

**LA-UR-23-31068**

**Approved for public release; distribution is unlimited.**

**Title:** GeoThermalCloud: A Machine Learning Tool for Discovery, Exploration, and Development of Hidden Geothermal Resources

**Author(s):** Frash, Luke Philip  
Ahmmmed, Bulbul

**Intended for:** Demonstration video to advertise LANL's GeoThermalCloud tool for hidden geothermal resource discovery.

**Issued:** 2023-09-27



Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA00001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

## **GeoThermalCloud Demo Video**

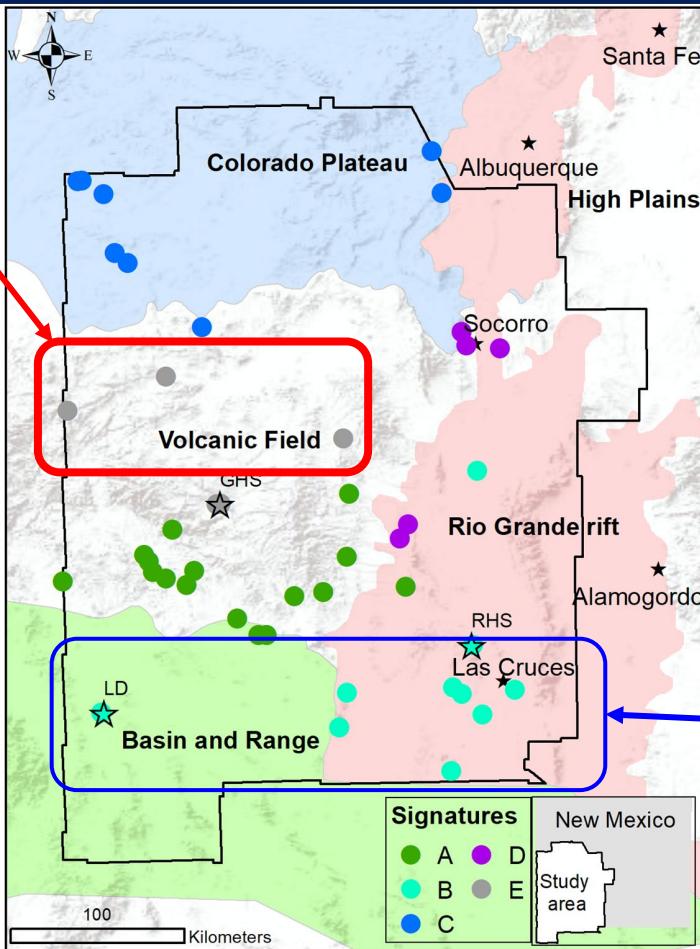
### ***A Machine Learning Tool for Discovery, Exploration, and Development of Hidden Geothermal Resources***

#### **Abstract:**


In this 25 minute presentation, we showcase our open source “GeoThermalCloud” tool for identifying hidden geothermal resources using a publicly available dataset for southwestern New Mexico. The presenters include Bulbul Ahmmmed and Luke Frash. All of the visuals use source material from LA-UR approved publications and this work falls under the Earth Sciences DUSA. The code shown in this video is already released with LANL approval in open source format on GitHub and DockerHub. The audio in this video includes only material on the topics of geothermal energy and machine learning applied to geothermal energy. The primary machine learning method used is LANL’s Non-negative Matrix Factorization “NMFk” method. Modeling work also mentions LANL’s Geothermal Design Tool “GeoDT” which is another approved open source code that has been released by LANL. This work was performed for DOE Geothermal Technologies Office (DE-EE-3.1.8.1). The host for the released video is intended to be YouTube or a suitable perpetual data repository such as GDR.

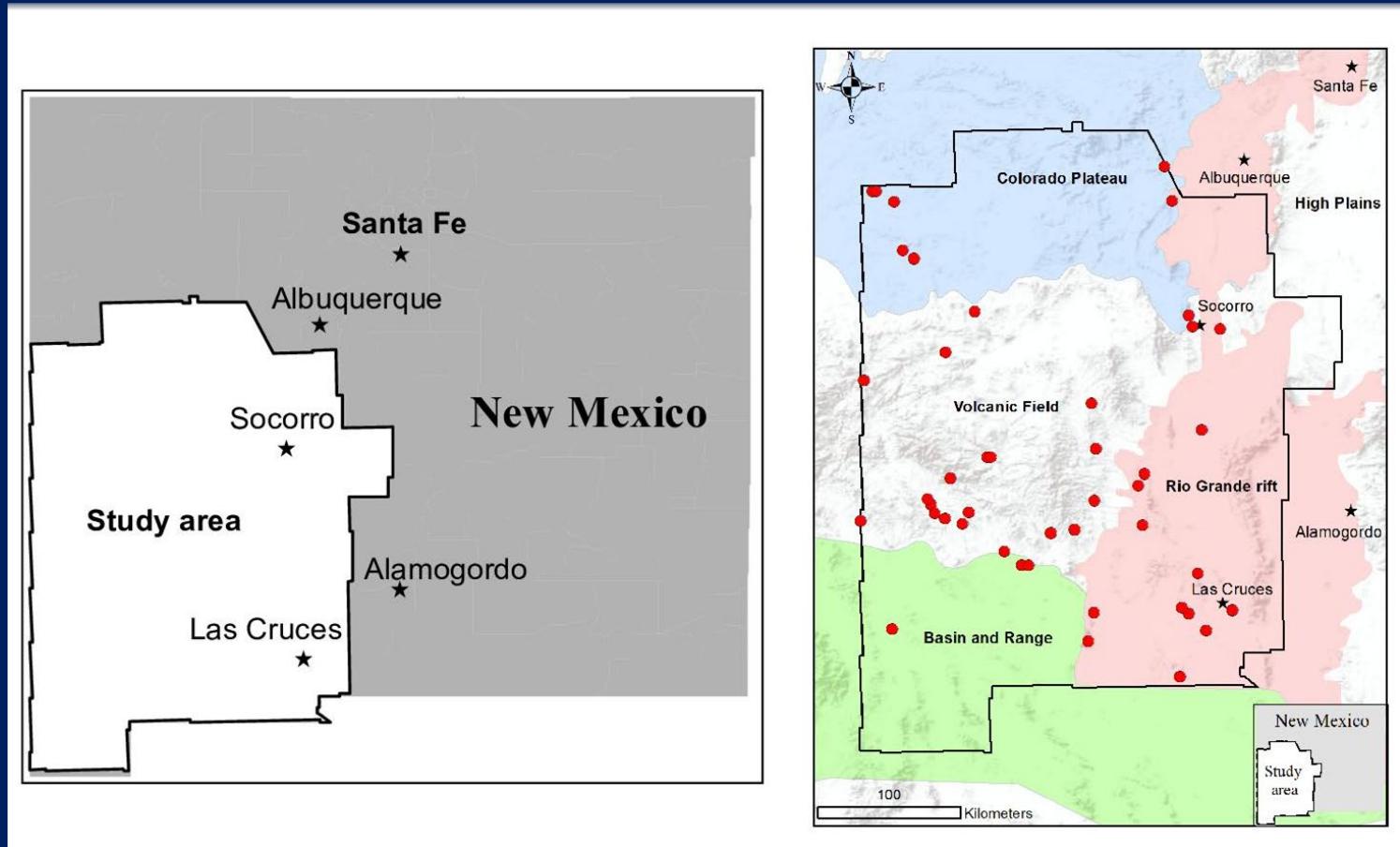
# GeoThermalCloud

A Machine Learning Tool for Discovery, Exploration, and Development of Hidden Geothermal Resources


---

Luke Frash and Bulbul Ahmmmed, EES, Los Alamos National Laboratory




# Demo: Hidden Geothermal Resources in New Mexico

New discovery of  
highly prospective  
region



Highly prospective  
region, which is  
consistent with  
previous studies

# SWNM Geothermal Exploration



# SWNM Dataset

**X = 44 x 18**

**B<sup>+</sup> concentration**

**Li<sup>+</sup> concentration**

**Drainage density**

**Springs density**

**Hydraulic gradient**

**Precipitation**

**Gravity anomaly**

**Magnetic intensity**

**Seismicity**

**Silica geothermometer**

**Heat flow**

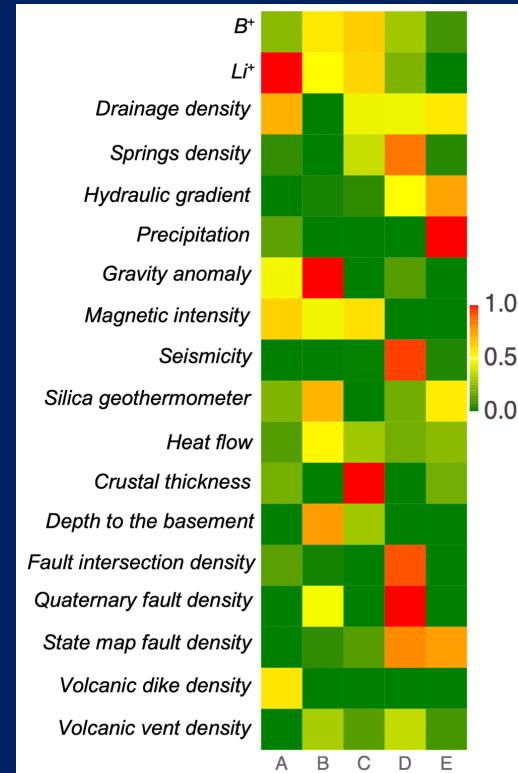
**Crustal thickness**

**Depth to the basement**

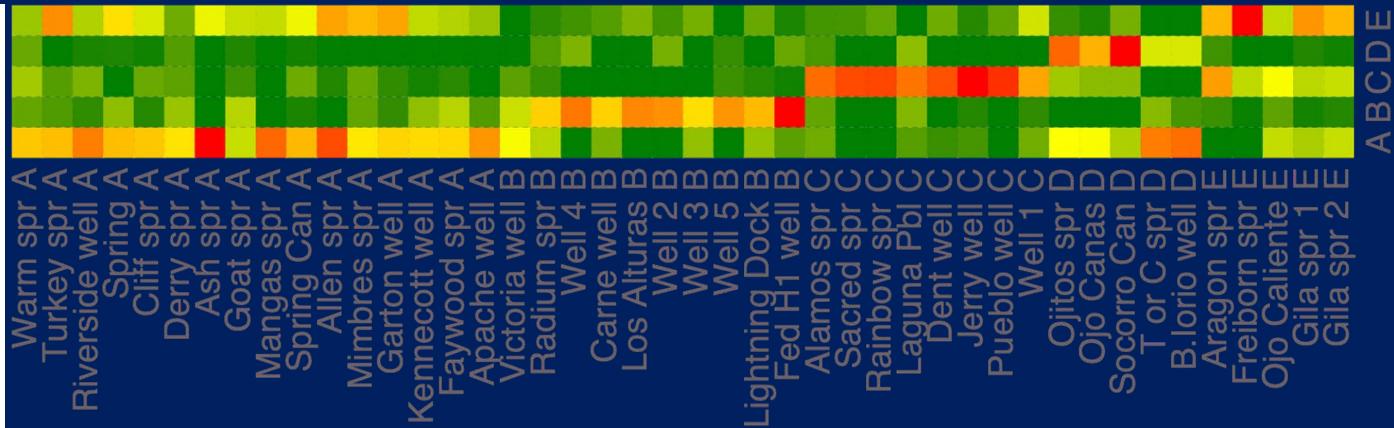
**Fault intersection density**

**Quaternary fault density**

**State map fault density**


**Volcanic dike density**

**Volcanic vent density**

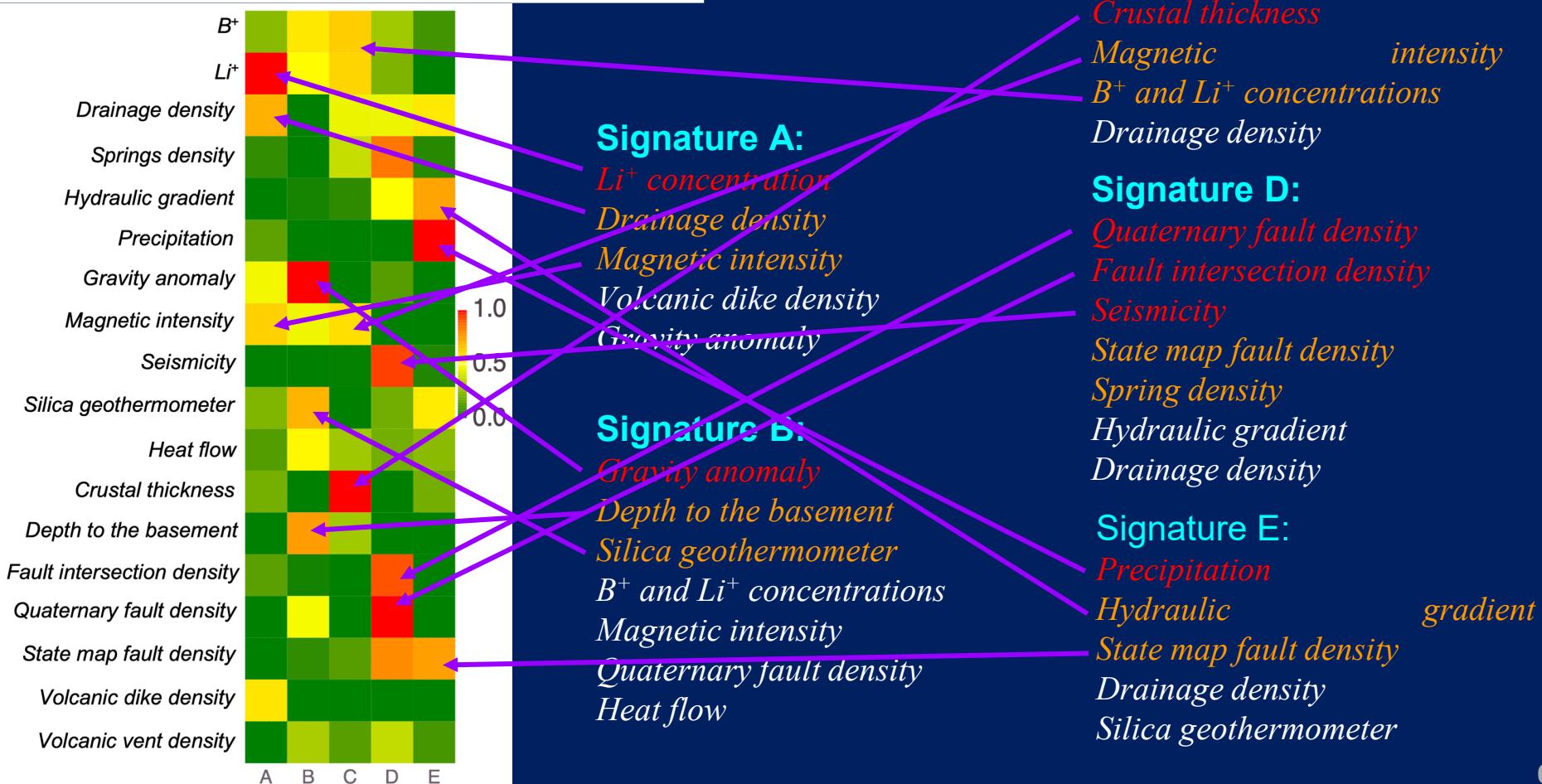

| Location                          | Boron | Gravity | Magnet | Dikes | Drain | Fault | Qfault | Seism | NMFlt | Springs | Vents | Lithium | Precip | Silica | Δh   | Qheat | Crust | Bsmt |
|-----------------------------------|-------|---------|--------|-------|-------|-------|--------|-------|-------|---------|-------|---------|--------|--------|------|-------|-------|------|
| Alamos Spring                     | -0.2  | -203.3  | 136.2  | 0.431 | 7.4   | 0.000 | 0.00   | 0.004 | 16.2  | 0.010   | 0.003 | -3.1    | 264.8  | 16.5   | 5.6  | 4.6   | 38.7  | 1439 |
| Allen Springs                     | -3.2  | -189.3  | 184.6  | 3.625 | 17.3  | 0.000 | 0.01   | 0.002 | 15.6  | 0.003   | 0.001 | -4.0    | 514.5  | 24.0   | 13.9 | 4.4   | 32.5  | 51   |
| Apache Tejo Warm Springs well     | -1.8  | -181.2  | 15.0   | 3.807 | 17.3  | 0.001 | 0.03   | 0.001 | 0.7   | 0.003   | 0.000 | -8.6    | 326.3  | 52.0   | 4.7  | 4.6   | 30.7  | 24   |
| Aragon Springs                    | 1.5   | -229.1  | -317.7 | 0.010 | 19.0  | 0.000 | 0.00   | 0.000 | 41.1  | 0.005   | 0.003 | -7.5    | 387.0  | 56.5   | 4.0  | 4.5   | 38.8  | 1486 |
| Ash Spring                        | -2.7  | -193.2  | 66.6   | 4.914 | 17.0  | 0.000 | 0.00   | 0.002 | 9.3   | 0.003   | 0.000 | -5.0    | 492.0  | 29.3   | 4.1  | 4.4   | 32.2  | -92  |
| B. Iorio 1 well                   | -2.1  | -196.5  | -48.2  | 1.936 | 18.8  | 0.057 | 21.02  | 0.000 | 9.1   | 0.003   | 0.003 | -2.6    | 260.4  | 59.4   | 0.9  | 4.0   | 30.9  | -188 |
| Cliff Warm Spring                 | -2.5  | -199.1  | -47.1  | 1.290 | 22.8  | 0.001 | 2.58   | 0.002 | 11.0  | 0.002   | 0.001 | -6.9    | 364.2  | 64.2   | 1.8  | 4.2   | 33.1  | -191 |
| Dent windmill well                | -2.1  | -230.8  | 89.3   | 0.000 | 13.4  | 0.000 | 0.00   | 0.000 | 0.0   | 0.005   | 0.000 | -7.3    | 341.7  | 19.7   | 2.4  | 4.7   | 43.5  | 865  |
| Derry Warm Springs                | -1.5  | -161.6  | 197.0  | 0.659 | 18.3  | 0.007 | 9.16   | 0.000 | 15.9  | 0.002   | 0.000 | -7.5    | 276.1  | 37.4   | 3.0  | 4.6   | 30.0  | -120 |
| Faywood Hot Springs               | -2.6  | -172.1  | -49.8  | 0.939 | 16.6  | 0.002 | 2.81   | 0.000 | 1.9   | 0.003   | 0.000 | -4.8    | 346.4  | 67.2   | 4.2  | 5.5   | 30.0  | 619  |
| Federal H 1 well                  | -0.4  | -132.0  | 35.0   | 0.000 | 5.8   | 0.004 | 20.31  | 0.001 | 7.2   | 0.000   | 0.015 | -5.0    | 253.8  | 78.7   | 2.7  | 4.9   | 27.3  | 2906 |
| Freiborn Canyon Spring            | -2.5  | -225.0  | -242.0 | 0.401 | 13.1  | 0.000 | 0.00   | 0.001 | 19.8  | 0.001   | 0.004 | -12.6   | 538.6  | 49.8   | 13.0 | 4.6   | 38.4  | 1138 |
| Garton well                       | -3.2  | -196.8  | 35.6   | 0.150 | 18.0  | 0.000 | 0.00   | 0.000 | 28.9  | 0.002   | 0.001 | -5.0    | 489.9  | 70.0   | 4.3  | 3.9   | 30.9  | -266 |
| Gila Hot Springs 1                | -1.9  | -221.6  | -149.3 | 0.127 | 24.2  | 0.000 | 0.00   | 0.001 | 25.5  | 0.003   | 0.003 | -7.8    | 422.6  | 69.9   | 6.6  | 4.4   | 34.0  | 413  |
| Gila Hot Springs 2                | -1.8  | -222.9  | -138.8 | 0.112 | 24.7  | 0.000 | 0.001  | 0.001 | 23.7  | 0.003   | 0.003 | -6.7    | 425.9  | 70.8   | 3.2  | 4.6   | 33.9  | 519  |
| Goat Camp Spring                  | -2.1  | -159.2  | -29.7  | 0.751 | 10.0  | 0.001 | 2.22   | 0.007 | 10.6  | 0.002   | 0.001 | -8.0    | 344.0  | 68.9   | 5.8  | 4.4   | 32.4  | 19   |
| Jerry well                        | -0.8  | -219.6  | 172.4  | 0.111 | 15.5  | 0.000 | 0.00   | 0.000 | 6.3   | 0.004   | 0.005 | -7.9    | 243.9  | 13.4   | 1.0  | 4.4   | 42.3  | 1190 |
| Kennecott Warm Springs well       | -2.4  | -178.3  | -69.9  | 1.422 | 17.8  | 0.002 | 1.76   | 0.000 | 1.1   | 0.003   | 0.000 | -6.9    | 355.0  | 66.1   | 4.3  | 5.0   | 30.0  | 409  |
| Laguna Pueblo                     | 0.4   | -204.2  | 62.5   | 0.406 | 8.6   | 0.004 | 4.58   | 0.006 | 14.6  | 0.018   | 0.005 | -3.3    | 259.7  | 42.9   | 2.6  | 4.4   | 37.2  | 1506 |
| Lightning Dock                    | -1.0  | -168.0  | -168.1 | 0.086 | 4.6   | 0.008 | 8.40   | 0.002 | 4.3   | 0.000   | 0.000 | -3.9    | 291.5  | 107.3  | 0.8  | 5.0   | 29.8  | 1800 |
| Los Alturas Estates               | -1.5  | -141.4  | -127.5 | 0.004 | 7.6   | 0.003 | 0.05   | 0.002 | 6.6   | 0.001   | 0.000 | -12.7   | 265.3  | 71.9   | 2.2  | 6.3   | 27.4  | 4321 |
| Mangas Springs                    | -2.6  | -201.0  | -227.1 | 3.503 | 20.2  | 0.000 | 0.91   | 0.002 | 11.5  | 0.002   | 0.000 | -4.5    | 393.5  | 53.6   | 0.3  | 4.2   | 32.4  | -178 |
| Mimbres Hot Springs               | -2.3  | -200.6  | 43.4   | 0.670 | 15.4  | 0.002 | 1.13   | 0.000 | 19.0  | 0.004   | 0.000 | -3.8    | 445.9  | 68.3   | 9.1  | 4.9   | 31.0  | 50   |
| Ojitos Springs                    | -1.6  | -202.1  | -7.5   | 1.342 | 19.6  | 0.044 | 19.74  | 0.037 | 31.0  | 0.020   | 0.005 | -4.5    | 257.5  | 57.6   | 7.2  | 4.5   | 33.0  | -255 |
| Ojo Caliente                      | -2.6  | -226.5  | -168.4 | 0.000 | 20.5  | 0.000 | 0.00   | 0.000 | 8.3   | 0.004   | 0.000 | -2.9    | 333.6  | 48.4   | 3.5  | 5.5   | 33.8  | 2415 |
| Ojo De las Canas                  | -1.7  | -188.5  | -85.8  | 0.839 | 22.3  | 0.036 | 12.55  | 0.036 | 28.0  | 0.013   | 0.003 | -6.0    | 270.5  | 14.2   | 4.0  | 4.5   | 31.8  | 101  |
| Pueblo windmill well              | -1.2  | -228.8  | 315.9  | 0.029 | 15.2  | 0.000 | 0.00   | 0.000 | 6.1   | 0.004   | 0.003 | -12.0   | 265.8  | 18.3   | 2.9  | 4.4   | 42.5  | 1027 |
| Radium Hot Springs                | -0.8  | -151.4  | -7.8   | 0.010 | 8.8   | 0.013 | 11.40  | 0.003 | 10.6  | 0.001   | 0.000 | -5.3    | 264.2  | 63.6   | 0.3  | 5.4   | 28.2  | 1191 |
| Rainbow Spring                    | -1.7  | -227.1  | -48.5  | 0.000 | 11.0  | 0.000 | 0.00   | 0.001 | 0.0   | 0.006   | 0.000 | -7.0    | 307.8  | 21.7   | 3.3  | 4.7   | 43.9  | 755  |
| Riverside Store well              | -1.3  | -196.1  | -102.9 | 1.562 | 22.6  | 0.000 | 2.50   | 0.002 | 11.7  | 0.002   | 0.001 | -2.4    | 356.1  | 60.8   | 0.9  | 4.3   | 32.9  | -165 |
| Sacred Spring                     | -1.8  | -228.4  | -80.4  | 0.000 | 10.9  | 0.000 | 0.00   | 0.001 | 0     | 0.006   | 0.000 | -7.0    | 298.4  | 21.2   | 1.3  | 4.6   | 43.9  | 742  |
| Socorro Canyon                    | -1.8  | -204.7  | -136.5 | 1.203 | 21.1  | 0.051 | 28.88  | 0.034 | 33.8  | 0.020   | 0.005 | -6.7    | 284.1  | 44.6   | 11.1 | 5.0   | 32.6  | -229 |
| Spring                            | -4.1  | -183.5  | 334.5  | 0.218 | 20.1  | 0.011 | 1.81   | 0.000 | 20.1  | 0.001   | 0.006 | -6.8    | 361.9  | 117.2  | 5.1  | 3.8   | 31.5  | -104 |
| Spring Canyon Warm Spring         | -2.1  | -194.2  | 117.3  | 2.293 | 21.9  | 0.000 | 1.50   | 0.002 | 12.7  | 0.002   | 0.000 | -8.3    | 361.7  | 51.6   | 5.8  | 4.2   | 32.6  | -57  |
| Truth or Consequences spring      | -1.1  | -168.2  | -54.3  | 2.175 | 18.4  | 0.064 | 20.51  | 0.000 | 10.3  | 0.003   | 0.002 | -3.3    | 265.9  | 55.3   | 0.6  | 4.3   | 31.0  | 304  |
| Turkey Creek Spring               | -3.2  | -196.4  | 54.8   | 0.984 | 19.2  | 0.001 | 3.69   | 0.002 | 28.1  | 0.002   | 0.002 | -3.7    | 493.4  | 81.3   | 5.8  | 4.4   | 33.6  | 56   |
| Victoria Land and Cattle Co. well | -1.8  | -165.9  | -65.4  | 0.478 | 6.4   | 0.003 | 0.06   | 0.001 | 0.9   | 0.001   | 0.000 | -2.9    | 253.0  | 43.0   | 1.9  | 4.1   | 30.7  | 2014 |
| Warm Springs                      | -2.1  | -193.3  | 113.5  | 0.220 | 19.0  | 0.029 | 2.63   | 0.000 | 16.5  | 0.004   | 0.003 | -2.5    | 314.6  | 56.0   | 5.4  | 4.3   | 32.7  | 1252 |
| Well 1                            | -1.4  | -230.7  | -31.3  | 1.190 | 15.7  | 0.000 | 0.75   | 0.001 | 22.1  | 0.004   | 0.002 | -6.6    | 345.4  | 49.0   | 1.7  | 4.4   | 40.0  | 1961 |
| Well 2                            | -1.2  | -162.5  | 0.8    | 0.000 | 4.5   | 0.008 | 24.24  | 0.003 | 11.8  | 0.000   | 0.006 | -10.1   | 279.5  | 70.5   | 1.7  | 4.8   | 27.8  | 2993 |
| Well 3                            | -2.5  | -140.0  | 31.7   | 0.839 | 2.1   | 0.001 | 2.11   | 0.001 | 5.0   | 0.001   | 0.000 | -7.3    | 369.0  | 51.0   | 4.1  | 4.3   | 28.0  | 3073 |
| Well 4                            | -1.3  | -161.7  | -56.1  | 0.000 | 3.4   | 0.008 | 28.49  | 0.003 | 10.6  | 0.000   | 0.006 | -10.0   | 274.3  | 94.0   | 1.9  | 4.7   | 27.7  | 3373 |
| Well 5                            | -1.9  | -167.2  | -29.9  | 0.000 | 2.5   | 0.008 | 15.48  | 0.002 | 3.1   | 0.000   | 0.005 | -6.8    | 243.8  | 47.0   | 0.3  | 4.0   | 27.4  | 5460 |
| Well south of Carne               | -2.4  | -156.7  | -129.6 | 0.457 | 4.3   | 0.000 | 2.11   | 0.002 | 6.0   | 0.001   | 0.000 | -6.8    | 269.7  | 87.1   | 1.4  | 4.5   | 28.4  | 2761 |

# SWNM Geothermal Signatures

$W$

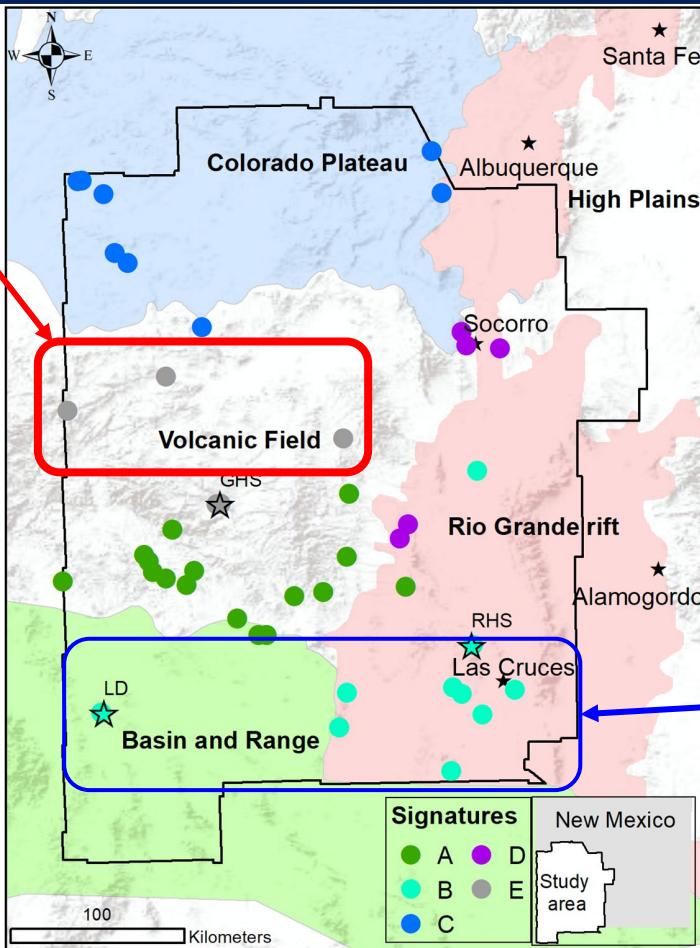


$H$




$$X = W \times H$$

$W$ : attribute matrix


$H$ : location matrix

# SWNM Signature Interpretation

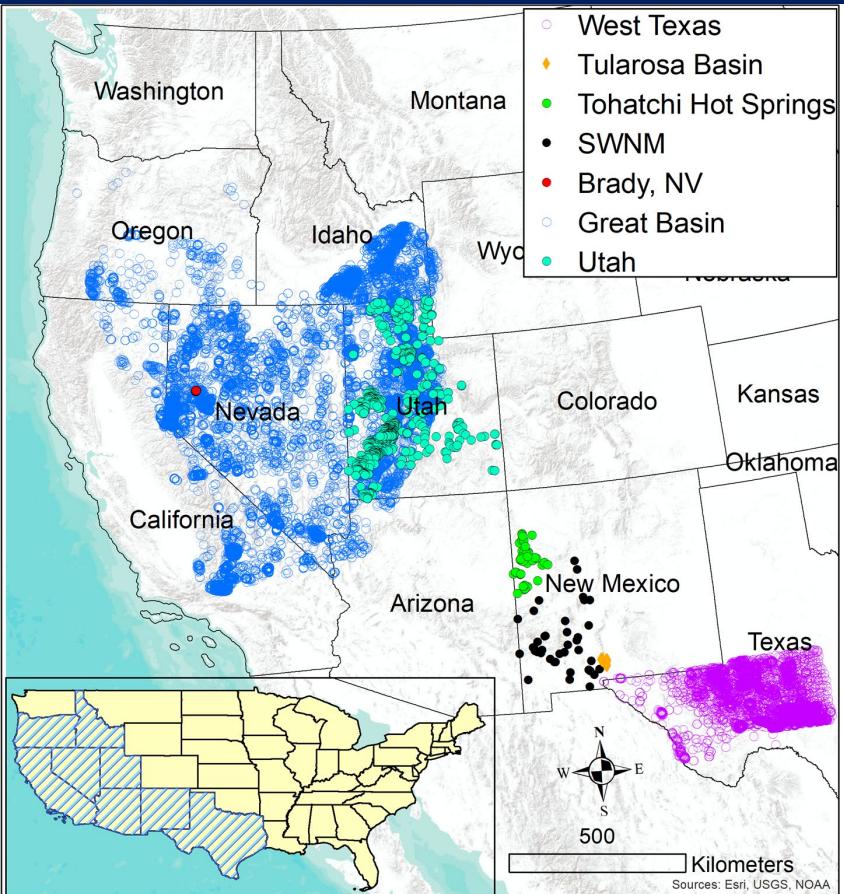


# Demo: Hidden Geothermal Resources in New Mexico

New discovery of  
highly prospective  
region

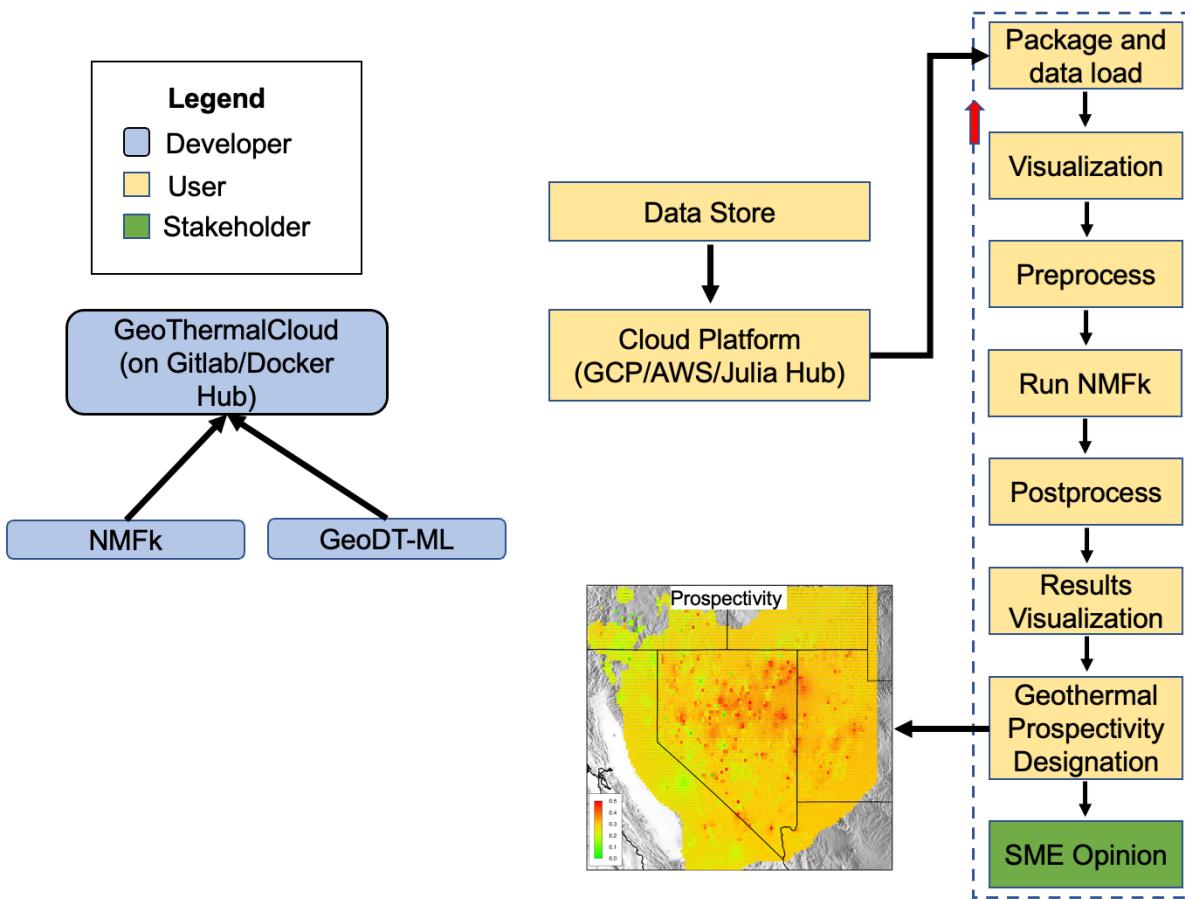


Highly prospective  
region, which is  
consistent with  
previous studies

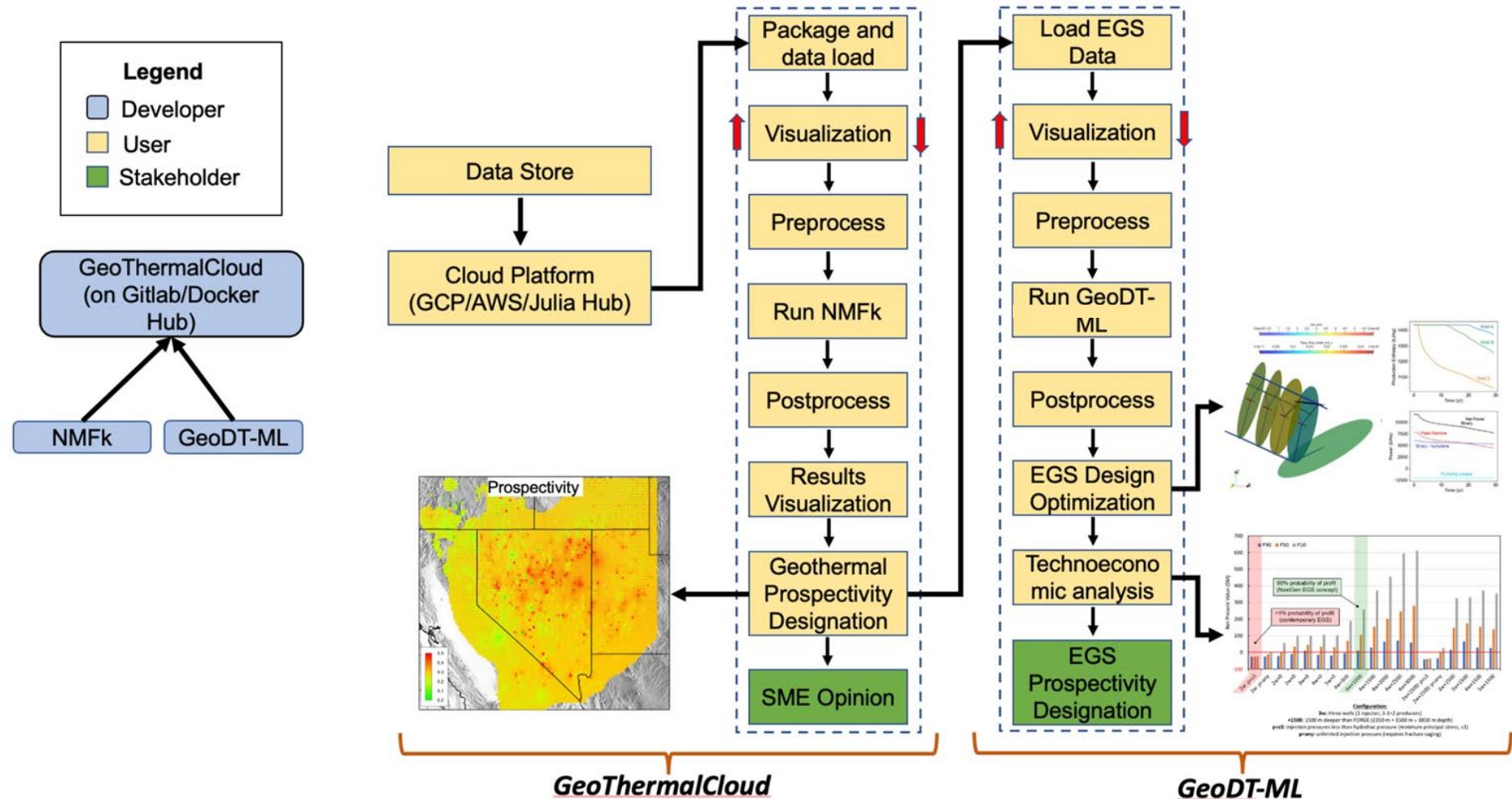

# GeoThermalCloud Advantages:

- **Open-source:** An open-source cloud-based machine learning framework for geothermal resources exploration.
- **Resource discovery:** This tool can identify new unknown or hidden geothermal prospects using large datasets and non-obvious relationships.
- **Reduces preprocessing effort:** Automatically categorizes dataset inputs and identifies prospectivity (a.k.a., 'signatures').
- **Data valuation:** Help identify high-value data that could be relatively cheap to obtain and find low-value data that does little to inform prospectivity.
- **Diverse datasets:** Inputs can be field data and model data spanning across dimensional scales and data types (e.g., chemistry, fault maps, and modeled power production).
- **Handles sparse / missing dataset:** Missing some data here and there? Not a problem.

# GeoThermalCloud Disadvantages:


- **Interpretation:** Subject matter expertise is required to get the best interpretation of the results. Unfortunately, there is no way around this.
- **False negatives:** Just like any other method, GTC cannot identify resources that have no data to show they exist. A lack of a signature does not signify non-existence of a resource.
- **Adding new data:** The machine learning models should be rerun to accommodate new data to achieve the best results, which adds some computational time when applying GeoThermalCloud.
- **Indefinite answers:** Machine learning models such as GTC cannot provide “yes” or “no” answers for prospectivity.

# GeoThermalCloud's Pedigree




- **Platform:** Based on the R&D 100 award winning SmartTensors toolset.
- **Tools:** SmartTensors use patented matrix/tensor factorization methods.
- **Applications:** GeoThermalCloud has been successfully employed on several large datasets (e.g., Great Basin, New Mexico, and FORGE) and on synthetic datasets from models (e.g., GeoDT).
- **Explainability:** It produces rational and explainable results.
- **Development status:** GeoThermalCloud is actively being developed at Los Alamos National Laboratory and Pacific Northwest National Laboratory.

# GeoThermalCloud Workflow



# GeoThermalCloud+GeoDT-ML Workflow



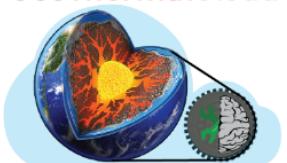
# Where you can get it

To get started using GTC, download from DockerHub:

```
docker pull bulbulahmmmed/geothermalcloud-v1
```

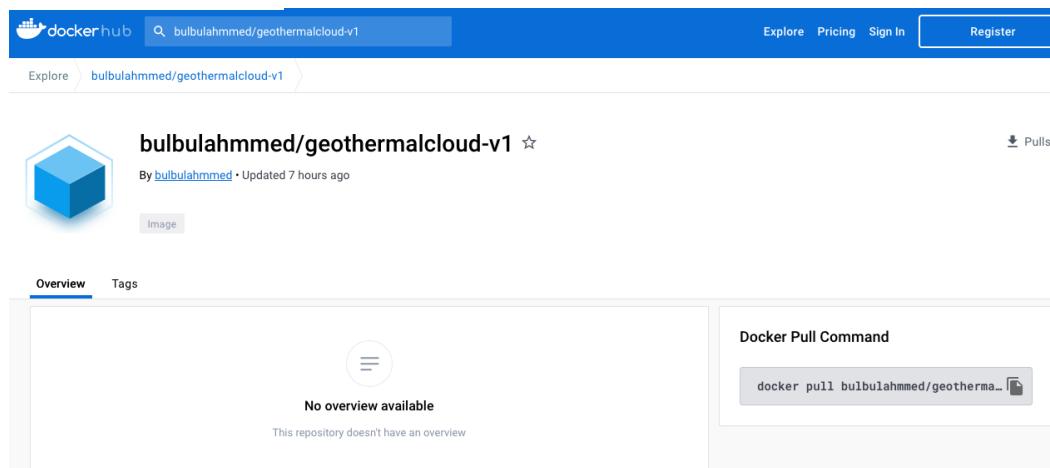
For advanced users, install from GitHub:

<https://github.com/SmartTensors/GeoThermalCloud.jl>


**Thank you for your interest and enjoy!**

*Questions: ahmmedb@lanl.gov*

# How to Use GeoThermalCloud?


GeoThermalCloud: A Machine Learning Framework for Geothermal Resources Exploration

GeoThermalCloud



It can be used on personal laptop, cloud platform, and supercomputer

<https://github.com/SmartTensors/GeoThermalCloud.jl>



`docker pull bulbulahmmmed/geothermalcloud-v1`