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Highlights

• Formulation of a stochastic hyperbolic PDE as a high-dimensional parametric PDE.
• Novel SFV method for quantification of intertemporal uncertainty in systems of conservation laws posed on graphs.
• Formulation of the stochastic junction Riemann problem to compute numerical fluxes at the nodes of the graph.
• Application of the SFV method to a real-world problem of stochastic gas flows on networks.
• Convergence analysis for the statistical moments of the solution.
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Abstract

We develop a weakly intrusive framework to simulate the propagation of un-
certainty in solutions of generic hyperbolic partial differential equation sys-
tems on graph-connected domains with nodal coupling and boundary condi-
tions. The method is based on the Stochastic Finite Volume (SFV) approach,
and can be applied for uncertainty quantification (UQ) of the dynamical state
of fluid flow over actuated transport networks. The numerical scheme has
specific advantages for modeling intertemporal uncertainty in time-varying
boundary parameters, which cannot be characterized by strict upper and
lower (interval) bounds. We describe the scheme for a single pipe, and then
formulate the controlled junction Riemann problem (JRP) that enables the
extension to general network structures. We demonstrate the method’s ca-
pabilities and performance characteristics using a standard benchmark test
network.

Keywords: Uncertainty Quantification, Semi-Intrusive Method, Graphs,
Hyperbolic Conservation Law, Gas Pipeline

1. Introduction

Many problems in physics and engineering are modeled by hyperbolic sys-
tems of conservation or balance laws. Several prominent examples include
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the Shallow Water Equations of hydrology [1], the Euler Equations for invis-
cid, compressible flow [2], and the Magnetohydrodynamic (MHD) equations
of plasma physics [3]. Many efficient numerical methods have been developed
to approximate the solutions of systems of conservation laws [4, 5], e.g. finite
volume schemes [6] or discontinuous Galerkin methods [7]. The classical as-
sumption in designing efficient numerical methods for hyperbolic systems is
that the initial data, boundary conditions, and coefficients of the model are
known exactly, i.e., they are deterministic. However, in many practical ap-
plications it is not always possible to obtain exact data due to, for example,
measurement, prediction, or modeling errors.

Numerous studies describe incomplete information in the uncertain data
mathematically as random fields. Such data are described in terms of statis-
tical quantities of interest such as the mean, variance, and higher statistical
moments, and in some cases the distribution law of the stochastic data is
also assumed to be known. Numerical techniques have been developed to
quantify process uncertainty by computing the mean flow and its statistical
moments. They are based on approaches such as the Monte-Carlo (MC) [8],
multi-level Monte Carlo (MLMC) [9], generalized polynomial chaos (gPC)
[10, 11], the probabilistic collocation method (PCM) [12], Godunov schemes
[13], multiresolution methods [14] and stochastic Galerkin (sG) projections
[15, 16].

Uncertainty quantification methods can be roughly classified into intru-
sive and non-intrusive schemes. Non-intrusive UQ methods allow the re-use
of an existing deterministic code as a black box without any modifications.
An example of such an approach is the Monte Carlo method: given a large
number of realizations of the random parameters, we generate the corre-
sponding outputs from our deterministic code and then process this data
to obtain the statistical mean and variances. The possibility to reuse ex-
isting deterministic codes is a clear advantage of non-intrusive approaches.
However, methods such as Monte Carlo tend to require a prohibitively large
number of evaluations of the deterministic solutions. Intrusive UQ methods,
on the contrary, require modifications to the algorithms and their imple-
mentations in the deterministic computational scheme. For example, a well
known and widely used sG method for hyperbolic systems transforms the
original PDEs for the primary variables into a set of PDEs that are defined
with respect to the polynomial expansion coefficients [15]. This reduces the
simulation time, but might pose mathematical challenges, such as the loss of
hyperbolicity of the transformed PDEs.
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The application of uncertainty quantification to hyperbolic conservation
laws on graphs has found compelling motivation from the need to model and
control vehicle traffic [17] and gas pipeline flows [18]. These recent studies
relied on tailored polynomial chaos expansions and the stochastic Galerkin
method for forward simulation of the stochastic PDEs subject to distribu-
tional uncertainty in initial conditions and parameters [19], and primarily
examined the problem of stabilization. The representation of uncertainty
in gas pipeline network flows requires the solution of stochastic PDEs on a
large number of one-dimensional domains connected in a graph. Kirchhoff-
like conditions are used to specify mass conservation at graph vertices, and
may moreover include the effect of gas compressors that are used to actu-
ate flow throughout the network. Two key challenges are generalizability
and scalability of the technique to arbitrary and large graphs, and handling
of inter-temporal uncertainty. Gas pipelines often experience temporary in-
creases in gas demand of limited duration that start at an uncertain time, so
that two possible boundary condition profiles would not follow strict point-
wise ordering in time. As a result, using distributional uncertainty on the
boundary parameter point-wise in time would result in an excessive uncer-
tainty estimate. The ability to efficiently compute an accurate uncertainty
quantification for system pressures and flows in such scenarios motivates our
investigation.

In this study, we present a semi-intrusive Stochastic Finite Volume (SFV)
method to quantify the uncertainties that arise due to random model param-
eters in the underlying hyperbolic PDE system, including initial conditions,
uncertain constants, and complex time-dependent distributions on boundary
conditions. The SFV method requires some modifications of the determinis-
tic code that is used for solving a standard initial boundary value problem
(IBVP) for hyperbolic conservation laws, which only involve additional in-
tegration of the numerical fluxes over the cells in the stochastic space and
can therefore be considered mild. This approach preserves the hyperbolicity
of the model, and at the same time is more computationally efficient than
the Monte Carlo method. To enable the generalization to graph domains,
we formulate a junction Riemann problem (JRP) method for propagating
uncertainty solutions through graph nodes with flow controllers. We apply
the scheme for uncertainty quantification of the dynamical state of fluid flow
over transport networks with nodal coupling conditions.

The remainder of the paper is organized as follows. In Section 2, we pro-
vide a general presentation of the Stochastic Finite Volume (SFV) method,
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followed by a brief description of the one-dimensional model of gas flow in a
pipe and the underlying model uncertainty that accounts for inter-temporal
factors. Section 3 then extends the SFV methods for UQ in PDEs on graphs
by introducing the JRP for the considered model of gas flow, and summarizes
standard network modeling for gas pipeline systems as the setting of appli-
cation. Finally, numerical results for a single pipe and a small test network
are given in Section 4.

2. Uncertainty Quantification for Gas Flow in a Pipe

Our goal is to develop a simple, flexible, and extensible stochastic repre-
sentation of gas flow and pressure in a pipe subject to transient boundary
conditions that will be easily used as a building block for more complex
simulations. In this section we describe in general the SFV method for hy-
perbolic conservation laws, and then the basic problem for gas flow in a pipe.
We then explain the challenge of intertemporal uncertainty modeling, which
to our knowledge has not been addressed using standard methods for even
this basic problem.

2.1. Stochastic Finite Volume method

Here we present the Stochastic Finite Volume Method (SFVM) for un-
certainty quantification for general conservation laws [20, 21], which is based
on the finite volume framework. The SFVM is formulated to numerically
solve the system of conservation laws with sources of randomness in flux
coefficients, initial and boundary data.

Consider the hyperbolic system of conservation laws with random flux
coefficients

∂U

∂t
+∇x · F(U, ω) = 0 (1)

defined over t > 0 on a spatial domain x = (x1, x2, x3) ∈ Dx ⊂ R3, for
p conserved values U = [u1, . . . , up]

>, and fluxes F = [F1,F2,F3], Fk =
[fk1 , . . . , f

k
p ]> for k = 1, 2, 3. A stochastic IBVP is obtained by specifying

random initial data

U(x, 0, ω) = U0(x, ω), x ∈ Dx, ω ∈ Ω, (2)

and possibly random boundary conditions

U(x, t, ω) = UB(t, ω), x ∈ ∂Dx, ω ∈ Ω. (3)
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Here Ω denotes the set of all elementary events in a probability space (Ω,F ,P),
with F a σ-algebra of all possible events, equipped with a probability measure
P.

A seminal study has developed a mathematical framework of random en-
tropy solutions for such scalar conservation laws of form (1)–(2), and proved
existence and uniqueness of such solutions for scalar conservation laws in
multiple dimensions [8]. Furthermore, the existence of statistical quantifiers
of the random entropy solution, such as the statistical mean and k-point
spatio-temporal correlation functions, have been proven to exist under suit-
able assumptions on the random initial data.

We parametrize all the random inputs in the equations (1)–(2) using the
random variable y = Y(ω), which takes values in Dy ⊂ Rq, and rewrite the
stochastic conservation law in the parametric form:

∂tU +∇x · F(U,y) = 0, x ∈ Dx ⊂ R3, y ∈ Dy ⊂ Rq, t > 0; (4a)

U(x, 0,y) = U0(x,y), x ∈ Dx ⊂ R3, y ∈ Dy ⊂ Rq. (4b)

Let us now define the two spaces

Tx =
Nx⋃

i=1

Ki
x and Cy =

Ny⋃

j=1

Kj
y , (5)

such that Tx is the triangulation of the computational domain Dx in the
physical space, and Cy is the Cartesian grid in the domain Dy of the param-
eterized probability space. We further assume the existence of a probability
density function µ(y) on the space Dy, and compute the expectation and
variance of the n-th solution component of the conservation law (4a)–(4b) as

E[un] =

∫

Dy

unµ(y) dy, n = 1, . . . , p, (6)

V[un] = E[(un − E[un])2] = E[u2
n]− (E[un])2, n = 1, . . . , p. (7)

The SFVM scheme [22] can be obtained from the integral form of equations
(4a)–(4b):

∫∫

Kj
yKi

x

∂tUµ(y) dxdy +

∫∫

Kj
yKi

x

∇x · F(U,y)µ(y) dxdy = 0. (8)
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Introducing the cell average

Ūij(t) =
1

|Ki
x||K

j
y |

∫∫

Kj
yKi

x

U(x, t,y)µ(y) dxdy (9)

with the cell volumes

|Ki
x| =

∫

Ki
x

dx, |Kj
y | =

∫

Kj
y

µ(y) dy, (10)

and performing the partial integration over Ki
x, we obtain

dŪij

dt
+

1

|Ki
x||K

j
y |

∫

Kj
y

[ ∫

∂Ki
x

F(U,y) · n dS
]
µ(y) dy = 0. (11)

Next, we use any standard numerical flux approximation, which we de-
note henceforth by F̂

(
ŨL(x, t,y), ŨR(x, t,y),y

)
, to replace the discontin-

uous flux, F(U,y) ·n, through the element interface. Here the term ŨL and
ŨR denote the boundary extrapolated solution values at the edge of the cell
Ki
x, obtained by the high order reconstruction from the cell averages, see

Section 2.3 for details. The complete numerical flux is approximated by a
suitable quadrature rule as

F̄ij(t) =
1

|Kj
y |

∫

Kj
y

[ ∫

∂Ki
x

F̂(ŨL, ŨR,y)

]
µ(y) dy ≈ 1

|Kj
y |

∑

m

F̂(t,ym)µ(ym)wm,

(12)
where F̂ denotes the flux integral over the physical cell, m = (m1, . . . ,mq) is
the multi-index, and ym and wm are quadrature nodes and weights, respec-
tively. The SFV method then results in the solution of the following ODE
system:

dŪij

dt
+

1

|Ki
x|

F̄ij(t) = 0, ∀i = 1, . . . , Nx, ∀j = 1, . . . , Ny. (13)

Therefore, to obtain the high-order scheme we first need to provide the high-
order flux approximation based, for example, on essentially non-oscillatory
(ENO) or weighted essentially non-oscillatory (WENO) reconstruction in the
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physical space [23, 24]. Second, we have to guarantee the high-order integra-
tion in (12) also by applying the ENO/WENO reconstruction in the stochas-
tic space and choosing the suitable quadrature rule. Finally, we need the
high-order time-stepping algorithm to solve the ODE system (13), such as
the SSP Runge-Kutta method to guarantee the TVD property.

Remark. Note that the parametric conservation law (4) could also be refor-
mulated as a conservation law in 3+q dimensions with zero flux in stochastic
dimensions, and one could apply the classical finite volume formulation in a
weighted space to solve it.

2.2. SFV Method Applied to the 1-Dimensional Model of Gas Flow

An isothermal gas flow in a long pipe in the regime without waves or
shocks can be sufficiently described using two hydrodynamic PDEs with re-
spect to the density and the momentum [25, 26, 27]. Because the effects of
turbulent diffusion are ignored in that approximation, these equations can be
considered as a phenomenological average of the three- dimensional Navier–
Stokes hydrodynamic equations that captures effects over spatial scales much
longer than the pipe diameter and over time scales longer than those required
for dissipation of acoustic waves. The rapid dissipation of turbulent effects
in this regime of interest precludes the formation of shock waves, which are
strongly nonlinear acoustic events that develop and dispel over much shorter
time scales as a result of significant abrupt changes. The isothermal Euler
equations describe the conservation of mass and momentum:

∂tρ+ ∂x(ρv) = 0, (14a)

∂t(ρv) + ∂x(ρv
2 + p) = − λ

2D
ρv|v| − ρg sin θ. (14b)

The variables in (14) are gas velocity v, pressure p, and density ρ, defined
on a domain x ∈ [0, L] at time t. The parameters are the friction factor λ,
pipe diameter D, gravitational acceleration g, and pipe angle θ. The terms
on the right hand side of (14b) aggregate friction and gravity effects. We
assume that gas pressure p and density ρ satisfy the equation of state relation
p = Z(p, T )RTρ, where R and T are the ideal gas constant and tempera-
ture, respectively. Here Z(p, T ) is a compressibility factor that defines the
deviation of the equation of state from the ideal gas law. Equation (14b) is
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valid in the regime when changes in gas consumption and injections are suf-
ficiently slow to not excite propagation of sound waves. Formally, the term
∂t(ρv) on the left hand side is much smaller than ∂x(ρv

2 + p) . The ratio of
the pressure gradient term ∂xp to the term ∂t(ρv) is typically on the order
of 1 : 0.01 [27]. In addition, the flow velocities are much smaller than the

nominal speed of sound, a =
√
Z̄RT , where Z̄ is a nominal compressibility

factor. In this regime, the gas advection term ∂x(ρv
2) can be omitted, even

in comparison with the already small term ∂t(ρv). For simplicity, we assume
that the pipeline is level, thus ignoring the gravity term ρg sin θ on the right
hand side of (14b). In this paper, we will assume that the gas temperature
is uniform along the pipeline, so that T is constant, and also that Z ≈ Z̄, so
that the sound speed a is constant. Under these assumptions, the resulting
one-dimensional PDE system is

∂tρ+ ∂xq = 0, (15a)

∂tq + a2∂xρ = − λ

2D

q|q|
ρ
. (15b)

Here ρ and q are density and (per area) mass flux q = ρv, D is pipe diameter,
λ is the Darcy-Weisbach friction factor, and a is the wave speed. The PDEs
are solved for a pipe of length L, so that x ∈ [0, L], and over the time interval
t ∈ [0, T ]. Specifying initial conditions ρ(0, x) = ρ0(x) and q(0, x) = q0(x),
as well as boundary conditions ρ(0, t) = s(t) and q(L, t) = d(t), results in a
well-posed IBVP.

In the following, we explain in more detail the application of SFV method
for a one-dimensional hyperbolic PDE system such as (15). In order to
simplify the presentation, we will assume that the random inputs can be
represented by a single uniformly distributed random variable. Consider the
one-dimensional model of gas flow with uncertainty appearing in the initial
and boundary data and source terms:

∂U

∂t
+
∂F

∂x
= S(U, ω), x ∈ (xL, xR), t > 0, ω ∈ Ω, (16)

U(x, 0, ω) = U0(x, ω), (17)

U(0, t, ω) = U0
B(t, ω), (18)

U(L, t, ω) = UL
B(t, ω). (19)
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For the model of gas flow in a pipe of interest here, we have

U =

[
ρ
q

]
, F =

[
q
a2ρ

]
, S =

[
0

− λ
2D

q|q|
ρ

]
. (20)

Assume that the random data ω can be parametrized using one stochastic
variable y = Y (ω) ∈ R with probability density function µ(y), and therefore
the initial and boundary data and sources take the form

U(x, 0, Y (ω)) = U0(x, y), y ∈ (yL, yR), (21a)

U(0, t, Y (ω)) = U0
B(t, y), y ∈ (yL, yR), (21b)

U(L, t, Y (ω)) = UL
B(t, y), y ∈ (yL, yR), (21c)

S(U, Y (ω)) = S(U, y), y ∈ (yL, yR). (21d)

After this transformation, the parametric form of the stochastic PDE is

∂U

∂t
+
∂F

∂x
= S(U, y), x ∈ (xL, xR), y ∈ (yL, yR), t > 0; (22)

U(x, 0, y) = U0(x, y), y ∈ (yL, yR), (23)

U(xL, t, y) = U0
B(t, y), y ∈ (yL, yR), (24)

U(xR, t, y) = UL
B(t, y), y ∈ (yL, yR). (25)

We can now treat the system (22)–(25) as a two-dimensional PDE in
(x, y) and discretize it following the principles of the multidimensional finite
volume method. Without loss of generality, we introduce the uniform grid
in both physical and stochastic variables, with nodes xi−1/2 = xL + (i −
1)∆x and yj−1/2 = yL + (j − 1)∆y that delimit the cells defined by (i, j) =
(xi−1/2, xi+1/2)× (yj−1/2, yj+1/2). We can then define the cell average for each
cell (i, j) by

Uij(t) =
1

∆x|∆y|

xi+1/2∫

xi−1/2

yj+1/2∫

yj−1/2

U(x, t, y)µ(y) dxdy, (26)

where the volume of the cell in y-direction is defined as

|∆y| =

yj+1/2∫

yj−1/2

µ(y) dy. (27)
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Integrating the PDE (22) over the control volume (xi−1/2, xi+1/2)×(yj−1/2, yj+1/2)
and applying integration by parts for the flux term results in the (still exact)
formulation

∆x|∆y|dUij

dt
+



yj+1/2∫

yj−1/2

F
(
U(xi+1/2, t, y)

)
µ(y) dy −

yj+1/2∫

yj−1/2

F
(
U(xi−1/2, t, y)

)
µ(y) dy


 =

xi+1/2∫

xi−1/2

yj+1/2∫

yj−1/2

S(U, y)µ(y) dxdy. (28)

Thus applying the SFVM scheme to the PDE (16) with initial data (21a),
we obtain the following system of ODEs with respect to the cell averages:

dUij(t)

dt
+

1

∆x

[
Fj
i+1/2(t)− Fj

i−1/2(t)
]

= Sij(t), (29)

Uij(0) =
1

∆x|∆y|

xi+1/2∫

xi−1/2

yj+1/2∫

yj−1/2

U0(x, y)µ(y) dxdy. (30)

We use the Gauss quadrature of appropriate order to compute the numerical
fluxes in (29):

Fj
i+1/2(t) =

1

|∆y|

yj+1/2∫

yj−1/2

F
(
U(xi+1/2, t, y)

)
µ(y) dy ≈

M∑

m=1

F̂
(
ŨL,m
i+1/2,j(t), Ũ

R,m
i+1/2,j(t)

)
wm, (31)

where F̂(·, ·) is any standard approximation of the flux (Godunov, Lax-
Friedrichs, HLLC flux, etc.). A specific example of a numerical flux ap-
proximation is the Lax-Friedrichs flux,

F̂(UL,UR) =
1

2
(F(UL) + F(UR))− ν

2
(UR −UL), (32)
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where ν is a numerical viscosity coefficient. For our model of gas flow, the
numerical viscosity coefficient is simply the wave speed ν = a. The values
ŨL,m
i+1/2,j(t) and ŨR,m

i+1/2,j(t) are obtained by reconstructing the solution inside

the cells (i, j) and (i+1, j) using high order polynomials and evaluating these
polynomials at the quadrature nodes (xi+1/2, ym). The source term in (29) is
approximated by

Sij(t) =
1

∆x|∆y|

xi+1/2∫

xi−1/2

yj+1/2∫

yj−1/2

S(U, y)µ(y) dxdy. (33)

We refer the reader to detailed descriptions of ENO/WENO reconstruc-
tion [23, 24]. In the finite volume method, the solution is approximated by
cell averages as a piecewise-constant function. Using cell averages as input
data for the numerical fluxes results in at best a first order approximation.
The ENO/WENO reconstruction enables the design of high-order finite vol-
ume methods in which the solution in each cell is represented as a polynomial
reconstructed from cell averages, and this polynomial reconstruction serves
as input data for the numerical fluxes.

2.3. Linear Total Variation Diminishing (TVD) Reconstruction

The following total variation diminishing (TVD) reconstruction is a sim-
ple example of a WENO scheme, which we present to demonstrate how to
obtain cell interface data reconstructions ŨL,m

i+1/2,j(t) and ŨR,m
i+1/2,j(t) for the

second-order SFV scheme. Given the cell averages Ui−1,j, Uij, and Ui+1,j,
we can construct a linear (in x) function UL

j (x, t) inside the cell (i, j) that
satisfies the TVD (monotonicity) property. Similarly, we can construct a lin-
ear function UR

j (x, t) that possesses TVD properties inside each cell (i+1, j)
by using the cell averages Uij, Ui+1,j, and Ui+2,j. Evaluating these functions
at x = xi+1/2 yields

UL
i+1/2,j = UL

j (xi+1/2, t), UR
i+1/2,j = UR

j (xi+1/2, t) (34)

for each value of j. Recall that the total variation of a function u(x, t) is
defined as

TV (u) =

∫ ∣∣∣∂u
∂x

∣∣∣ dx, (35)

and the total variation of the discrete function unh is

TV (unh) =
∑

j

|unj+1 − unj |. (36)
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A discretization is said to be total variation diminishing (or monotonicity
preserving) if it possesses the property

TV (un+1
h ) 6 TV (unh). (37)

Consider the cell averages Ui−1,j, Uij, Ui+1,j. The goal is to construct a
linear approximation of the solution satisfying the TVD property inside the
cell (i, j). The idea of the TVD reconstruction is to define candidate linear
functions in the cell and then select the one with better properties. If the
candidate function is defined as

Uij(x) = Uij + σij(x− xi), (38)

then the reconstruction reduces to finding an appropriate slope σij. The
first candidate reconstruction is obtained from Ui−1,j and Uij and has slope
σLij = 1

∆x
(Uij −Ui−1,j), while the second candidate reconstruction uses Uij

and Ui+1,j, and has slope σRij = 1
∆x

(Ui+1,j −Uij).
The TVD satisfying slope for the cell (i, j) is then obtained by applying

a slope limiter σij = minmod(σLij, σ
R
ij), where the minmod function is given by

minmod(a1, a2) =

{
sign(a1) min(|a1|, |a2|), if sign(a1) = sign(a2),

0, otherwise.
(39)

Next, we repeat the TVD linear reconstruction in the y-direction for
each cell (i, j) using the values UL

i+1/2,j−1, UL
i+1/2,j, and UL

i+1/2,j+1, as well

as UR
i+1/2,j−1, UR

i+1/2,j, and UR
i+1/2,j+1. When we denote the resulting linear

functions by ÛL
i+1/2,j(y, t) and ÛR

i+1/2,j(y, t), respectively, Then we simply
evaluate these linear functions to obtain the arguments for the numerical
flux at a quadrature point ym:

ŨL,m
i+1/2,j(t) = ÛL

i+1/2,j(ym, t), ŨR,m
i+1/2,j(t) = ÛR

i+1/2,j(ym, t). (40)

The above reconstruction scheme can be generalized to the case when y ∈
Rq for q > 1 in a straightforward manner by applying the multidimensional
high-order ENO/WENO polynomial reconstruction procedure.

3. Uncertainty Quantification for Pipeline Networks

We extend the SFV method to perform uncertainty quantification on a
graph of PDEs, in order to apply the method to the setting of gas pipeline

12



xi−1/2 xi+1/2

ym

ŨL
i+1/2 ŨR

i+1/2

Figure 1: Illustration of weak intrusiveness of the SFV method. Deterministic Riemann
solvers can be reused at each point ym to compute the numerical fluxes.

networks. Such networks are referred to in previous studies as metric graphs
[28] or flow networks [26]. We first introduce the problem in the deterministic
setting and then discuss the application of the SFV method in the stochastic
setting.

We suppose the setting of the underlying deterministic system to be a
graph consisting of a set of vertices V that are connected by a set E of
oriented edges. The incoming and outgoing neighborhoods of a node j are
denoted by ∂+j and ∂−j, respectively, and are defined as

∂+j = {i ∈ V | (i, j) ∈ E} (41)

∂−j = {k ∈ V | (j, k) ∈ E} . (42)

Every edge (i, j) ∈ E is associated with a spatial dimension on the interval
Iij = [0, Lij], where Lij is the edge length. The flow dynamics on each edge
(i, j) ∈ E are described by per area mass flux qij(t, x) and density ρij(t, x).
Each node j has a unique nodal density ρj(t), and flow leaving the network
at that node is denoted dj(t).

We suppose that the density and flux dynamics on an edge (i, j) evolve
according to

∂tρij + ∂xqij = 0, (43a)

∂tqij + a2∂xρij = − λij
2Dij

qij|qij|
ρij

, (43b)
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where each edge has parameters λij and Dij. Here we use ideal gas modeling,
and suppose that the wave speed a is constant throughout the network.
The SFV methodology could be extended to non-ideal gas flow using local
nonlinear transformations to adjust this parameter. We use a shorthand
notation for values of the state variables at the edge boundaries:

ρ
ij

(t) , ρij(t, 0), ρij(t) , ρij(t, Lij), (44)

q
ij

(t) , qij(t, 0), qij(t) , qij(t, Lij). (45)

At each vertex j, the flow and density values at the endpoints of adjoin-
ing edges must satisfy certain compatibility conditions. First, a Kirchhoff-
Neumann property of flow conservation is ensured through nodal continuity
equations

∑

i∈∂+j
Xijqij(t)−

∑

k∈∂−j
Xjkqjk(t) = dj(t), ∀j ∈ V , (46)

where Xij denotes the cross-sectional area of pipe (i, j). In addition, we
incorporate modeling of gas compressors, which are a set of elements C that
are used to actuate flow throughout the network. Each compressor c ∈ C
is located at a node j and affects an increase between the nodal density
ρj(t) and the boundary density ρ

jk
(t) where (j, k) ∈ E is a pipe oriented

outward from node j. The action of such a compressor is described by the
multiplicative ratio αjk(t), as

ρ
jk

(t) = αjk(t)ρj(t), (47)

We suppose that instantaneous state of the system at time t = 0 is specified
by initial density and mass flux profiles

ρij(0, x) = ρ0
ij(x), qij(0, x) = q0

ij(x), ∀(i, j) ∈ E . (48)

3.1. Conditions at Junctions

The conditions that must be enforced include flow conservation (46) and
density compatibility (47). We extend the above modeling to account for the
conservation of the distributions of conserved quantities. Consider a localized
IBVP for node j ∈ V and involving all edges e ∈ Ej ≡ ∂−j ∪ ∂+j ⊂ E , which
can be stated as

∂Uij

∂t
+∇x · F(Uij) = S(Uij), xij ∈ [0, Lij], t > 0, ∀e ∈ Ej, (49a)

Uij(0, x) = U0
ij(xij), ∀e ∈ Ej. (49b)
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The material and geometric properties (i.e., λij and Dij) can be different for
each edge e ∈ Ej. The set of solutions Uij(t, xij) has to satisfy the coupling
conditions at the common node j. Without loss of generality, we may assume
that all edges are oriented outwards from j, such that ∂+j = ∅, and where
the incoming nodes are indexed k = 1, . . . , K. The coupling conditions for
node j can then be stated as

Φ(Uj1(t, 0), . . . ,UjK(t, 0)) = 0, t > 0. (50)

Equations (49)–(50) define a Junction Riemann problem that extends a clas-
sical Riemann problem corresponding to N = 2.

For a physical flow network such as a gas pipeline system, the conditions
at the node j will consist in continuity of pressure and conservation of flow,
so that in the above case where ∂+j = ∅ and incoming nodes are indexed
k = 1, . . . , K, the coupling conditions are

Φ =

(
ρjk − αjkρj, ∀k ∈ δ−j∑
k∈δ−j Xjkqjk(t, 0)− dj(t)

)
= 0. (51)

3.2. Classical Riemann problem

The SFV method utilizes a cell-centered approximation of density and
flow. These cell-centered values are updated using the values of numerical
fluxes at the cell interfaces. A node corresponding to a given junction coin-
cides with the cell interfaces of the first or last cells in the discretization of
each pipe. Therefore, the numerical flux through those cell interfaces must
take into account the physical compatibility conditions. The numerical fluxes
in the finite volume method are typically computed by considering Riemann
problems at the interface between the two cells. A classical Riemann problem
is a one-dimensional Cauchy problem with piecewise-constant initial data:

∂U

∂t
+∇x · F(U) = 0, t > 0; (52a)

U(x, 0) =

{
UL, if x < 0,

UR, if x > 0.
(52b)

The solution of the Riemann problem (52) is a self-similar function U =
D(x/t). For a hyperbolic system of m equations, the solution on the (x, t)
plane consists of m+ 1 regions of constant values of U, which are separated
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Figure 2: Structure of the solution of the Riemann problem on (x, t) plane

by m characteristic waves, as illustrated in Fig. 2 for m = 4. The physical
variable values across each of the m waves are connected by means of gen-
eralized Riemann invariants Il, so that Il(U) = const, l = 1, . . . ,m. There
exist a number of analytical and numerical methods to obtain the solution
of (52). For the purpose of determining the numerical fluxes in finite volume
and related methods, we are only interested in the solution along the t-axis,
that is, D(0). In the following section, we describe a generalization of the
classical Riemann problem at junctions.

3.3. Junction Riemann problem (JRP)

A generalization of the Riemann problem for network junctions is illus-
trated in Fig. 3, where three pipes are connected at a vertex V , see also
[29, 30]. The numerical discretization of the gas flow parameters that we
apply on each pipe is based on the finite volume approach, and is there-
fore cell-centered. The last cell of the incoming pipe or the first cell of the
outgoing pipe will contain an interface that coincides with the vertex V .

The one dimensional gas flow dynamics (15) is a linear hyperbolic system
of two equations, and thus it has two characteristic waves. The corresponding
Riemann invariants are

I1(ρ, q) = ρ+
1

a
q = const, (53)

I2(ρ, q) = ρ− 1

a
q = const. (54)

For the collection of pipes adjoining a vertex V , let us denote the solution of
the JRP in the k-th pipe along the x-axis by ρk∗ and qk∗ . For the three pipe
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Figure 3: Determinstic Junction Riemann problem for 3 pipes connected at vertex V .
Shaded areas indicate piecewise-constant data coming in from each pipe; vertical red axis
the time coordinate.

junction example illustrated in Fig. 3, the solutions of the JRP is obtained
by solving the following system, which combines the Riemann invariants and
constraints:

q1
∗ = q2

∗ + q3
∗, (55a)

a2ρ1
∗ = a2ρ2

∗, (55b)

a2ρ1
∗ = a2ρ3

∗, (55c)

ρ1
∗ − ρ1

(0) +
1

a
(q1
∗ − q1

(0)) = 0, (55d)

ρ2
∗ − ρ2

(0) −
1

a
(q2
∗ − q2

(0)) = 0, (55e)

ρ3
∗ − ρ3

(0) −
1

a
(q3
∗ − q3

(0)) = 0. (55f)

This is a linear system of 6 equations with respect to 6 unknowns. Having
determined the pairs Uk

∗ = (ρk∗, q
k
∗), we can calculate numerical fluxes at the

vertex V using, e.g., the Lax-Friedrichs or Godunov flux F k
V = F (Uk

∗ ).

3.4. Application of SFV method

Here we describe the SFV approach to model uncertainty propagation
through nodes of flow networks. Thanks to the weak intrusiveness of the
SFV method illustrated in Fig. 1, the numerical fluxes must be computed
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at the quadrature points inside each cell in the stochastic dimension y, and
this solution is the same as in the deterministic case. This applies both to
the computation of the numerical fluxes at the cell interface inside the pipe
and the numerical fluxes at the vertices computed via the JRP as described
in this section.

4. Numerical Examples

Here we apply the uncertainty quantification method described above first
to flow through a single pipe, and then to flow through a small test network.
We suppose that density is fixed at the left (inlet) end of the pipe, and that
the source of uncertainty is in the mass flow boundary condition at the right
(outflow) end of the pipe.

interval

uncertainty

baseline

max

min

q(t)

t

baseline

perturbation 1

q(t)

t

perturbation 2

t1 t2

intertemporal

uncertainty

Figure 4: Left: interval uncertainty between ordered max. and min. profiles. Right:
intertemporal uncertainty of perturbations.

We apply the SFV method to model the propagation of both interval
and intertemporal uncertainties, as illustrated in Fig. 4. Interval uncertainty
is used to denote the possibility of time-dependent parameters delimited by
upper and lower bounding functions. Interpemporal uncertainty denotes an
augmentation in a time-varying parameter starting at a time that is randomly
distributed (e.g. uniformly on an interval). An example of intertemporal
uncertainty in the boundary flow d(t) is

d̂(t;ω) =

{
d(t) + δd, if t ∈ (tp(ω), tp(ω) + δtp),

d(t), otherwise,
(56)

where tp(ω) denotes a random augmentation time. From Fig. 4, we see that
interval uncertainty modeling includes a much greater collection of possible
time-varying parameters.
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4.1. Uncertainty Quantification for Flow in One Pipe

We consider the gas flow PDEs given in Equation (15), with steady-state
initial conditions given by

ρ(0, x) =

√
s(0)2 − λ

a2D
q0|q0|x, (57a)

q(0, x) = q0, (57b)

and time-varying boundary conditions given for t > 0 by

ρ(t, 0) = s(t), (58a)

q(t, L) = d(t). (58b)

The parameters in the PDE system and the initial and boundary conditions
are those used in two previous studies on deterministic methods [31, 32]. The
parameters are λ = 0.011, a = 377.9683 m/s, D = 0.5 m, L = 100× 103 m,
T = 3600×12s; the nominal values of flow and density are q0 = 289 kg/m2/s
and ρ0 = 45.4990786148 kg/m3, respectively; and the boundary conditions
for the underlying deterministic problem are

s(t) = ρ0

(
1 +

1

10
sin(6πt/T )

)
, (59a)

d(t) = q0

(
1 +

1

10
sin(4πt/T )

)
. (59b)

We extend the above problem formulation to a stochastic setting by adding a
source of model uncertainty to the flow boundary condition. In particular, we
suppose that the right boundary condition depends on the random variable
ω ∈ Ω, so that mathematically we can write q(L, t) = d̂(t;ω). We consider
several scenarios for d̂(t;ω) to examine solutions for both interval and inter-
temporal uncertainty, as illustrated conceptually in Figure 4.

4.1.1. Interval uncertainty in the boundary condition

Recall the notion of interval uncertainty as illustrated in Figure 4, which
considers the possibility of time-varying parameters that lie between upper
and lower bounding functions. We first consider the simplest scenario, in
which the nominal flow parameter q0 in Equation (59b) is randomly defined
as q0 ∼ 289Y (ω), where Y (ω) ∼ U [0.9, 1.1] is uniformly distributed. The
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boundary conditions are shown in Figure 5, where the density at the inlet is
deterministic and the interval of uncertainty for the outlet flow is indicated.
The resulting solutions at the boundaries are then shown in Figure 6, and
the uncertainty shown in the inlet flow and outlet density is one standard
deviation above and below the mean.
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Figure 5: Boundary conditions used as inputs for simplest one pipe simulation. Left:
density ρ(t, 0) at the pipe inlet; Right: outflow q(t, L) from the pipe. The shaded region
is one standard deviation above and below the mean.
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Figure 6: Uncertainty quantification results for simplest one pipe simulation. Left: inflow
q(t, 0) at pipe inlet; Right: discharge density ρ(t, L) at pipe outlet; The shaded region is
one standard deviation above and below the mean.

4.1.2. Interval uncertainty with a normal distribution

Next, we consider the example as described in Section 4.1.1, but instead
the nominal flow parameter q0 in Equation (59b) is q0 ∼ 289Y (ω), where
Y (ω) ∼ N(0.25, 1) is a normally distributed random variable. The boundary
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conditions are shown in Figure 7, where the density at the inlet is deter-
ministic and the interval of uncertainty for the outlet flow is indicated. The
resulting solutions at the boundaries are then shown in Figure 8, and the
uncertainty shown in inlet flow and outlet density is one standard deviation
above and below the mean.
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Figure 7: Boundary conditions used as inputs for one pipe simulation with Gaussian
uncertainty. Left: density ρ(t, 0) at the pipe inlet; Right: outflow q(t, L) from the pipe.
The shaded region is one standard deviation above and below the mean.
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Figure 8: Uncertainty quantification results for one pipe simulation with Gaussian uncer-
tainty. Left: inflow q(t, 0) at pipe inlet; Right: discharge density ρ(t, L) at pipe outlet;
The shaded region is one standard deviation above and below the mean.

4.1.3. Convergence analysis of the SFV method

For the convergence study, we solve equations (15) with initial and bound-
ary conditions given by (57a)–(58) and random q0 ∼ 289Y (ω), where Y (ω) ∼
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U [0.9, 1.1] is a uniformly distributed random variable. We repeat the com-
putation on a series of meshes with Nx = [4, 8, 16, 32] and corresponding
Ny = [1, 2, 4, 8], and varying orders of approximation in both physical and
stochastic space. Figure 9 shows the error in L1-norm as a function of the
CPU time required to complete the simulation on each of the meshes. The
solid lines correspond to different combinations of reconstruction in physical
and stochastic coordinates: for example, ”sx 3 sy 5” in the legend means that
WENO scheme of order 3 was used in the physical space and WENO scheme
of order 5 — in the stochastic space. The plots in Figure 9 clearly show
that the computational efficiency of the method increases with the order of
reconstruction (i.e. the CPU time needed to achieve the desired accuracy
decreases).
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Figure 9: Computational and computation time results. The convergence of the SFV
computation is shown for outlet density ρ (left) and inlet flow q (right). The plots show
L1 error vs. CPU time.

4.1.4. Inter-temporal uncertainty in the boundary condition

The results in the above examples with interval uncertainty can be ob-
tained in a straightforward manner using other methods. The key advantage
of the SFV approach in our study is the ability to quantify the effect of
inter-temporal uncertainty, as shown in the next example. Recall that, as
illustrated in Figure 4, we define inter-temporal uncertainty as a perturba-
tive increase in flow with a specified duration and an uncertain initial time.
In the simplest example of inter-temporal uncertainty quantification for gas
flow, we suppose that the time Tp when the perturbation begins is a uniformly
distributed random variable Y (ω), and a perturbation to the boundary flow
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function d(t) is modeled using the following function:

d(t) =





d1(t), if t < Tp,
(d2 − d1)/(T 1

p − Tp)(t− Tp) + d1(t), if t ∈ (Tp, T
1
p )

d2, if t ∈ (T 1
p , T

2
p )

(d1 − d2)/(T 3
p − T 2

p )(t− T 2
p ) + d2, if t ∈ (T 2

p , T
3
p )

d1(t), if t > T 3
p .

(60)

An example boundary flow function d(t) constructed using constant functions
d1(t) ≡ d1 and d2(t) ≡ d2 is illustrated in Fig. 10.

Figure 10: Example withdrawal rate d(t) featuring a temporary perturbation.

In the computations below, we suppose that d1(t) is given by the nominal
deterministic boundary condition in Equation (59b). We then suppose that
d2(t) = 3 · d1(t), and the perturbation timing is specified by the initial time
Tp(ω) = 3600 · (1+Y (ω)) seconds, and the duration is dTp = 5 ·3600 seconds,
so that T 1

p = Tp + 0.1 · dTp, T 2
p = Tp + dTp− 0.1 · dTp, and T 3

p = Tp + dTp. For
the first computation, we assume that Y (ω) ∼ U [0, 2], and therefore Tp has a
compact support. In this setting, we refer to the inter-temporal uncertainty
as limited, because the perturbation may occur only on part of the simulation
time interval. The boundary conditions are shown in Figure 11, where the
density at the inlet is deterministic and the interval of uncertainty for the
outlet flow is indicated. The resulting solutions at the boundaries are then
shown in Figure 12. Uncertainty in inlet flow and outlet density, shown as
one standard deviation above and below the mean, is seen in the at times
when perturbations may occur.

Alternatively, we may use Y (ω) ∼ U [−1, 11], so that the increased with-
drawal rate can occur at any time during the simulation time interval. We
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Figure 11: Boundary conditions used as inputs for one pipe simulation with limited inter-
temporal uncertainty. Left: inlet density ρ(t, 0); Right: outlet flow q(t, L). The shaded
region is as previously defined.
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Figure 12: Uncertainty quantification results for one pipe simulation with limited inter-
temporal uncertainty. Left: inlet flow q(t, 0); Right: outlet density ρ(t, L). The shaded
region is as previously defined.

refer to this situation as universal inter-temporal uncertainty. For this sim-
ulation, we set d2(t) = 1.25 · d1(t). The boundary conditions are shown in
Figure 13, where the density at the inlet is deterministic and the interval of
uncertainty for the outlet flow is indicated. The resulting solutions at the
boundaries are then shown in Figure 14. Uncertainty in inlet flow and outlet
density, shown as one standard deviation above and below the mean, is seen
throughout the simulation interval.

4.2. Uncertainty Quantification Simulations for a Test Network

Here we simulate uncertainty propagation in a simple actuated network
illustrated in Fig. 15. The extension of the UQ analysis from the single pipe
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Figure 13: Boundary conditions used as inputs for one pipe simulation with universal
inter-temporal uncertainty. Left: inlet density ρ(t, 0); Right: outlet flow q(t, L). The
shaded region is as previously defined.
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Figure 14: Uncertainty quantification results for one pipe simulation with universal inter-
temporal uncertainty. Left: inlet flow q(t, 0); Right: outlet density ρ(t, L). The shaded
region is as previously defined.

example to a network is nontrivial because of the complex Kirchoff-Neumann
type boundary conditions at network nodes. The network has five nodes, five
connecting pipes, and three compressors located at nodes 1, 2 and 4. This
network model has been examined in two previous pipeline simulation studies
[33, 34]. The network structure and random boundary conditions are fully
specified here so that the stochastic test case can be reproduced, including
with other methods.

The structural parameters of the network are defined for pipes in Table 1
and for compressors in Table 2. This static model is defined using 5 nodes,
where node 1 is a slack node with defined pressure, and nodes 2 through 5
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Figure 15: 5 node test network with five connecting pipes and three compressors.

are flow nodes with defined mass withdrawal rate.

Pipe From node To node Diameter Dj (m) Length Lj (m) Friction factor λj
1 1 2 0.9143995 20000 0.01
2 2 3 0.9143995 70000 0.01
3 3 4 0.9143995 10000 0.01
4 2 4 0.6349997 60000 0.015
5 4 5 0.9143995 80000 0.01

Table 1: Pipe parameters for 5 node test network.

Compressor Location node To pipe
1 1 1
2 2 2
3 4 5

Table 2: Compressor locations for 5 node test network.

We define a stochastic initial boundary value problem as follows, using a
wave speed value of a = 377.9683 m/s as in the single pipe example described
in Section 4.1. The initial state is deterministic and steady, and is specified
using the parameters in Tables 3 and 4.

The initial conditions for pressure (in Pa) and flow (in kg/s) for each pipe
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Item type Item ID Value type Value
Node 1 pressure (Pa) σ0

1 = 3447378.645
Node 2 Flow withdrawal (kg/s) d0

2 = 0
Node 3 Flow withdrawal (kg/s) d0

3 = 150
Node 4 Flow withdrawal (kg/s) d0

4 = 0
Node 5 Flow withdrawal (kg/s) d0

5 = 150
Comp 1 Boost ratio c0

1 = 1.5290113
Comp 2 Boost ratio c0

2 = 1.1128863
Comp 3 Boost ratio c0

3 = 1.2242249

Table 3: Initial nodal data for 5 node test network simulation.

Pipe k Pressure in p0
k (Pa) Pressure out pLk (Pa) Flow φk (kg/s)

1 5271081.1 4611205.3 300.00
2 5131747.2 3540078.3 233.33
3 3540078.3 3504395.3 83.33
4 4611205.3 3504395.3 66.66
5 4290168.0 3447378.6 150.00

Table 4: Initial pipe data for 5 node test network simulation.

k ∈ E are then given by

p(0, x) =

√
(p0
k)

2 − a2
16λk
D5
kπ

2
φk|φk|x, (61)

φ(0, x) = φk, (62)

where p0
k and φk are as given in Table 4, and where λk and Dk are as given

in Table 1. It should be straightforward to confirm that p(0, Lk) = pLk for
each pipe k ∈ E

The boundary conditions are defined below. Let di(t) denote the mass
flow withdrawal (kg/s) from the network at node i, let σj(t) denote the speci-
fied pressure at node j, and let ck(t) denote the compression ratio of compres-
sor k, where time t is in seconds. The functions are defined as sums of sigmoid
functions of the form h(t) = 1

2
(erf(2t) + 1), where erf(t) = 2√

π

∫ t
0
e−x

2
dx is
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Figure 16: Deterministic components of boundary conditions for the 5-node test network
initial boundary value problem. Left: nodal gas withdrawals di(t) for i = 2, 3, 4, 5; Center:
slack node pressure σ1(t); Right: compression ratios cj(t) for j = 1, 2, 3.

the error function.

d3(t) = d0
3 − d0

3 · 0.1
[
h

(
t− 3600 · 4

3600

)
+ h

(
t− 3600 · 10

3600

)
(63a)

−3h

(
t− 3600 · 16

3600

)
+ h

(
t− 3600 · 22

3600

)]
(63b)

d5(t) = d0
5 + d0

5 · 0.25

[
h

(
t− 3600 · 6

1800

)
+ h

(
t− 3600 · 12

1800

)
− 2h

(
t− 3600 · 18

1800

)]

(63c)

σ1(t) = σ0
1 (64)

c1(t) = c0
1 − c0

1 · 0.05

[
h

(
t− 3600 · 5

1800

)
− h

(
t− 3600 · 16

1800

)]
(65a)

c2(t) = c0
2 + c0

2 · 0.25

[
h

(
t− 3600 · 6

1800

)
− h

(
t− 3600 · 18

1800

)]
(65b)

c3(t) = c0
3 + c0

3 · 0.1
[
h

(
t− 3600 · 2

7200

)
+ h

(
t− 3600 · 8

7200

)
− 2h

(
t− 3600 · 20

7200

)]

(65c)
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These deterministic components of the boundary conditions are shown
in Figure 16, and the resulting deterministic solutions for pressure and flow
at the pipe endpoints are shown in Figure 17. The deterministic problem is
then extended to the stochastic setting by adding intertemporal uncertainty
to a single boundary parameter.
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Figure 17: Deterministic solution for the 5-node test network initial boundary value prob-
lem using boundary conditions defined in Figure 16. Top: inlet (left) and outlet (right)
pressure (MPa) for each pipe. Bottom: inlet (left) and outlet (right) flow (kg/s) for each
pipe.

To create a stochastic IBVP, we add intertemporal uncertainty to the
withdrawal rate at node 5 in the same way as described for a single pipe in
the example in Section 4.1.4. For this simulation, we have chosen Ny = 16
cells in the stochastic direction to ensure an accurate representation of the
input uncertainty at the outflow boundary of the 5-th pipe. The results
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of uncertainty quantification using the SFV method for Tp(ω) ∼ U [4, 12]
and d2 = d1 + 0.5d0

5 are shown in Fig. 18. As in the single pipe examples,
a shaded region that extends one standard deviation above and below the
mean is superimposed on each time-varying solution to indicate uncertainty.
We clearly observe that the intertemporal gas consumption uncertainty at
node 5 propagates quickly through the network.
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Figure 18: Uncertainty quantification results for the 5-node test network. Top: inlet (left)
and outlet (right) pressure (MPa) for each pipe. Bottom: inlet (left) and outlet (right)
flow (kg/s) for each pipe.

In addition, a rapid computation can be applied to the solution produced
by the SFV method to extract the probability density functions of the quan-
tities of interest at any stage of the simulation. For example, Fig. 19 shows
the probability density function (left) and cumulative distribution function
(right) for flow q2(12 · 3600, L2/2) in the middle of the pipe 2 at hour 12
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of the simulation. The distribution is non-trivially non-symmetric, and re-
flects the nonlinear nature of uncertainty propagation through the network
of hyperbolic conservation laws.
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Figure 19: Probability density function (left) and cumulative distribution function (right)
for Q in the middle of the pipe 2.

5. Discussion

The SFV method that we present here is a computationally efficient tech-
nique for fully characterizing a stochastic process that arises from an IBVP
for hyperbolic conservation laws on domains with boundaries connected in a
graph. The approach can account for uncertainty in initial conditions, model
parameters, and complex time-varying random boundary conditions. We
have demonstrated through computational experiments (see Figure 9) that
the accuracy of the scheme improves with increasing approximation order,
so that the method is significantly less computationally costly than Monte
Carlo simulation. Moreover, simple computations in the stochastic domain
can be done to obtain statistics of interest at a time-slice such as moments,
or the distribution itself.

The results of the computational method are somewhat sensitive to the
choice of discretizations in space, time, and stochastic domains. In particular,
if discretization in the stochastic space is too coarse, this can lead to spuri-
ous time-dependent artifacts in the evaluation of inter-temporal uncertainty
propagation. The discretization should be sufficiently fine to appropriately
resolve the solution given the parameters of the uncertainty. Guidelines for
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choices of such computational parameters, as well as theoretical underpin-
nings related to accuracy and convergence, are open questions that would be
of interest in future studies.

Our study on efficient uncertainty quantification for hyperbolic conserva-
tion laws is motivated by the need to model and further to optimize large-
scale natural gas pipeline flows in a model-predictive manner in the presence
of uncertainty. Here, we enable the efficient characterization of both in-
terval and inter-temporal uncertainty, which can be used to determine the
capabilities of a natural gas transmission system to accommodate variable
and intermittent consumption. Precise quantification of the statistical dis-
tributions in pressures and flows can then be used to provide probabilistic
guarantees on system integrity and the temporary reserves of energy that
a pipeline stores in the form of “line-pack”, or mass of gas in the pipe in
the neighborhood of a consumption point. The efficiency and flexibility of
the SFV method makes it promising for use in iterative methods that could
calibrate parameters such as compressor settings and maximal throughput.

6. Conclusions

We have developed a novel Stochastic Finite Volume method for stochas-
tic hyperbolic PDEs on graphs and demonstrated the robustness and accu-
racy of the method for uncertainty quantification of gas flow on networks.
The method is semi-intrusive, therefore only minor changes to the underly-
ing deterministic initial boundary value problem solver are required. The
solution obtained by the SFV method yields a complete solution in physical
space and in time, as well as in the stochastic space. Therefore, all stochas-
tic information of interest can be easily extracted, including confidence in-
tervals, distributions, and moments. This motivates potential extensions of
this method as a promising tool with which to develop methods for robust
optimization of hyperbolic PDE systems under uncertainty.
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lag, 1992.

[6] KW Morton and Th Sonar. Finite volume methods for hyperbolic con-
servation laws. Acta Numerica, 16:155–238, 2007.

[7] Lilia Krivodonova, Jianguo Xin, J-F Remacle, Nicolas Chevaugeon, and
Joseph E Flaherty. Shock detection and limiting with discontinuous
galerkin methods for hyperbolic conservation laws. Applied Numerical
Mathematics, 48(3-4):323–338, 2004.

[8] S. Mishra and Ch. Schwab. Sparse tensor multi-level monte carlo finite
volume methods for hyperbolic conservation laws with random intitial
data. Math. Comp., 81:1979–2018, 2012.
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