for the 

prediction, but the current approach can be applied to other data if we train the model with proper 

range of conditions. This single particle study was published in Powder Technology at the 

beginning of the second year of this project [Powder Technology, 392, 632-638 (2021)]. 

To expand the scope of this study to multi-particle systems, we have chosen the PIEP method to 

apply linear superposition. This approach has an advantage in terms of data collection. Because 

the superposition method does not require the data for multi-particles systems. Only small datasets 

have been collected to evaluate the PIEP model in this study, and we have used the same data from 

the previous, single particle study. To apply the PIEP method, velocity field in flow-direction and 

pressure field of single particle are required. Therefore, we have developed the TCNN model, 

which can predict the flow fields from the latent vector and Re. The TCNN model predicts the 

flow pattern well with low error and shows the asymmetric flows for oriented, irregular particles. 

TCNN has been utilized to calculate the undisturbed flow force, and low concentration systems up 

to 0.5% are calculated. Because the average drag force is affected by the concentration, we choose 

to study low concentration systems first to explore the eligibility of PIEP method. By assuming 

the solid fraction factor as unity, we have been able to predict the low concentration systems with 

mean absolute percentage error between 9 and 10% and R2 score between 0.56 and 0.62. Due to 

the nonlinear nature of the multi-particles flows and error from the machine learning-based models, 

the prediction is not perfect, but this method is much more efficient because the models can be 

trained with small number of datasets. This is because we put the PIEP, physics-based model at 

the end of the whole model structure, and it gives us much more flexibility in leveraging the neural 

network models. This study about low concentration systems was published in Chemical 

Engineering Science around the middle of the third year of this project [Chemical Engineering 

Science, 266, 118299 (2023)]. 

We have collected some datasets for higher concentration systems up to 21.5% and developed the 

model for the solid fraction effect. For homogeneous systems, the PR-DNS results have shown 

that the particle shapes do not affect much the solid fraction effect. However, it has shown that it 

is affected much by voidage, so we need to modify the existing model [International journal of 

multiphase flow, 20(1), 153-159. (1993), International Journal of Multiphase Flow, 39, 227-239 

(2012)]. to satisfy the PR-DNS results. We assume the modified, regressed model can be applied 



to polydisperse systems as well, and it shows moderate prediction on the systems with errors 

between 7 and 13% and R2 score between 0.48 and 0.7. Unlike the previous models, we only 

provide the model, which can predict the flows with Re numbers between 1 and 100 because the 

high concentration flows with Re below than 1 have shown complicated trends of the f factor, and 

computational cost is expensive for data collection. However, the above results show a high 

probability that a wider range of flows can be predicted with the PIEP model if there is an 

appropriate model for the solid fraction effect. 

This study provides neural network-based, interaction force model including an unsupervised 

model for irregular-shaped particles in incompressible flows. From low to moderate Re numbers 

and solid volume fraction, we have been able to develop a cost-effective prediction model for drag 

force. This approach can be applied to a wider range of flow conditions and other force components 

including lift force and torque we have presented for single particle systems. This study is 

significant in that it increases the efficiency of data collection by utilizing machine learning-based 

models, which are considered a black box, to obtain intermediate physical values required for a 

physics-based model. For the future study, we can: 

1. Expand the model by collecting more data of other Re number regime and lower St 

number,  

2. Develop a TCNN model for y, z-direction velocity to model lifting force and torque, 

and 

3. Resolve nonlinear behavior of PEIP model to improve the accuracy, 

to broaden the scope of the current study. Because all the machine learning study has been 

conducted with TensorFlow package using Python, the model should be able to be incorporated in 

MFiX AI platform just with simple data transformation algorithm.  


