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Abstract: The rapid collection and indexing of electron diffraction patterns as produced via
electron backscatter diffraction (EBSD) has enabled crystallographic orientation and structural
determination, as well as additional property-determining strain and dislocation density
information with increasing speed, resolution, and efficiency. Pattern indexing quality is reliant
on the noise of the collected electron diffraction patterns, which is often convoluted by sample
preparation and data collection parameters. EBSD acquisition is sensitive to many factors and
thus can result in low confidence index (ClI), poor image quality (1Q), and improper
minimization of fit, which can result in noisy datasets and misrepresent the microstructure. In an
attempt to enable both higher speed EBSD data collection and enable greater orientation fit
accuracy with noisy datasets, an image denoising autoencoder was implemented to improve
pattern quality. We show that EBSD data processed through the autoencoder results in a higher
ClI, 1Q, and a more accurate degree of fit. In addition, using denoised datasets in HR-EBSD cross
correlative strain analysis can result in reduced phantom strain from erroneous calculations due
to the increased indexing accuracy and improved correspondence between collected and
simulated patterns.
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1) Introduction:

Electron backscatter diffraction (EBSD) is of the most commonly used microstructural analysis
tools, and is a widely accessible tool in the materials science and crystallography community. [1]
EBSD enables users to obtain a wealth of information from crystalline materials in a
conventional scanning electron microscope (SEM) that would traditionally require access to a
beamline or similar X-ray techniques: such as crystallographic orientation, distribution of phases
within a microstructure, dislocation defect density, and grain size and texture information. [2] In
addition to the acquiring crystallographic information, the method enables the measurement of
microscale strains in materials with a sensitivity of 10 through a process of electron backscatter
diffraction pattern (EBSP) cross correlation, using high resolution electron backscatter
diffraction (HR-EBSD). [3]-[5] Strain determination is accomplished by two different
approaches and arrives at two different strain measurements. The first method of relative strain
mapping calculates local strain gradients by measuring pattern shifts between two captured
patterns, a reference and a test, experimentally this is often preformed such that the reference
pattern is that of the grain mean orientation. [6], [7] However, the unknown strain state contained
within the reference pattern carries with it uncertainty, and thus this method does not provide a
true absolute strain measurement, only relative/deviatoric distortions between the reference and
test pattern. [8] The second, more computationally complex method, dynamically simulates a
strain free reference pattern for each experimentally obtained pattern and thus determines
absolute strain at each point in an EBSD scan. [9], [10] Thus, obtaining an absolute strain
measurement relies on the simulation of a ‘zero strain’ reference pattern which closely converges
with the experimental one and is limited by two sources of uncertainty: the uncertainty of
orientation measurement via Hough transform [1] and uncertainty of pattern center (PC) from
conventional SEM calibration techniques which can introduce phantom strains on the order of
1073, [11], [12] Despite advances in improving correspondence between the simulated and real
patterns through a gradient-based approach [13] there is still often insufficient correspondence
between real and simulated patterns which introduce limitations to this method in obtaining an
absolute strain measurement. [1], [14] Although many authors have reported and worked on
solutions related to PC shift correction [8], [13], this paper focuses on improving the
experimentally collected EBSPs, also known colloquially as Kikuchi patterns, themselves and
achieving a higher accuracy measurement of orientation angles and enabling a higher resolution
Hough transform indexing procedure and has implications beyond strain measurement.

All EBSD methods rely on the correct identification and indexing of bands appearing on the
EBSP which represent the crystal lattice planes, determining the positioning and angles between
these bands, and from this the orientation of the local crystal lattice can be measured. [15]-[17]
The most commonly used method of indexing EBSPs utilizes band detection via Hough
transform, whereby each Kikuchi line in detector space is a 2D point of accumulation (a peak of
high intensity) in transform space. [18] Thus, in transform space the distance and angle between
these peaks can be measured trivially and the relationship between the planes in detector space
elucidated to determine crystallographic orientation. [15], [19] This method has been integrated
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into many commercial systems and has seen widespread use and improvement over the past
several decades, however this algorithm’s performance degrades with increasing noise input. The
Hough transform method suffers from poor indexing, fit, and confidence index (CI) in EBSPs
featuring increasingly high noise levels, with noise primarily manifesting as low pattern contrast,
Gaussian noise, or lack of clear band definition. [2], [20], [21] This noise can originate from
sample preparation, the detector, microscope, and camera settings utilized (i.e. poor exposure),
localized strain/deformation within the sample area, and improper utilization of large step sizes
with fine-grained materials. [22]-[24] Various indexing algorithms have been introduced which
aim to address these issues, each introducing their own advantages and drawbacks. Spherical
indexing methods utilize a forward model to generate a spherical master EBSP from which
collected patterns are projected onto and correlated via a spherical harmonic transform (SHT),
resulting in higher indexing quality with EBSPs that would be difficult to index with traditional
Hough techniques. [25] The dictionary indexing method (DI) has demonstrated the ability to
index samples with greater accuracy and correctly index patterns with high noise [24], [26], but
the size of the simulated pattern dictionary increases with decreasing crystal symmetry; meaning
that indexing a cubic material will take six times less computation time than indexing an
orthorhombic one. [25] Computation time is the largest drawback of the DI method, with an
indexing speed of ~12 points per second and larger datasets taking days to process when
including orientation refinement. [27] For context, both the Hough method and SHT method are
capable of processing hundreds to thousands of points per second and are limited more by EBSD
detector speed and exposure settings than execution time. [25] Refinements and optimization to
the DI method have been forwarded to improve execution time, with Fourier domain based
pattern matching enabling more rapid orientation refinement and requiring a smaller pattern
dictionary to parse. [28]

While introducing the subject of noise and its implications towards EBSD indexing, we must
also briefly discuss the quantification of EBSD data quality metrics. Quality in an EBSD context
can refer to two things, the quality of the diffraction pattern itself and the quality of the indexing
solution of that pattern to a crystal system. Quality at the pattern level is a measurement of how
well defined the Kikuchi bands are relative to the background, with higher quality patterns
featuring bands of high intensity and sharp band edges. [29] This is often defined as image
quality (1Q), a measure of the average height of the Kikuchi band peaks in Hough space, and is
effected by local lattice strain, the atomic scattering factor of the material being analyzed, surface
preparation and/or topology, and other microstructural features like grain boundaries which
would result in low 1Q. [30], [31] As indexing and/or SEM parameters will often induce changes
to 1Q irrespective of the microstructure, relative values between points are used to describe
microstructural features and an absolute measure of 1Q is not particularly useful in this regard.
[30] Indexing success rate (ISR) is a general term for describing the fraction of patterns
successfully indexed in an EBSD scan, and this is defined differently depending on the EBSD
detector manufacturer. At time of writing Oxford and Bruker systems describe this as the
fraction of zero solutions, or points with no indexing solution to the corresponding pattern, while
EDAX systems utilize a triplet voting method, defined as a confidence index (Cl), to provide a
measure of how reliable the indexing solution would be on a scale of 0 to 1. [24], [32] A ‘vote’
in this context is an orientation solution for a set of Kikuchi band triplets, the more well fit that
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solution is the more votes it receives, and the Cl is calculated as the difference in votes between
the most likely solution (determined by number of votes) and the second most likely, divided by
the number of total band triples available. [19], [32], [33] CI is impacted by the number of bands
present in a pattern, with more bands resulting in a greater number of correct solutions, but a
lower average CI due to conflicting votes; experimentally this results in ~90% of the orientation
solutions being correct with a CI=0.1. [34] Degree of fit is another ISR metric, and defines the
degree of angular deviation between the observed crystallographic orientation of the EBSP and
the ideal solution provided by the indexing software. [35] There is no one single quality metric
which can fully describe an EBSD dataset due to the physics of diffraction, for example a highly
strained sample would result in lower 1Q than a relaxed one but could still feature high ISR. In
addition, different detector manufacturers will use different image collection, processing, and
measurement methods all of which impact these metrics which is beyond the scope of this study.

Machine learning (ML) methods have been recently introduced as an alternative to the discussed
algorithms as a method of indexing EBSPs. [36] Deep learning methods, such as the use of
convolutional neural networks (CNNSs) trained with simulated EBSPs, have indexed
polycrystalline nickel with decreased disorientation error when compared to DI methods. [37]
Refinements and improvements to the CNN indexing method, including EBSP preprocessing and
use of disorientation error as its own loss function, resulted in a model fast enough for real-time
indexing but performed slightly worse at indexing noisy patterns. [38] These improved indexing
methods offer reduced orientation fit error over the conventional Hough methods, which is key
for cross-correlative strain determination and accurate indexing of strained materials. [1], [37]

Image processing algorithms which aim to denoise the EBSPs themselves, rather than addressing
noise at the indexing stage, have also shown utility. The commercially available Neighbor
Pattern Averaging & Reindexing (NPAR™) algorithm averages neighboring patterns above a Cl
threshold, which has shown improved Hough indexing and enables the collection of data at
higher speed with more noise. [24], [39] NPAR functions as a virtual pattern averaging function
which can be done post-process, as it averages patterns across space it is inherently lossy with
spatial resolution, and NPAR is less effective with larger step sized scans and fine grained
materials. This method has been refined using a non-linear smoothing kernel (NLPAR) to weigh
patterns based on their similarity of quality, rather than their spatial proximity, and results in
further improved results including gains over the DI method. [22] These are inherently post-
process methods, but demonstrates that when using the conventional Hough indexing method,
the quality of orientation mapping and index success rate can be improved through EBSP
preprocessing and denoising.

Utilizing a denoising autoencoder (DA) approach to preprocess EBSPs prior to indexing should
lead to indexing improvement, without needing to alter the indexing process itself. Autoencoders
are a type of feedforward neural network model consisting of two functions: an encoder which
translates the input into latent space, and decoder, which attempts to reconstruct the input from
this latent space representation. [40] The goal of a DA model is to learn to reconstruct a noise-
free output from a noisy input. [41] Using DAs for image denoising has shown utility in
removing Gaussian noise and undesired features from image data. [42] Stacked convolutional
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DAs have been able to denoise medical mammogram and X-ray images with very small training
datasets, and reconstruct images from incredibly noisy datasets. [43], [44] Thus, there is
evidence that utilizing DAs at the stage of EBSP collection or prior to indexing could reduce
noise within the EBSPs themselves which would result in erroneous or poor indexing.

In this paper, by synthesizing both ML and conventional image processing methods, we
introduce a convolutional DA framework for EBSD denoising which has shown to significantly
improve indexability of poor quality EBSPs and improve the fit accuracy of the Hough transform
method with DA-processed patterns. By addressing noise at the EBSP level, we are able to
improve the CI, image quality (1Q), and degree of fit both among individually noisy patterns and
across the whole dataset. In addition, this DA framework reduced the contributions of ‘phantom
strain’ in dynamically resolved absolute HR-EBSD strain measurement because of this improved
fit accuracy. By improving the pattern quality and Kikuchi band edge fidelity, the accuracy of
interplanar angle measurement of the Hough indexing procedure was improved. Because of this
we observe increased correspondence between experimental EBSPs and simulated ones used for
strain cross correlation. EBSPs denoised by the autoencoder often demonstrate a sub-1° of fit,
with indexing metrics showing improvement over and compatibility with existing EBSP image
post-processing methods. In addition to improving HR-EBSD absolute strain determination, this
allows for noisier EBSD datasets to be collected and indexed with conventional Hough-based
indexing and thus enables higher speed and higher resolution EBSD experiments in general.

2) Sample Preparation and EBSP Acquisition Methods:

Two HR-EBSD datasets were utilized to build and demonstrate the DA, both captured from the
cross-sectional surface of a Ti-5553 melt bead. First, an ‘ideal”’ EBSD dataset was taken from a
well-polished, scratch free, surface captured using 4x frame averaging resulting in slow capture
rates but high quality orientation data; the EBSPs from this dataset would ultimately not be used
in any following analysis, but the orientation data from this scan would be used to generate and
simulate patterns for DA training. These Ti-5553 surfaces were then heat treated to relieve any
internal residual stresses in a Across TF1700 tube furnace at 300°C for 2 hours and allowed to
cool at 2 °C/min under .5L/min of argon to prevent oxidation. We then collected a second,
demonstrative, HR-EBSD dataset from a scratched, poorly prepared, surface. This dataset was
chosen specifically because of the presence of multiple surface defects, lackluster pattern quality,
poor indexing metrics, and represents the experimental “as-collected” data being denoised and
reindexed. Both of these HR-EBSD datasets were collected on a ThermoFisher G4 UC
DualBeam FIB/SEM equipped with an EDAX Velocity EBSD camera, while the resulting data
from the “as-collected” surface was indexed with TSL OIM Analysis Version 8.1. 2x2 binning
was used on the detector representing a EBSP resolution of 235x235 pixels. Note that our
detector featured two dead zones along the phosphor screen, these are present visually as two
dark rounded rectangles in the EBSPs shown in Figures 2 and 3. These dead zones were caused
by a sample crash from a prior user, and served to demonstrate a ‘worst case’ scenario of
detector damage induced noise on pattern collection. Collected data was then processed through
the DA and reindexed in TSL OIM Analysis software to understand the effects of EBSP
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denoising on indexing metrics. Model training and the theory behind that training is described in
section 3.1.

Seeking to extend the improvements from indexing towards HR-EBSD dynamic strain
measurements, the original as-collected data and DA-processed reindexed data was analyzed
using the open source EBSD cross correlation software OpenXY. [45] Dynamically simulated
reference patterns were used in cross-correlation utilizing the EMSoft method described in
section 3.1 and 3.2. Mutual image information between simulated, zero-strain, EBSPs and the
experimental, as-collected, EBSPs was calculated with each iteration of cross-correlation for
both input datasets. No pattern centering (PC) calibration was performed in OpenXY, and a
radial region of interest (ROI) pattern was utilized with a total of 48 ROI’s across each EBSP
being utilized in the shift calculations which is described in section 3.2.

3) Theory and Calculation:
3.1) Dataset Generation and Training the Denoising Autoencoder

To generate EBSPs to train the model, a representative noise free dataset was generated using the
Monte Carlo-based EBSP simulation suite, EMSoft [46], from the crystallographic orientation
information from the ‘ideal’ EBSD dataset mentioned in the Methods section. First, an EBSP
master pattern file was generated for B-titanium matching the energy conditions used in the
microscope. This method uses the Bethe Continuous Slowing Down Approximation
implemented in Fortran, along with the scattering cross sections determined by Rutherford
scattering, to produce distributions of the depth, direction, and energy of billions of back-
scattered electrons (BSES) as reflected from a simulated B-titanium surface to produce simulated
EBSPs from these reflection conditions. [47] Using the Euler orientation data from the first
‘ideal’ dataset, the microscope conditions/geometry, and the simulated electron diffraction
distributions, 37,135 simulated EBSPs were generated to construct a training dataset of noise
free simulated EBSPs. A matching noisy dataset was then constructed from these simulated
EBSPs, artificially noised with Gaussian noise (u=0, 0=25) and their contrast levels reduced in
imageJ to closely resemble low contrast found in the as-collected experimental EBSPs. Thus, the
autoencoder is trained via simulated EBSPs entirely and learns to reduce noise and enhance
contrast to what an idealized EBSP should look like regardless of orientation, crystal system, or
indexing solution. The autoencoder was programmed in Python utilizing the TensorFlow
libraries and trained with the simulated images. The model was trained for 10 epochs, a batch
size of 64, utilizing the ‘adam’ optimizer, and the mean square error loss function; resulting in a
final loss value of .0022. TensorFlow was not compiled or optimized for GPU utilization, and all
code was run on the CPU of a commercially available workstation. After training, the model was
validated with the simulated EBSPs such that the DA was able to accurately reconstruct noise-
free output from noise-free input as well as denoised output from noisy input. A schematic of
this process and where the DA fits in the HR-EBSD indexing procedure is described in Figure 1,
while a more in-depth flowchart of the autoencoder network and workflow is given in the
supplemental. The code utilized, the autoencoder model, and its weights are available at the
sourced Github. [48] A figure describing the training workflow, the architecture of the
autoencoder, and the denoising workflow is shown visually in the Supplemental Figure S1.
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Figure 1: General workflow describing the autoencoder training methodology and its use
within the EBSD indexing procedure.

3.2) Denoising, Re-indexing Patterns, and Strain Cross Correlation

The noisy, as-collected, experimental EBSPs from the heat treated surface were stored in the
proprietary EDAX .up2 format, a single file storing every EBSPs in the scan as a 16-bit unsigned
binary file with a mixed bit-depth header. This raw image file was separated into individual files
such that the model could encode/decode each individual image rather than loading the entire
image dataset into memory, or needing to build a method to parse the large proprietary datafile.
Each EBSP was then processed through the trained DA using Keras’ forward prediction
functionality. Optional in this process is the use of contrast limited adaptive histogram
equalization (CLAHE) as implemented in the CV2 library for either pre-processing or post-
processing of EBSPs alongside DA-processing, and in this case CLAHE was applied post-DA-
process to produce the results shown in section 4. The directory of loose images is then
repackaged into the .up2 format for analysis and re-indexing in TSL OIM Analysis v8. Dataset
background correction and/or automatic brightness and contrast (auto B/C) was utilized when re-
indexing to examine how the DA-processed EBSPs could be further enhanced by common image
processing methods and how they compare with them. The same methods were utilized on both
the as-collected patterns and DA-processed patterns to allow a direct comparison.

Quantifying residual strain in the datasets was performed with the open-source software package
OpenXY [45], utilizing the dynamically simulated pattern configuration for absolute strain
determination. Specifically, the stable ‘UPfile’ branch of OpenXY was utilized as it gives the
ability to load and quickly work with the .up2 file format. The absolute cross-correlation process
dynamically simulates an ideal, strain-free, reference EBSP through EMSoft for each orientation
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point and EBSP in the experimental datasets. At each point of cross-correlation an ROI screen is
then applied to both the reference and experimental pattern, and the shifts in EBSP features
within those ROIs is utilized to calculate the elastic distortion tensor: f=F-I. The full
deformation gradient tensor, F=R*U, is split into a rotational (R) and strain (U) component, with
the strain component given by U=I+e. Thus, by comparing shifts between experimental and
dynamically simulated strain-free reference patterns, the deformation gradient tensor and
absolute strain within the experimental pattern can be determined by solving F=R*U from the
measured shifts in the elastic distortion tensor 3 and the identity matrix 1. [8], [45], [49]

A detailed workflow showing all the steps utilized in EBSD data capture, image processing,
indexing/re-indexing, EBSD data cleaning, and where the DA fits within this workflow is given
in the Supplemental Figure S2.

4) Results:
4.1) Pattern Quality and EBSD Indexing Improvement

The model trained on simulated datasets was able to correctly identify that band contrast and
Kikuchi line intersections were of visual importance, leading to local enhancement of the
Kikuchi lines relative to the background, and resulting in more easily identifiable and
pronounced peaks in Hough space. This is clear in Figure 2, which shows the IPF map of the as-
collected EBSD data in contrast to the IPF map of the DA-processed data with examples of their
respective EBSPs in real and Hough space. The denoised EBSPs show greater peak contrast in
Hough space, and as a result the OIM Hough transformation and indexing algorithm produces a
higher fit accuracy and confidence index. A full comparison of image processing and reindexing
parameters between the as-collected and denoised EBSPs across the entire sample area is shown
in Figures 4 and 5, with 1Q, IPF, and fit maps given, and a table of indexing quality metrics
shown in Table 2 to more quantitatively compare results with different re-indexing parameters.
The total time for the model to load and denoise the entire dataset (124658 EBSPs) utilizing only
the CPU was 3 hours and 19 minutes, translating roughly to a post-processing latency of 10.4
patterns/second.
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Figure 2: IPF map of the indexed as-collected EBSPs (A) and the DA-processed EBSPs (B),

with respective EBSPs and resulting Hough transformation from a single point within the

circled grain. The indexed fit and CI are given for each pattern, while detector dead zones
are highlighted in both real and Hough transform space.

Figure 2 summarizes the overall improvements to indexing that patterns denoised with the
autoencoder provided, showing the effect the autoencoder had on the EBSPs, their resulting
Hough transformation, and improvement towards CI and degree of fit. Figure 2.A shows the IPF
from the as-collected data without any further post-processing or re-indexing, with significant
orientation noise visible within the scan. Figure 2.B shows the IPF generated by indexing the
DA-processed EBSPs with background correction and auto B/C enabled as image processing
during reindexing, it is identical to Figure 5.F. This highlights the best performing dataset,
patterns which have been DA-processed and conventional image processed, alongside the worst
performing dataset, the raw as-collected data. It is shown enlarged here for context to highlight
how improvements to individual EBSPs processed by the DA result in an overall the reduction of
noise visible in the orientation map. Note the effect of background correction on the dead zones
highlighted in 2.A, and how these dead zones impact the quality of the initial Hough transform
solution in comparison.

Examining the changes that both the autoencoder and conventional image processing techniques
have on the diffraction patterns themselves, both in comparison and in combination, Figure 3
shows a cropped selection of the microstructures shown in Figure 2 and two diffraction patterns
from the same grain for both the DA-processed patterns and the as collected patterns. The as-
collected patterns and DA-processed patterns are shown both independently, and in combination
with the common image processing options often used in post-collection re-indexing; the effects
of which we show quantitatively in Table 2. There are distinct differences in the contrast and
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band definition when comparing the as-collected and DA-processed patterns, and differences in
how these image processing options impact the final image quality of each. Background
correction in both cases leads to the infilling and correction of the effects of the detector dead
zone. It is not the DA-process which infills this detector damage noise, however there is less
observable Gaussian-type noise introduced via background correction to the DA-processed
patterns than the as-collected ones. In general, the definition of the Kikuchi lines and their
intersection points are better defined against the background when comparing the DA-processed
patterns to the as-collected patterns.

As-CoIIec_:ted and As-Indexed As-Collected AC + Auto AC + Auto BC +
Microstructure (AC) Brightness/Contrast (BC) Background Corr.

DA-Processed and Re-indexed DA-Processed DA + Auto BC DA + Auto BC +
Microstructure (DA) Background Corr.

Figure 3: Pattern level comparison of DA-processing and common image processing
techniques utilized in re-indexing.

Examining the 1Q maps of each of these conditions in greater detail, the improvements shown at
the pattern level can be observed across the whole microstructure dataset. Figure 4 shows the 1Q
maps of the same image processing conditions shown in Figure 3, allowing a comparison of 1Q
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improvements between both conventional image processing and novel DA-processing pathways.
Although improvements to 1Q can be observed with the as-collected patterns using conventional
image processing techniques, greater improvements to 1Q are obtained through DA-processing,
and these increases are further improved by subsequent image processing while reindexing. Note
that scratches and pores remain relatively low in 1Q as no diffraction would be expected in these
regions.
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Figure 4: 1Q maps of the EBSD dataset utilizing the as-collected patterns (A, C, E) and the
DA-processed patterns (B, D, F). The 1Q maps for both of these datasets re-indexed with
automatic brightness and contrast enhancement are shown in (C) and (D), respectively,
with the addition of background correction shown in (E) and (F).
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As-Collected Data 7 7 DA-Processed Data

Figure 5: IPF (left) and degree of fit (right) maps of the as-collected and DA-processed
datasets, with no additional image processing performed in re-indexing (A,B), with auto
B/C adjustment preformed while re-indexing (C,D), and both auto B/C and dataset
background correction preformed while re-indexing (E,F). The scalebar reads 100pum.

Figure 5 visually demonstrates the denoising performance of the EBSPs processed through the
autoencoder (B,D,F) with the as-collected EBSPs (A,C,E) combined with commonly used EBSD
post-processing techniques used in re-indexing: auto B/C and background noise correction.
Figure 5.C shows that auto B/C alone is insufficient, showing minimal improvements to fit
accuracy and orientation noise, while Figure 5.E indicates that incorporating background
correction in re-indexing alongside auto B/C can improve fit and indexing quality, but is
outperformed by the DA when combined with the same image processing conditions as shown in
Figure 5.F. The DA-processed data shown in Figure 5.B resulted in significantly less orientation
noise and a higher degree of fit accuracy when indexed compared to the as-collected patterns,
both with and without auto B/C image processing shown in Figure 5.C and 5.A respectively.
Combining the DA-processed patterns with a combination of image processing while re-indexing
resulted in the best performance, with superior indexing metrics shown for all DA-processed data
relative to as-collected data, resulted in higher 1Q in all cases, reduced orientation noise, and
significantly improved indexing properties when quantitatively compared in Table 2.

Table 2: Comparison of indexing metrics between the as-collected (AC) EBSPs and DA-
processed EBSPs with common re-indexing post-processing settings: automatic brightness
and contrast correction (auto B/C) and dataset background correction (back. corr.)
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360
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362
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364
365
366
367
368
369
370
371
372
373
374

As DA DA + AC + auto DA + auto

Collected | Processed ACE:r/guto auto B/C + back. B/C + back.
(AC) (DA) B/C corr. corr.
Average ClI: 0.06 0.25 0.04 0.27 0.37 0.45
Cl > .2 [%]: 5.29 42.85 7.86 45.02 54.18 62.30
Average Fit (°): 1.83 1.68 1.96 1.64 1.50 1.40
Fit < 1° [%]: 0.03 9.27 0.1 23.73 19.28 36.44
Average 1Q: 1265 9804.54 2145 9682 3130 8856

The DA framework for denoising EBSPs resulted in higher Cls, fit, and 1Q than the as-collected
patterns when normalized across the different re-indexing image processing conditions,
outperformed auto B/C image processing alone, and combing the DA with re-indexing image
processing resulted in the best indexing performance. Although improvements can be observed
with the as-collected EBSPs enhanced by combining both auto B/C and dataset background
correction, it is important to note that these gains are only further enhanced through the use of
the DA to process the EBSPs prior to re-indexing and that the DA results in significant
improvements to fit, 1Q, and CI on its own. Examining the CI distributions in greater detail, we
find that the autoencoder results in high CI points with greater frequency than just using post-
processing and re-indexing alone, and that the DA is not falsely generating indexable features
from pure noise. This is clear when visualizing the CI as shown in Figure 6, in that regions we’d
expect to be indexed with zero confidence (i.e. scratches, mounting compound surrounding the
melt bead, and surface defects) are not artificially improved simply by parsing the patterns
through the DA, and the Cls in these regions remains low. Instead, the DA results in increased
frequency of high CI points (CI >.5) and reduced frequency of low CI points (ClI <.2) compared
to the as-collected data both with and without post-process re-indexing. Examining the CI
distribution leads to a similar result described in Figure 5 and Table 2, where the DA-processed
data shows large improvements over the as-collected data, and is further enhanced by using
dataset background correction as image post-processing in re-indexing.
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Figure 6: A comparison of Cl values from indexed EBSPs as shown via histogram (A) and
visually with a colormap. The CI maps from the as-collected data is shown in (B) while DA-
processed data is shown in (C). Examining the effect of image processing while re-indexing,

the CI maps for the as-collected (D) and DA-processed (E) EBSPs re-indexed with
additional post-processing is shown in (D) and (E), respectively.

4.2) Autoencoder Denoising and Dynamic Strain Cross-Correlation

Generally speaking, two inputs are required in the dynamic cross-correlative strain measurement
process: the experimental EBSPs which contain the local strain and orientation information and
the corresponding map of indexed Euler angles. Examining how improvements to the EBSP
pattern quality driven by the DA would impact the dynamic strain cross-correlation process, we
find that the mutual information within the cross correlated regions of interest (ROI) is higher
between DA-processed EBSPs and the simulated zero strain EBSP than with the as-collected
EBSPs. Mutual information between two images is defined as the difference of the signal
entropy between the two, normalized by the sum of their frequency histograms; in other words
the DA-processed EBSPs feature greater ROl correspondence to and image likeness with
simulated EBSPs when compared to as-collected EBSPs. [50] The distribution of the mutual
information across the datasets is shown in Figure 6.A, showing the shift of the distribution to
higher mutual information with the DA-processed EBSPs and DA-reindexed Euler angles.
Examining if simply improving the degree of fit and providing more accurate Euler angle input
to the cross-correlation process would result in more accurate strain measurement, Figure 7.B
shows the resulting strain map when using the as-collected EBSPs but the DA-reindexed Euler
angles for generating the simulated patterns. Better fit Euler angles combined with as-collected
EBSPs results a noisy strain map with an order of magnitude of higher strain that does not trend
with the other datasets, indicative of a poor absolute cross-correlation result. The strain maps
using as-collected EBSPs and as-indexed Euler angles is shown in Figure 7.C, while the strain
maps using the DA-processed EBSPs and DA-reindexed Euler angles is shown in Figure 7.D.
The strain results indicate that using both the DA-processed images and the DA-reindexed Euler
angles as cross-correlation input results in the clearest strain map, with reasonably low strain
values for an annealed sample, and higher correspondence between the experimental pattern and
the simulated one.
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Figure 7: Histogram (A) of the mutual information between the experimental and
simulated patterns used in HR-EBSD cross correlation, each distribution matching the
dynamic strain analysis shown in the following plot. (B) shows the strain that results when
correlating the as-collected patterns to patterns simulated using the Euler angles from the
DA-reindexed fit, (C) is the strain resulting from as-collected patterns and the originally
indexed Euler angles, and (D) shows the strain resulting from the DA-processed images
correlated against patterns simulated from the DA-reindexed fit.

Further analyzing the mechanisms of how the EBSPs impact the dynamic pattern simulation and
cross correlation process at the individual pattern generation and deformation gradient
calculation level, Figure 8 shows the same two indexed EBSPs from the DA-processed and as-
collected datasets alongside the simulated zero-strain EBSPs generated for both. The simulated
EBSPs are overlayed with the ROI shift required to fit the two patterns, the magnitude of these
shifts is used to calculate the deformation gradient tensor and thus strain between the zero-strain
simulated reference and strained experimental EBSP. Figure 8 shows that the DA-processed
images and better fit DA-reindexed Euler orientation results in a simulated EBSP with greater
convergence with the experimental pattern, reduced local strains, and less computational
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iteration required to arrive at a solution. The simulated EBSP generated from the DA-processed
orientation data more closely correspond to the experimental EBSP, and although subtle, this
results in less rotational and positional deviation from the experimental pattern when compared
to the as-collected dataset. Comparing the overlayed ROI shifts, the magnitude of these shifts is
reduced when using the DA-processed data while the number of outliers is also reduced.

DA-processed As-collected

Fit: 1.139 Fit: 1.736 E
Iter.: 1 3 Iter.: 4 g
Strain: .0024 e T Strain:.0030

Fit: .526 Fit: 1.631
Iter.: 2 ; - Iter.: 6
Strain: .0024 ; Lk, .- Strain: .0029

Figure 8: Comparison of the cross correlated ROI shifts between the simulated and
experimental EBSP when using DA-process (left) and the as-collected and originally
indexed data (right) from the same two points. Experimental EBSPs are shown to the right
of their matching simulated EBSP. Annotated above each pair is the degree of fit, strain,
and number of iterations required to arrive at the solution. The EBSPs are overlayed with
ROI shifts: the green lines represent the shifts used to calculate the deformation tensor, red
lines represent outliers ignored by the calculation, and blue lines are the shifts predicted by
the final deformation gradient tensor.

5) Discussion
5.1) Improvements to EBSD Orientation Indexing

Utilization of a denoising autoencoder as an image preprocessor for EBSPs prior to indexing is a
good solution for indexing noisy EBSD datasets, and especially when used in tandem with
existing image processing like background correction and auto B/C, as usage of the autoencoder
leads to a higher accuracy Hough indexing procedure than simply re-indexing with these options
alone. Table 2 shows commonly described indexing metrics used to qualify EBSD scans (1Q, Cl,
fit), while Figure 2 and 3 describes at the pattern level the mechanism by which these
improvements are derived. The accuracy of the Hough procedure, whereby the orientation of the
crystal is determined by the angle and distance between the Hough peaks, rapidly deteriorates
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with image noise and especially band contrast. This lack of contrast results in low 1Q, visible in
the as-collected datasets in Figure 4. The low band contrast results in the Hough peaks shown in
Figure 2.A being difficult to detect from the background, and are even skewed or overshadowed
by a dead zone in the detector screen. In Figure 2.B we see that the autoencoder is able to
enhance band contrast in the EBSPs and thus peaks in Hough space, and when combined with
background correction also leads to infilling of dead zones on the detector. The improvements to
band contrast across the whole dataset becomes clear when comparing the 1Q maps in Figure 4,
as the 1Q of the whole dataset is improved, while relative differences in 1Q values between grains
are still maintained. These improvements are derived from how the model was trained. The
simulated EBSPs generated by EMSoft contained no noise and perfect band contrast, and served
as the training target. By artificially noising them to near-experimental levels and using this as
the noisy training input, the autoencoder learns to reproduce high quality EBSPs from noisy
ones. Although one single metric (1Q, ClI, or fit) alone cannot alone describe the quality of an
EBSD dataset due to the convolution of factors which cause noise in electron diffraction
patterns, usage of a convolutional autoencoder leads to improvements to all metrics
simultaneously. When utilized on noisy experimental patterns the model results in both visual
and guantitative improvements to the IPF and degree of angular fit maps in Figures 5 while also
improving the whole distribution of CI across the dataset as shown in Figure 6. Thus, the DA
model improves both the fit of the orientation solution and the confidence in the accuracy of that
solution simultaneously. Importantly, the degree of fit is improved with utilization of the DA
prior to re-indexing, with Table 2 showing that ~36% of the data had a fit parameter of less than
1° of misorientation from the indexing solution. The improvements made using denoised EBSPs
prior to Hough indexing results in orientation maps of similar quality to those demonstrated with
the DI and SHT based indexing methods when indexing noisy datasets, but we note a full
quantitative comparison between different indexing methods would require additional analysis as
we are using an entirely different dataset and material system. [25], [51]

This denoising model is an inherently generative one, so it is critical we ensure the DA is not
generating new information from pure noise or encoding new Kikuchi bands and EBSP features
from non-existent data. The fit and CI values as mapped in Figures 5 and 6 are critical in
assessing this. Scratches, defects, or a high density of grain boundaries on the imaged surface
would result in EBSPs of high noise due to lack of coherent diffraction and would result in near
zero Cl and low fit accuracy within these regions. In the noisy as-collected dataset we see this is
true, and the scratches stand out as a consistent low point of reference on the fit and Cl maps of
each dataset regardless of DA processing. Thus, we find that the DA is only improving EBSP
features that are present, within regions where electron diffraction would be expected and
observed. Regions of pure noise, such as those within the mounting compound, are not being
falsely improved nor is non-existent data is being generated by the model as we do not see an
indexing solution in these areas. Indeed, examining Figure 6 we find that denoising leads to
improvement in CI within grains that were mapped with low confidence, rather than defects
mapped with zero, and we observe that the DA results in an increase in frequency of high
confidence points only within the melt pool boundary.
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The noise limitations of the Hough transformation indexing procedure can be addressed by
denoising the EBSPs prior to the transform as a form of image pre-processing, and a higher
degree of angular fit, Cl, 1Q achieved while still using the conventional Hough indexing method.
Because this denoising occurs post-collection, no additional processing time or latency is
introduced at the point of data collection while still utilizing faster and more conventional Hough
indexing once the EBSPs have been denoised, enabling more noise tolerant collection at the
detector without additional time penalties induced by frame averaging or conventional image
processing. The indexing uncertainties of the Hough-transform that arise from noisy images can
be alleviated, and the autoencoder method of denoising we demonstrate shows greater robustness
to pattern noise than convolutional neural network based indexing methods. [38] The DA method
demonstrated offers improvements over the Hough-transform augmented with various forms of
image post-processing, without the losses in resolution associated with NPAR. [24] The latency
of the DA, running only on the CPU on a modest workstation (Intel i19-9900, 64GB RAM), is
~10.4 patterns/second and is comparable to that of the dictionary method at ~11.6
patterns/second. [27] The total calculation time from denoising to indexed solution is less, taking
approximately 4 hours to denoise and reindex a dataset of 124658 EBSPs, compared to
approximately 110 hours to index a dataset of 333227 EBSPs using the DI method; but is slower
than the SHT methods discussed in the introduction. [25] We also note that the denoising method
demonstrated here is agnostic towards its material crystal system, it simply denoises EBSPs,
while the DI method becomes increasingly computationally complex with increasing crystal
symmetry due to increasing dictionary size. [51], [52]

As denoising was run on the CPU only, computational overhead could be reduced by processing
images on the GPU by enabling CUDA support. The DA could also be translated to hardware, at
the detector level, in FPGA form for a more energy and computationally efficient
implementation. [53], [54] We also must stress that the model was trained with a specific EBSP
resolution and detector binning (2x2) in mind, and thus alterations to the model architecture may
be necessary for compatibility with patterns collected at higher or lower resolutions. Although
EBSP denoising does add computation time following data collection, it does not do so at the
point-of-collection or point-of-indexing, and thus could easily be integrated into existing high
speed EBSD workflows. When used as EBSD data post-processing, this DA method can enable
faster data collection speeds at the detector by allowing collection of noisier EBSPs at lower
exposure times. This can help further enable the capture of larger microstructural areas with
greater spatial resolution while utilizing conventional Hough-transformation indexing methods.

5.2) Implications of DA post-processing towards HR-EBSD Strain Measurement

As discussed in the introduction, quantifying absolute strain from HR-EBSD pattern cross
correlation relies on good convergence between a simulated, zero strain, EBSP and the
experimental EBSP. This can be achieved by way of enabling higher accuracy measurement of
orientation with DA-processed EBSPs, and with ~36% of the data showing sub-1° of fit, a higher
accuracy Hough procedure enables more accurate pattern simulation and absolute strain cross
correlation. The improvements to the fit parameter, Cl, and orientation indexing observed in
Figure 5 translates to a more accurate generation of simulated EBSPs for cross correlation due to
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increased accuracy of the measured Euler angles, and when combined the enhanced band
contrast and edge definition of the DA-processed EBSPs, produces a cross-correlation result with
less error and requires less computational iteration to arrive at a solution. This is because
uncertainty and error in the Hough indexing procedure carry into the EBSP pattern generation
and strain cross correlation procedure, and a poorly indexed experimental point will generate a
poorly fit simulated EBSP. Thus, if orientation measurement error can be minimized so to can
absolute strain measurement error. [1] As Figure 8 would indicate, increasing the orientation fit
accuracy with refined Euler angles does increase correspondence between the simulated zero-
strain EBSP and the experimental pattern used to calculate the deformation gradient tensor, while
Figure 7.A and B show it is not merely the improved Euler angle fit but that EBSP image quality
improvements themselves also drive improvements as well. A combination of the more
accurately fit simulated pattern and the DA-improved EBSP image quality is the source of the
increased mutual information seen across the datasets in Figure 5.A and this results in reduced
‘phantom’ or erroneously calculated strains across the entirety of the dataset. As the zero-strain
point of cross correlation is more accurately fit, the contributions of phantom strains calculated
from erroneous ROI shifts as shown in Figure 8, is reduced, leading to an overall lower average
strain. Hence when comparing the strain maps in Figure 7.B and C to D we see more areas of
contiguous strain being resolved with less high strain points randomly distributed, as point-to-
point misorientation noise is reduced and the patterns have less noise between them. This is why
there is significantly higher phantom strains manifested in Figure 7.B, as we are comparing a
more accurately simulated pattern to a poorer quality, as-collected image, which results in even
greater shift magnitudes between ROIs and a larger perceived deformation gradient. As the strain
cross-correlation process is sensitive to high degrees of misorientation between the reference and
experimental pattern, a more accurate and correctly fit input orientation map from Hough-
indexing results in a better fit zero-strain pattern simulation, and thus reduced ROI shifts and
strain magnitude. [1] The reduced number of iterations, and thus time, required to arrive at a
cross-correlated strain solution when utilizing the DA-processed patterns and indexing solution
could serve to increase the speed of this method, which is the subject of future research.

While the results demonstrate that the DA-processed images are more similar to an idealized
simulated EBSP and the improved fit map results in less noise across the strain map with reduced
phantom strain contributions relative to the as-collected dataset and patterns, other contributions
to phantom strain are not accounted for in this study. The relatively low resolution of the
patterns, intentionally poor sample surface preparation, and lack of pattern center (PC)
calibration prohibits us from claiming these strain measurements as a ground truth. We recognize
contributions from PC error were not addressed, although we argue that achieving such a low
absolute strain measurement (.10%) on a heat-treated sample does indicate this contribution is
minimal, but without further experimentation cannot quantify this. We note that the sample
EBSD area shown is ~.1mm? in surface area; and deviations from the as-calibrated PC and the
true PC would be expected. [14] We would expect greater strain accuracy and precision utilizing
higher resolution EBSPs or with higher resolution EBSD scans taken over a smaller imaging area
where less beam shift would be expected, but this requires additional study. Furthermore, no PC
recalibration or recalculation occurred in post-processing, and doing so could result in further
reductions to phantom strain and improved precision of the local crystal orientation. [55]
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Although the improvements to indexing demonstrated by the DA framework shown translates to
improved convergence between experimental and simulated patterns, they do not account or
correct for PC shift error.

6) Conclusions

The noise limitations of the Hough transformation method of EBSD indexing can be overcome
and noisy EBSPs datasets indexed with greater success and accuracy with the use of a denoising
autoencoder to process the EBSPs prior to re-indexing. The autoencoder improves indexing
quality by improving Kikuchi band contrast and definition, and thus improves 1Q, Cl, and fit; the
neural network learning from noise-free, high contrast, EBSPs to discern high quality image
features from noisy ones. Thus, without the introduction of new indexing algorithms, the Hough-
transformation indexing process can be improved and made more accurate by denoising the
source EBSP prior to indexing. Even with physical dead zones in the detector screen and a
poorly polished sample, by combining our DA with existing image processing methods high
levels of indexing confidence can be achieved. Both with and without dataset background
correction, the denoised EBSPs resulted in a more coherent orientation map with higher CI, 1Q,
and fit parameters than the as-collected dataset under identical conditions. The ability to index
EBSD datasets with greater noise tolerance can allow for faster data collection rates at the
detector, enable higher spatial resolution data collection for mesoscale EBSD experiments, and
the higher orientation fit accuracy enabled by DA-processing serve to improve the Hough-
transform method as a whole.

The improvements made to EBSP quality and subsequent indexing metrics also had implications
for cross correlative absolute strain measurement, although there are challenges still present with
the method. When using the denoised EBSPs and the higher fit accuracy Euler angles in absolute
strain cross correlation, the DA-processed dataset resulted in a more accurate generation of
simulated EBSPs from which strain is calculated and required less computational iteration to
arrive at a solution. When using the DA-processed EBSPs, there was less apparent
misorientation between the experimental pattern and simulated one, which resulted in a reduced
ROI shifts necessary to correlate the two patterns and the origin of the reduced phantom strains.
Thus, using DA-processed and re-indexed EBSPs offers improvement of correspondence
between the experimental and simulated patterns being cross correlated, and much more reliable
absolute strain measurements are enabled via HR-EBSD, in addition to improving the
indexability of noisy EBSD datasets in general.
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