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Abstract: The rapid collection and indexing of electron diffraction patterns as produced via 8 

electron backscatter diffraction (EBSD) has enabled crystallographic orientation and structural 9 

determination, as well as additional property-determining strain and dislocation density 10 

information with increasing speed, resolution, and efficiency. Pattern indexing quality is reliant 11 

on the noise of the collected electron diffraction patterns, which is often convoluted by sample 12 

preparation and data collection parameters. EBSD acquisition is sensitive to many factors and 13 

thus can result in low confidence index (CI), poor image quality (IQ), and improper 14 

minimization of fit, which can result in noisy datasets and misrepresent the microstructure. In an 15 

attempt to enable both higher speed EBSD data collection and enable greater orientation fit 16 

accuracy with noisy datasets, an image denoising autoencoder was implemented to improve 17 

pattern quality. We show that EBSD data processed through the autoencoder results in a higher 18 

CI, IQ, and a more accurate degree of fit. In addition, using denoised datasets in HR-EBSD cross 19 

correlative strain analysis can result in reduced phantom strain from erroneous calculations due 20 

to the increased indexing accuracy and improved correspondence between collected and 21 

simulated patterns. 22 

Graphical Abstract:  23 

 24 
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1) Introduction: 26 

Electron backscatter diffraction (EBSD) is of the most commonly used microstructural analysis 27 

tools, and is a widely accessible tool in the materials science and crystallography community. [1] 28 

EBSD enables users to obtain a wealth of information from crystalline materials in a 29 

conventional scanning electron microscope (SEM) that would traditionally require access to a 30 

beamline or similar X-ray techniques: such as crystallographic orientation, distribution of phases 31 

within a microstructure, dislocation defect density, and grain size and texture information. [2] In 32 

addition to the acquiring crystallographic information, the method enables the measurement of 33 

microscale strains in materials with a sensitivity of 10-4 through a process of electron backscatter 34 

diffraction pattern (EBSP) cross correlation, using high resolution electron backscatter 35 

diffraction (HR-EBSD). [3]–[5] Strain determination is accomplished by two different 36 

approaches and arrives at two different strain measurements. The first method of relative strain 37 

mapping calculates local strain gradients by measuring pattern shifts between two captured 38 

patterns, a reference and a test, experimentally this is often preformed such that the reference 39 

pattern is that of the grain mean orientation. [6], [7] However, the unknown strain state contained 40 

within the reference pattern carries with it uncertainty, and thus this method does not provide a 41 

true absolute strain measurement, only relative/deviatoric distortions between the reference and 42 

test pattern. [8] The second, more computationally complex method, dynamically simulates a 43 

strain free reference pattern for each experimentally obtained pattern and thus determines 44 

absolute strain at each point in an EBSD scan. [9], [10] Thus, obtaining an absolute strain 45 

measurement relies on the simulation of a ‘zero strain’ reference pattern which closely converges 46 

with the experimental one and is limited by two sources of uncertainty: the uncertainty of 47 

orientation measurement via Hough transform [1] and uncertainty of pattern center (PC) from 48 

conventional SEM calibration techniques which can introduce phantom strains on the order of 49 

10-3. [11], [12] Despite advances in improving correspondence between the simulated and real 50 

patterns through a gradient-based approach [13] there is still often insufficient correspondence 51 

between real and simulated patterns which introduce limitations to this method in obtaining an 52 

absolute strain measurement. [1], [14] Although many authors have reported and worked on 53 

solutions related to PC shift correction [8], [13], this paper focuses on improving the 54 

experimentally collected EBSPs, also known colloquially as Kikuchi patterns, themselves and 55 

achieving a higher accuracy measurement of orientation angles and enabling a higher resolution 56 

Hough transform indexing procedure and has implications beyond strain measurement. 57 

All EBSD methods rely on the correct identification and indexing of bands appearing on the 58 

EBSP which represent the crystal lattice planes, determining the positioning and angles between 59 

these bands, and from this the orientation of the local crystal lattice can be measured. [15]–[17] 60 

The most commonly used method of indexing EBSPs utilizes band detection via Hough 61 

transform, whereby each Kikuchi line in detector space is a 2D point of accumulation (a peak of 62 

high intensity) in transform space. [18] Thus, in transform space the distance and angle between 63 

these peaks can be measured trivially and the relationship between the planes in detector space 64 

elucidated to determine crystallographic orientation. [15], [19] This method has been integrated 65 
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into many commercial systems and has seen widespread use and improvement over the past 66 

several decades, however this algorithm’s performance degrades with increasing noise input. The 67 

Hough transform method suffers from poor indexing, fit, and confidence index (CI) in EBSPs 68 

featuring increasingly high noise levels, with noise primarily manifesting as low pattern contrast, 69 

Gaussian noise, or lack of clear band definition. [2], [20], [21] This noise can originate from 70 

sample preparation, the detector, microscope, and camera settings utilized (i.e. poor exposure), 71 

localized strain/deformation within the sample area, and improper utilization of large step sizes 72 

with fine-grained materials. [22]–[24] Various indexing algorithms have been introduced which 73 

aim to address these issues, each introducing their own advantages and drawbacks. Spherical 74 

indexing methods utilize a forward model to generate a spherical master EBSP from which 75 

collected patterns are projected onto and correlated via a spherical harmonic transform (SHT), 76 

resulting in higher indexing quality with EBSPs that would be difficult to index with traditional 77 

Hough techniques. [25] The dictionary indexing method (DI) has demonstrated the ability to 78 

index samples with greater accuracy and correctly index patterns with high noise [24], [26], but 79 

the size of the simulated pattern dictionary increases with decreasing crystal symmetry; meaning 80 

that indexing a cubic material will take six times less computation time than indexing an 81 

orthorhombic one. [25] Computation time is the largest drawback of the DI method, with an 82 

indexing speed of ~12 points per second and larger datasets taking days to process when 83 

including orientation refinement. [27] For context, both the Hough method and SHT method are 84 

capable of processing hundreds to thousands of points per second and are limited more by EBSD 85 

detector speed and exposure settings than execution time. [25] Refinements and optimization to 86 

the DI method have been forwarded to improve execution time, with Fourier domain based 87 

pattern matching enabling more rapid orientation refinement and requiring a smaller pattern 88 

dictionary to parse. [28] 89 

While introducing the subject of noise and its implications towards EBSD indexing, we must 90 

also briefly discuss the quantification of EBSD data quality metrics. Quality in an EBSD context 91 

can refer to two things, the quality of the diffraction pattern itself and the quality of the indexing 92 

solution of that pattern to a crystal system. Quality at the pattern level is a measurement of how 93 

well defined the Kikuchi bands are relative to the background, with higher quality patterns 94 

featuring bands of high intensity and sharp band edges. [29] This is often defined as image 95 

quality (IQ), a measure of the average height of the Kikuchi band peaks in Hough space, and is 96 

effected by local lattice strain, the atomic scattering factor of the material being analyzed, surface 97 

preparation and/or topology, and other microstructural features like grain boundaries which 98 

would result in low IQ. [30], [31] As indexing and/or SEM parameters will often induce changes 99 

to IQ irrespective of the microstructure, relative values between points are used to describe 100 

microstructural features and an absolute measure of IQ is not particularly useful in this regard. 101 

[30] Indexing success rate (ISR) is a general term for describing the fraction of patterns 102 

successfully indexed in an EBSD scan, and this is defined differently depending on the EBSD 103 

detector manufacturer. At time of writing Oxford and Bruker systems describe this as the 104 

fraction of zero solutions, or points with no indexing solution to the corresponding pattern, while 105 

EDAX systems utilize a triplet voting method, defined as a confidence index (CI), to provide a 106 

measure of how reliable the indexing solution would be on a scale of 0 to 1. [24], [32] A ‘vote’ 107 

in this context is an orientation solution for a set of Kikuchi band triplets, the more well fit that 108 
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solution is the more votes it receives, and the CI is calculated as the difference in votes between 109 

the most likely solution (determined by number of votes) and the second most likely, divided by 110 

the number of total band triples available. [19], [32], [33] CI is impacted by the number of bands 111 

present in a pattern, with more bands resulting in a greater number of correct solutions, but a 112 

lower average CI due to conflicting votes; experimentally this results in ~90% of the orientation 113 

solutions being correct with a CI=0.1. [34] Degree of fit is another ISR metric, and defines the 114 

degree of angular deviation between the observed crystallographic orientation of the EBSP and 115 

the ideal solution provided by the indexing software. [35] There is no one single quality metric 116 

which can fully describe an EBSD dataset due to the physics of diffraction, for example a highly 117 

strained sample would result in lower IQ than a relaxed one but could still feature high ISR. In 118 

addition, different detector manufacturers will use different image collection, processing, and 119 

measurement methods all of which impact these metrics which is beyond the scope of this study. 120 

Machine learning (ML) methods have been recently introduced as an alternative to the discussed 121 

algorithms as a method of indexing EBSPs. [36] Deep learning methods, such as the use of 122 

convolutional neural networks (CNNs) trained with simulated EBSPs, have indexed 123 

polycrystalline nickel with decreased disorientation error when compared to DI methods. [37] 124 

Refinements and improvements to the CNN indexing method, including EBSP preprocessing and 125 

use of disorientation error as its own loss function, resulted in a model fast enough for real-time 126 

indexing but performed slightly worse at indexing noisy patterns. [38] These improved indexing 127 

methods offer reduced orientation fit error over the conventional Hough methods, which is key 128 

for cross-correlative strain determination and accurate indexing of strained materials. [1], [37] 129 

Image processing algorithms which aim to denoise the EBSPs themselves, rather than addressing 130 

noise at the indexing stage, have also shown utility. The commercially available Neighbor 131 

Pattern Averaging & Reindexing (NPAR™) algorithm averages neighboring patterns above a CI 132 

threshold, which has shown improved Hough indexing and enables the collection of data at 133 

higher speed with more noise. [24], [39] NPAR functions as a virtual pattern averaging function 134 

which can be done post-process, as it averages patterns across space it is inherently lossy with 135 

spatial resolution, and NPAR is less effective with larger step sized scans and fine grained 136 

materials. This method has been refined using a non-linear smoothing kernel (NLPAR) to weigh 137 

patterns based on their similarity of quality, rather than their spatial proximity, and results in 138 

further improved results including gains over the DI method. [22] These are inherently post-139 

process methods, but demonstrates that when using the conventional Hough indexing method, 140 

the quality of orientation mapping and index success rate can be improved through EBSP 141 

preprocessing and denoising. 142 

Utilizing a denoising autoencoder (DA) approach to preprocess EBSPs prior to indexing should 143 

lead to indexing improvement, without needing to alter the indexing process itself. Autoencoders 144 

are a type of feedforward neural network model consisting of two functions: an encoder which 145 

translates the input into latent space, and decoder, which attempts to reconstruct the input from 146 

this latent space representation. [40] The goal of a DA model is to learn to reconstruct a noise-147 

free output from a noisy input. [41] Using DAs for image denoising has shown utility in 148 

removing Gaussian noise and undesired features from image data. [42] Stacked convolutional 149 
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DAs have been able to denoise medical mammogram and X-ray images with very small training 150 

datasets, and reconstruct images from incredibly noisy datasets. [43], [44]  Thus, there is 151 

evidence that utilizing DAs at the stage of EBSP collection or prior to indexing could reduce 152 

noise within the EBSPs themselves which would result in erroneous or poor indexing. 153 

In this paper, by synthesizing both ML and conventional image processing methods, we 154 

introduce a convolutional DA framework for EBSD denoising which has shown to significantly 155 

improve indexability of poor quality EBSPs and improve the fit accuracy of the Hough transform 156 

method with DA-processed patterns. By addressing noise at the EBSP level, we are able to 157 

improve the CI, image quality (IQ), and degree of fit both among individually noisy patterns and 158 

across the whole dataset. In addition, this DA framework reduced the contributions of ‘phantom 159 

strain’ in dynamically resolved absolute HR-EBSD strain measurement because of this improved 160 

fit accuracy. By improving the pattern quality and Kikuchi band edge fidelity, the accuracy of 161 

interplanar angle measurement of the Hough indexing procedure was improved. Because of this 162 

we observe increased correspondence between experimental EBSPs and simulated ones used for 163 

strain cross correlation. EBSPs denoised by the autoencoder often demonstrate a sub-1° of fit, 164 

with indexing metrics showing improvement over and compatibility with existing EBSP image 165 

post-processing methods. In addition to improving HR-EBSD absolute strain determination, this 166 

allows for noisier EBSD datasets to be collected and indexed with conventional Hough-based 167 

indexing and thus enables higher speed and higher resolution EBSD experiments in general. 168 

2) Sample Preparation and EBSP Acquisition Methods: 169 

Two HR-EBSD datasets were utilized to build and demonstrate the DA, both captured from the 170 

cross-sectional surface of a Ti-5553 melt bead. First, an ‘ideal’ EBSD dataset was taken from a 171 

well-polished, scratch free, surface captured using 4x frame averaging resulting in slow capture 172 

rates but high quality orientation data; the EBSPs from this dataset would ultimately not be used 173 

in any following analysis, but the orientation data from this scan would be used to generate and 174 

simulate patterns for DA training. These Ti-5553 surfaces were then heat treated to relieve any 175 

internal residual stresses in a Across TF1700 tube furnace at 300°C for 2 hours and allowed to 176 

cool at 2 °C/min under .5L/min of argon to prevent oxidation. We then collected a second, 177 

demonstrative, HR-EBSD dataset from a scratched, poorly prepared, surface. This dataset was 178 

chosen specifically because of the presence of multiple surface defects, lackluster pattern quality, 179 

poor indexing metrics, and represents the experimental “as-collected” data being denoised and 180 

reindexed. Both of these HR-EBSD datasets were collected on a ThermoFisher G4 UC 181 

DualBeam FIB/SEM equipped with an EDAX Velocity EBSD camera, while the resulting data 182 

from the “as-collected” surface was indexed with TSL OIM Analysis Version 8.1. 2x2 binning 183 

was used on the detector representing a EBSP resolution of 235x235 pixels. Note that our 184 

detector featured two dead zones along the phosphor screen, these are present visually as two 185 

dark rounded rectangles in the EBSPs shown in Figures 2 and 3. These dead zones were caused 186 

by a sample crash from a prior user, and served to demonstrate a ‘worst case’ scenario of 187 

detector damage induced noise on pattern collection. Collected data was then processed through 188 

the DA and reindexed in TSL OIM Analysis software to understand the effects of EBSP 189 
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denoising on indexing metrics. Model training and the theory behind that training is described in 190 

section 3.1. 191 

Seeking to extend the improvements from indexing towards HR-EBSD dynamic strain 192 

measurements, the original as-collected data and DA-processed reindexed data was analyzed 193 

using the open source EBSD cross correlation software OpenXY. [45] Dynamically simulated 194 

reference patterns were used in cross-correlation utilizing the EMSoft method described in 195 

section 3.1 and 3.2. Mutual image information between simulated, zero-strain, EBSPs and the 196 

experimental, as-collected, EBSPs was calculated with each iteration of cross-correlation for 197 

both input datasets. No pattern centering (PC) calibration was performed in OpenXY, and a 198 

radial region of interest (ROI) pattern was utilized with a total of 48 ROI’s across each EBSP 199 

being utilized in the shift calculations which is described in section 3.2.  200 

3) Theory and Calculation: 201 

3.1) Dataset Generation and Training the Denoising Autoencoder 202 

To generate EBSPs to train the model, a representative noise free dataset was generated using the 203 

Monte Carlo-based EBSP simulation suite, EMSoft [46], from the crystallographic orientation 204 

information from the ‘ideal’ EBSD dataset mentioned in the Methods section. First, an EBSP 205 

master pattern file was generated for β-titanium matching the energy conditions used in the 206 

microscope. This method uses the Bethe Continuous Slowing Down Approximation 207 

implemented in Fortran, along with the scattering cross sections determined by Rutherford 208 

scattering, to produce distributions of the depth, direction, and energy of billions of back-209 

scattered electrons (BSEs) as reflected from a simulated β-titanium surface to produce simulated 210 

EBSPs from these reflection conditions. [47] Using the Euler orientation data from the first 211 

‘ideal’ dataset, the microscope conditions/geometry, and the simulated electron diffraction 212 

distributions, 37,135 simulated EBSPs were generated to construct a training dataset of noise 213 

free simulated EBSPs. A matching noisy dataset was then constructed from these simulated 214 

EBSPs, artificially noised with Gaussian noise (μ=0, σ=25) and their contrast levels reduced in 215 

imageJ to closely resemble low contrast found in the as-collected experimental EBSPs. Thus, the 216 

autoencoder is trained via simulated EBSPs entirely and learns to reduce noise and enhance 217 

contrast to what an idealized EBSP should look like regardless of orientation, crystal system, or 218 

indexing solution. The autoencoder was programmed in Python utilizing the TensorFlow 219 

libraries and trained with the simulated images. The model was trained for 10 epochs, a batch 220 

size of 64, utilizing the ‘adam’ optimizer, and the mean square error loss function; resulting in a 221 

final loss value of .0022. TensorFlow was not compiled or optimized for GPU utilization, and all 222 

code was run on the CPU of a commercially available workstation. After training, the model was 223 

validated with the simulated EBSPs such that the DA was able to accurately reconstruct noise-224 

free output from noise-free input as well as denoised output from noisy input. A schematic of 225 

this process and where the DA fits in the HR-EBSD indexing procedure is described in Figure 1, 226 

while a more in-depth flowchart of the autoencoder network and workflow is given in the 227 

supplemental. The code utilized, the autoencoder model, and its weights are available at the 228 

sourced Github. [48] A figure describing the training workflow, the architecture of the 229 

autoencoder, and the denoising workflow is shown visually in the Supplemental Figure S1. 230 
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 231 

 232 

Figure 1: General workflow describing the autoencoder training methodology and its use 233 

within the EBSD indexing procedure. 234 

3.2) Denoising, Re-indexing Patterns, and Strain Cross Correlation 235 

The noisy, as-collected, experimental EBSPs from the heat treated surface were stored in the 236 

proprietary EDAX .up2 format, a single file storing every EBSPs in the scan as a 16-bit unsigned 237 

binary file with a mixed bit-depth header. This raw image file was separated into individual files 238 

such that the model could encode/decode each individual image rather than loading the entire 239 

image dataset into memory, or needing to build a method to parse the large proprietary datafile. 240 

Each EBSP was then processed through the trained DA using Keras’ forward prediction 241 

functionality. Optional in this process is the use of contrast limited adaptive histogram 242 

equalization (CLAHE) as implemented in the CV2 library for either pre-processing or post-243 

processing of EBSPs alongside DA-processing, and in this case CLAHE was applied post-DA-244 

process to produce the results shown in section 4. The directory of loose images is then 245 

repackaged into the .up2 format for analysis and re-indexing in TSL OIM Analysis v8. Dataset 246 

background correction and/or automatic brightness and contrast (auto B/C) was utilized when re-247 

indexing to examine how the DA-processed EBSPs could be further enhanced by common image 248 

processing methods and how they compare with them. The same methods were utilized on both 249 

the as-collected patterns and DA-processed patterns to allow a direct comparison. 250 

Quantifying residual strain in the datasets was performed with the open-source software package 251 

OpenXY [45], utilizing the dynamically simulated pattern configuration for absolute strain 252 

determination. Specifically, the stable ‘UPfile’ branch of OpenXY was utilized as it gives the 253 

ability to load and quickly work with the .up2 file format. The absolute cross-correlation process 254 

dynamically simulates an ideal, strain-free, reference EBSP through EMSoft for each orientation 255 
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point and EBSP in the experimental datasets. At each point of cross-correlation an ROI screen is 256 

then applied to both the reference and experimental pattern, and the shifts in EBSP features 257 

within those ROIs is utilized to calculate the elastic distortion tensor: =F-I. The full 258 

deformation gradient tensor, F=R*U, is split into a rotational (R) and strain (U) component, with 259 

the strain component given by U=I+ε. Thus, by comparing shifts between experimental and 260 

dynamically simulated strain-free reference patterns, the deformation gradient tensor and 261 

absolute strain within the experimental pattern can be determined by solving F=R*U from the 262 

measured shifts in the elastic distortion tensor  and the identity matrix I. [8], [45], [49] 263 

A detailed workflow showing all the steps utilized in EBSD data capture, image processing, 264 

indexing/re-indexing, EBSD data cleaning, and where the DA fits within this workflow is given 265 

in the Supplemental Figure S2. 266 

4) Results: 267 

4.1) Pattern Quality and EBSD Indexing Improvement 268 

The model trained on simulated datasets was able to correctly identify that band contrast and 269 

Kikuchi line intersections were of visual importance, leading to local enhancement of the 270 

Kikuchi lines relative to the background, and resulting in more easily identifiable and 271 

pronounced peaks in Hough space. This is clear in Figure 2, which shows the IPF map of the as-272 

collected EBSD data in contrast to the IPF map of the DA-processed data with examples of their 273 

respective EBSPs in real and Hough space. The denoised EBSPs show greater peak contrast in 274 

Hough space, and as a result the OIM Hough transformation and indexing algorithm produces a 275 

higher fit accuracy and confidence index. A full comparison of image processing and reindexing 276 

parameters between the as-collected and denoised EBSPs across the entire sample area is shown 277 

in Figures 4 and 5, with IQ, IPF, and fit maps given, and a table of indexing quality metrics 278 

shown in Table 2 to more quantitatively compare results with different re-indexing parameters. 279 

The total time for the model to load and denoise the entire dataset (124658 EBSPs) utilizing only 280 

the CPU was 3 hours and 19 minutes, translating roughly to a post-processing latency of 10.4 281 

patterns/second. 282 
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 283 

Figure 2: IPF map of the indexed as-collected EBSPs (A) and the DA-processed EBSPs (B), 284 

with respective EBSPs and resulting Hough transformation from a single point within the 285 

circled grain. The indexed fit and CI are given for each pattern, while detector dead zones 286 

are highlighted in both real and Hough transform space. 287 

Figure 2 summarizes the overall improvements to indexing that patterns denoised with the 288 

autoencoder provided, showing the effect the autoencoder had on the EBSPs, their resulting 289 

Hough transformation, and improvement towards CI and degree of fit. Figure 2.A shows the IPF 290 

from the as-collected data without any further post-processing or re-indexing, with significant 291 

orientation noise visible within the scan. Figure 2.B shows the IPF generated by indexing the 292 

DA-processed EBSPs with background correction and auto B/C enabled as image processing 293 

during reindexing, it is identical to Figure 5.F. This highlights the best performing dataset, 294 

patterns which have been DA-processed and conventional image processed, alongside the worst 295 

performing dataset, the raw as-collected data. It is shown enlarged here for context to highlight 296 

how improvements to individual EBSPs processed by the DA result in an overall the reduction of 297 

noise visible in the orientation map. Note the effect of background correction on the dead zones 298 

highlighted in 2.A, and how these dead zones impact the quality of the initial Hough transform 299 

solution in comparison. 300 

Examining the changes that both the autoencoder and conventional image processing techniques 301 

have on the diffraction patterns themselves, both in comparison and in combination, Figure 3 302 

shows a cropped selection of the microstructures shown in Figure 2 and two diffraction patterns 303 

from the same grain for both the DA-processed patterns and the as collected patterns. The as-304 

collected patterns and DA-processed patterns are shown both independently, and in combination 305 

with the common image processing options often used in post-collection re-indexing; the effects 306 

of which we show quantitatively in Table 2. There are distinct differences in the contrast and 307 
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band definition when comparing the as-collected and DA-processed patterns, and differences in 308 

how these image processing options impact the final image quality of each. Background 309 

correction in both cases leads to the infilling and correction of the effects of the detector dead 310 

zone. It is not the DA-process which infills this detector damage noise, however there is less 311 

observable Gaussian-type noise introduced via background correction to the DA-processed 312 

patterns than the as-collected ones. In general, the definition of the Kikuchi lines and their 313 

intersection points are better defined against the background when comparing the DA-processed 314 

patterns to the as-collected patterns. 315 

 316 

Figure 3: Pattern level comparison of DA-processing and common image processing 317 

techniques utilized in re-indexing. 318 

Examining the IQ maps of each of these conditions in greater detail, the improvements shown at 319 

the pattern level can be observed across the whole microstructure dataset. Figure 4 shows the IQ 320 

maps of the same image processing conditions shown in Figure 3, allowing a comparison of IQ 321 
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improvements between both conventional image processing and novel DA-processing pathways. 322 

Although improvements to IQ can be observed with the as-collected patterns using conventional 323 

image processing techniques, greater improvements to IQ are obtained through DA-processing, 324 

and these increases are further improved by subsequent image processing while reindexing. Note 325 

that scratches and pores remain relatively low in IQ as no diffraction would be expected in these 326 

regions. 327 
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 328 

Figure 4: IQ maps of the EBSD dataset utilizing the as-collected patterns (A, C, E) and the 329 

DA-processed patterns (B, D, F). The IQ maps for both of these datasets re-indexed with 330 

automatic brightness and contrast enhancement are shown in (C) and (D), respectively, 331 

with the addition of background correction shown in (E) and (F). 332 
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 333 

Figure 5: IPF (left) and degree of fit (right) maps of the as-collected and DA-processed 334 

datasets, with no additional image processing performed in re-indexing (A,B), with auto 335 

B/C adjustment preformed while re-indexing (C,D), and both auto B/C and dataset 336 

background correction preformed while re-indexing (E,F). The scalebar reads 100μm. 337 

Figure 5 visually demonstrates the denoising performance of the EBSPs processed through the 338 

autoencoder (B,D,F) with the as-collected EBSPs (A,C,E) combined with commonly used EBSD 339 

post-processing techniques used in re-indexing: auto B/C and background noise correction. 340 

Figure 5.C shows that auto B/C alone is insufficient, showing minimal improvements to fit 341 

accuracy and orientation noise, while Figure 5.E indicates that incorporating background 342 

correction in re-indexing alongside auto B/C can improve fit and indexing quality, but is 343 

outperformed by the DA when combined with the same image processing conditions as shown in 344 

Figure 5.F. The DA-processed data shown in Figure 5.B resulted in significantly less orientation 345 

noise and a higher degree of fit accuracy when indexed compared to the as-collected patterns, 346 

both with and without auto B/C image processing shown in Figure 5.C and 5.A respectively. 347 

Combining the DA-processed patterns with a combination of image processing while re-indexing 348 

resulted in the best performance, with superior indexing metrics shown for all DA-processed data 349 

relative to as-collected data, resulted in higher IQ in all cases, reduced orientation noise, and 350 

significantly improved indexing properties when quantitatively compared in Table 2.  351 

Table 2: Comparison of indexing metrics between the as-collected (AC) EBSPs and DA-352 

processed EBSPs with common re-indexing post-processing settings: automatic brightness 353 

and contrast correction (auto B/C) and dataset background correction (back. corr.) 354 
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As 

Collected 

(AC) 

DA 

Processed 

(DA) 

AC + auto 

B/C 

DA + 

auto 

B/C 

AC + auto 

B/C + back. 

corr. 

DA + auto 

B/C + back. 

corr. 

Average CI: 0.06 0.25 0.04 0.27 0.37 0.45 

CI > .2 [%]: 5.29 42.85 7.86 45.02 54.18 62.30 

Average Fit (°): 1.83 1.68 1.96 1.64 1.50 1.40 

Fit < 1° [%]: 0.03 9.27 0.1 23.73 19.28 36.44 

Average IQ: 1265 9804.54 2145 9682 3130 8856 

 355 

The DA framework for denoising EBSPs resulted in higher CIs, fit, and IQ than the as-collected 356 

patterns when normalized across the different re-indexing image processing conditions, 357 

outperformed auto B/C image processing alone, and combing the DA with re-indexing image 358 

processing resulted in the best indexing performance. Although improvements can be observed 359 

with the as-collected EBSPs enhanced by combining both auto B/C and dataset background 360 

correction, it is important to note that these gains are only further enhanced through the use of 361 

the DA to process the EBSPs prior to re-indexing and that the DA results in significant 362 

improvements to fit, IQ, and CI on its own. Examining the CI distributions in greater detail, we 363 

find that the autoencoder results in high CI points with greater frequency than just using post-364 

processing and re-indexing alone, and that the DA is not falsely generating indexable features 365 

from pure noise. This is clear when visualizing the CI as shown in Figure 6, in that regions we’d 366 

expect to be indexed with zero confidence (i.e. scratches, mounting compound surrounding the 367 

melt bead, and surface defects) are not artificially improved simply by parsing the patterns 368 

through the DA, and the CIs in these regions remains low. Instead, the DA results in increased 369 

frequency of high CI points (CI >.5) and reduced frequency of low CI points (CI < .2) compared 370 

to the as-collected data both with and without post-process re-indexing. Examining the CI 371 

distribution leads to a similar result described in Figure 5 and Table 2, where the DA-processed 372 

data shows large improvements over the as-collected data, and is further enhanced by using 373 

dataset background correction as image post-processing in re-indexing. 374 
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 375 

Figure 6: A comparison of CI values from indexed EBSPs as shown via histogram (A) and 376 

visually with a colormap. The CI maps from the as-collected data is shown in (B) while DA-377 

processed data is shown in (C). Examining the effect of image processing while re-indexing, 378 

the CI maps for the as-collected (D) and DA-processed (E) EBSPs re-indexed with 379 

additional post-processing is shown in (D) and (E), respectively. 380 

4.2) Autoencoder Denoising and Dynamic Strain Cross-Correlation 381 

Generally speaking, two inputs are required in the dynamic cross-correlative strain measurement 382 

process: the experimental EBSPs which contain the local strain and orientation information and 383 

the corresponding map of indexed Euler angles. Examining how improvements to the EBSP 384 

pattern quality driven by the DA would impact the dynamic strain cross-correlation process, we 385 

find that the mutual information within the cross correlated regions of interest (ROI) is higher 386 

between DA-processed EBSPs and the simulated zero strain EBSP than with the as-collected 387 

EBSPs. Mutual information between two images is defined as the difference of the signal 388 

entropy between the two, normalized by the sum of their frequency histograms; in other words 389 

the DA-processed EBSPs feature greater ROI correspondence to and image likeness with 390 

simulated EBSPs when compared to as-collected EBSPs. [50] The distribution of the mutual 391 

information across the datasets is shown in Figure 6.A, showing the shift of the distribution to 392 

higher mutual information with the DA-processed EBSPs and DA-reindexed Euler angles. 393 

Examining if simply improving the degree of fit and providing more accurate Euler angle input 394 

to the cross-correlation process would result in more accurate strain measurement, Figure 7.B 395 

shows the resulting strain map when using the as-collected EBSPs but the DA-reindexed Euler 396 

angles for generating the simulated patterns. Better fit Euler angles combined with as-collected 397 

EBSPs results a noisy strain map with an order of magnitude of higher strain that does not trend 398 

with the other datasets, indicative of a poor absolute cross-correlation result. The strain maps 399 

using as-collected EBSPs and as-indexed Euler angles is shown in Figure 7.C, while the strain 400 

maps using the DA-processed EBSPs and DA-reindexed Euler angles is shown in Figure 7.D. 401 

The strain results indicate that using both the DA-processed images and the DA-reindexed Euler 402 

angles as cross-correlation input results in the clearest strain map, with reasonably low strain 403 

values for an annealed sample, and higher correspondence between the experimental pattern and 404 

the simulated one. 405 
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 406 

 407 

Figure 7: Histogram (A) of the mutual information between the experimental and 408 

simulated patterns used in HR-EBSD cross correlation, each distribution matching the 409 

dynamic strain analysis shown in the following plot. (B) shows the strain that results when 410 

correlating the as-collected patterns to patterns simulated using the Euler angles from the 411 

DA-reindexed fit, (C) is the strain resulting from as-collected patterns and the originally 412 

indexed Euler angles, and (D) shows the strain resulting from the DA-processed images 413 

correlated against patterns simulated from the DA-reindexed fit.  414 

Further analyzing the mechanisms of how the EBSPs impact the dynamic pattern simulation and 415 

cross correlation process at the individual pattern generation and deformation gradient 416 

calculation level, Figure 8 shows the same two indexed EBSPs from the DA-processed and as-417 

collected datasets alongside the simulated zero-strain EBSPs generated for both. The simulated 418 

EBSPs are overlayed with the ROI shift required to fit the two patterns, the magnitude of these 419 

shifts is used to calculate the deformation gradient tensor and thus strain between the zero-strain 420 

simulated reference and strained experimental EBSP. Figure 8 shows that the DA-processed 421 

images and better fit DA-reindexed Euler orientation results in a simulated EBSP with greater 422 

convergence with the experimental pattern, reduced local strains, and less computational 423 
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iteration required to arrive at a solution. The simulated EBSP generated from the DA-processed 424 

orientation data more closely correspond to the experimental EBSP, and although subtle, this 425 

results in less rotational and positional deviation from the experimental pattern when compared 426 

to the as-collected dataset. Comparing the overlayed ROI shifts, the magnitude of these shifts is 427 

reduced when using the DA-processed data while the number of outliers is also reduced. 428 

 429 

Figure 8: Comparison of the cross correlated ROI shifts between the simulated and 430 

experimental EBSP when using DA-process (left) and the as-collected and originally 431 

indexed data (right) from the same two points. Experimental EBSPs are shown to the right 432 

of their matching simulated EBSP. Annotated above each pair is the degree of fit, strain, 433 

and number of iterations required to arrive at the solution. The EBSPs are overlayed with 434 

ROI shifts: the green lines represent the shifts used to calculate the deformation tensor, red 435 

lines represent outliers ignored by the calculation, and blue lines are the shifts predicted by 436 

the final deformation gradient tensor. 437 

5) Discussion 438 

5.1) Improvements to EBSD Orientation Indexing 439 

Utilization of a denoising autoencoder as an image preprocessor for EBSPs prior to indexing is a 440 

good solution for indexing noisy EBSD datasets, and especially when used in tandem with 441 

existing image processing like background correction and auto B/C, as usage of the autoencoder 442 

leads to a higher accuracy Hough indexing procedure than simply re-indexing with these options 443 

alone. Table 2 shows commonly described indexing metrics used to qualify EBSD scans (IQ, CI, 444 

fit), while Figure 2 and 3 describes at the pattern level the mechanism by which these 445 

improvements are derived. The accuracy of the Hough procedure, whereby the orientation of the 446 

crystal is determined by the angle and distance between the Hough peaks, rapidly deteriorates 447 
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with image noise and especially band contrast. This lack of contrast results in low IQ, visible in 448 

the as-collected datasets in Figure 4. The low band contrast results in the Hough peaks shown in 449 

Figure 2.A being difficult to detect from the background, and are even skewed or overshadowed 450 

by a dead zone in the detector screen. In Figure 2.B we see that the autoencoder is able to 451 

enhance band contrast in the EBSPs and thus peaks in Hough space, and when combined with 452 

background correction also leads to infilling of dead zones on the detector. The improvements to 453 

band contrast across the whole dataset becomes clear when comparing the IQ maps in Figure 4, 454 

as the IQ of the whole dataset is improved, while relative differences in IQ values between grains 455 

are still maintained. These improvements are derived from how the model was trained. The 456 

simulated EBSPs generated by EMSoft contained no noise and perfect band contrast, and served 457 

as the training target. By artificially noising them to near-experimental levels and using this as 458 

the noisy training input, the autoencoder learns to reproduce high quality EBSPs from noisy 459 

ones. Although one single metric (IQ, CI, or fit) alone cannot alone describe the quality of an 460 

EBSD dataset due to the convolution of factors which cause noise in electron diffraction 461 

patterns, usage of a convolutional autoencoder leads to improvements to all metrics 462 

simultaneously. When utilized on noisy experimental patterns the model results in both visual 463 

and quantitative improvements to the IPF and degree of angular fit maps in Figures 5 while also 464 

improving the whole distribution of CI across the dataset as shown in Figure 6. Thus, the DA 465 

model improves both the fit of the orientation solution and the confidence in the accuracy of that 466 

solution simultaneously. Importantly, the degree of fit is improved with utilization of the DA 467 

prior to re-indexing, with Table 2 showing that ~36% of the data had a fit parameter of less than 468 

1° of misorientation from the indexing solution. The improvements made using denoised EBSPs 469 

prior to Hough indexing results in orientation maps of similar quality to those demonstrated with 470 

the DI and SHT based indexing methods when indexing noisy datasets, but we note a full 471 

quantitative comparison between different indexing methods would require additional analysis as 472 

we are using an entirely different dataset and material system. [25], [51]  473 

This denoising model is an inherently generative one, so it is critical we ensure the DA is not 474 

generating new information from pure noise or encoding new Kikuchi bands and EBSP features 475 

from non-existent data. The fit and CI values as mapped in Figures 5 and 6 are critical in 476 

assessing this. Scratches, defects, or a high density of grain boundaries on the imaged surface 477 

would result in EBSPs of high noise due to lack of coherent diffraction and would result in near 478 

zero CI and low fit accuracy within these regions. In the noisy as-collected dataset we see this is 479 

true, and the scratches stand out as a consistent low point of reference on the fit and CI maps of 480 

each dataset regardless of DA processing. Thus, we find that the DA is only improving EBSP 481 

features that are present, within regions where electron diffraction would be expected and 482 

observed. Regions of pure noise, such as those within the mounting compound, are not being 483 

falsely improved nor is non-existent data is being generated by the model as we do not see an 484 

indexing solution in these areas. Indeed, examining Figure 6 we find that denoising leads to 485 

improvement in CI within grains that were mapped with low confidence, rather than defects 486 

mapped with zero, and we observe that the DA results in an increase in frequency of high 487 

confidence points only within the melt pool boundary. 488 
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The noise limitations of the Hough transformation indexing procedure can be addressed by 489 

denoising the EBSPs prior to the transform as a form of image pre-processing, and a higher 490 

degree of angular fit, CI, IQ achieved while still using the conventional Hough indexing method. 491 

Because this denoising occurs post-collection, no additional processing time or latency is 492 

introduced at the point of data collection while still utilizing faster and more conventional Hough 493 

indexing once the EBSPs have been denoised, enabling more noise tolerant collection at the 494 

detector without additional time penalties induced by frame averaging or conventional image 495 

processing. The indexing uncertainties of the Hough-transform that arise from noisy images can 496 

be alleviated, and the autoencoder method of denoising we demonstrate shows greater robustness 497 

to pattern noise than convolutional neural network based indexing methods. [38] The DA method 498 

demonstrated offers improvements over the Hough-transform augmented with various forms of 499 

image post-processing, without the losses in resolution associated with NPAR. [24] The latency 500 

of the DA, running only on the CPU on a modest workstation (Intel i9-9900, 64GB RAM), is 501 

~10.4 patterns/second and is comparable to that of the dictionary method at ~11.6 502 

patterns/second. [27] The total calculation time from denoising to indexed solution is less, taking 503 

approximately 4 hours to denoise and reindex a dataset of 124658 EBSPs, compared to 504 

approximately 110 hours to index a dataset of 333227 EBSPs using the DI method; but is slower 505 

than the SHT methods discussed in the introduction. [25] We also note that the denoising method 506 

demonstrated here is agnostic towards its material crystal system, it simply denoises EBSPs, 507 

while the DI method becomes increasingly computationally complex with increasing crystal 508 

symmetry due to increasing dictionary size. [51], [52] 509 

As denoising was run on the CPU only, computational overhead could be reduced by processing 510 

images on the GPU by enabling CUDA support. The DA could also be translated to hardware, at 511 

the detector level, in FPGA form for a more energy and computationally efficient 512 

implementation. [53], [54] We also must stress that the model was trained with a specific EBSP 513 

resolution and detector binning (2x2) in mind, and thus alterations to the model architecture may 514 

be necessary for compatibility with patterns collected at higher or lower resolutions. Although 515 

EBSP denoising does add computation time following data collection, it does not do so at the 516 

point-of-collection or point-of-indexing, and thus could easily be integrated into existing high 517 

speed EBSD workflows. When used as EBSD data post-processing, this DA method can enable 518 

faster data collection speeds at the detector by allowing collection of noisier EBSPs at lower 519 

exposure times. This can help further enable the capture of larger microstructural areas with 520 

greater spatial resolution while utilizing conventional Hough-transformation indexing methods. 521 

5.2) Implications of DA post-processing towards HR-EBSD Strain Measurement 522 

As discussed in the introduction, quantifying absolute strain from HR-EBSD pattern cross 523 

correlation relies on good convergence between a simulated, zero strain, EBSP and the 524 

experimental EBSP. This can be achieved by way of enabling higher accuracy measurement of 525 

orientation with DA-processed EBSPs, and with ~36% of the data showing sub-1° of fit, a higher 526 

accuracy Hough procedure enables more accurate pattern simulation and absolute strain cross 527 

correlation. The improvements to the fit parameter, CI, and orientation indexing observed in 528 

Figure 5 translates to a more accurate generation of simulated EBSPs for cross correlation due to 529 
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increased accuracy of the measured Euler angles, and when combined the enhanced band 530 

contrast and edge definition of the DA-processed EBSPs, produces a cross-correlation result with 531 

less error and requires less computational iteration to arrive at a solution. This is because 532 

uncertainty and error in the Hough indexing procedure carry into the EBSP pattern generation 533 

and strain cross correlation procedure, and a poorly indexed experimental point will generate a 534 

poorly fit simulated EBSP. Thus, if orientation measurement error can be minimized so to can 535 

absolute strain measurement error. [1] As Figure 8 would indicate, increasing the orientation fit 536 

accuracy with refined Euler angles does increase correspondence between the simulated zero-537 

strain EBSP and the experimental pattern used to calculate the deformation gradient tensor, while 538 

Figure 7.A and B show it is not merely the improved Euler angle fit but that EBSP image quality 539 

improvements themselves also drive improvements as well. A combination of the more 540 

accurately fit simulated pattern and the DA-improved EBSP image quality is the source of the 541 

increased mutual information seen across the datasets in Figure 5.A and this results in reduced 542 

‘phantom’ or erroneously calculated strains across the entirety of the dataset. As the zero-strain 543 

point of cross correlation is more accurately fit, the contributions of phantom strains calculated 544 

from erroneous ROI shifts as shown in Figure 8, is reduced, leading to an overall lower average 545 

strain. Hence when comparing the strain maps in Figure 7.B and C to D we see more areas of 546 

contiguous strain being resolved with less high strain points randomly distributed, as point-to-547 

point misorientation noise is reduced and the patterns have less noise between them. This is why 548 

there is significantly higher phantom strains manifested in Figure 7.B, as we are comparing a 549 

more accurately simulated pattern to a poorer quality, as-collected image, which results in even 550 

greater shift magnitudes between ROIs and a larger perceived deformation gradient. As the strain 551 

cross-correlation process is sensitive to high degrees of misorientation between the reference and 552 

experimental pattern, a more accurate and correctly fit input orientation map from Hough-553 

indexing results in a better fit zero-strain pattern simulation, and thus reduced ROI shifts and 554 

strain magnitude. [1] The reduced number of iterations, and thus time, required to arrive at a 555 

cross-correlated strain solution when utilizing the DA-processed patterns and indexing solution 556 

could serve to increase the speed of this method, which is the subject of future research. 557 

While the results demonstrate that the DA-processed images are more similar to an idealized 558 

simulated EBSP and the improved fit map results in less noise across the strain map with reduced 559 

phantom strain contributions relative to the as-collected dataset and patterns, other contributions 560 

to phantom strain are not accounted for in this study. The relatively low resolution of the 561 

patterns, intentionally poor sample surface preparation, and lack of pattern center (PC) 562 

calibration prohibits us from claiming these strain measurements as a ground truth. We recognize 563 

contributions from PC error were not addressed, although we argue that achieving such a low 564 

absolute strain measurement (.10%) on a heat-treated sample does indicate this contribution is 565 

minimal, but without further experimentation cannot quantify this. We note that the sample 566 

EBSD area shown is  ~.1mm² in surface area; and deviations from the as-calibrated PC and the 567 

true PC would be expected. [14] We would expect greater strain accuracy and precision utilizing 568 

higher resolution EBSPs or with higher resolution EBSD scans taken over a smaller imaging area 569 

where less beam shift would be expected, but this requires additional study. Furthermore, no PC 570 

recalibration or recalculation occurred in post-processing, and doing so could result in further 571 

reductions to phantom strain and improved precision of the local crystal orientation. [55] 572 
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Although the improvements to indexing demonstrated by the DA framework shown translates to 573 

improved convergence between experimental and simulated patterns, they do not account or 574 

correct for PC shift error. 575 

6) Conclusions 576 

The noise limitations of the Hough transformation method of EBSD indexing can be overcome 577 

and noisy EBSPs datasets indexed with greater success and accuracy with the use of a denoising 578 

autoencoder to process the EBSPs prior to re-indexing. The autoencoder improves indexing 579 

quality by improving Kikuchi band contrast and definition, and thus improves IQ, CI, and fit; the 580 

neural network learning from noise-free, high contrast, EBSPs to discern high quality image 581 

features from noisy ones. Thus, without the introduction of new indexing algorithms, the Hough-582 

transformation indexing process can be improved and made more accurate by denoising the 583 

source EBSP prior to indexing. Even with physical dead zones in the detector screen and a 584 

poorly polished sample, by combining our DA with existing image processing methods high 585 

levels of indexing confidence can be achieved. Both with and without dataset background 586 

correction, the denoised EBSPs resulted in a more coherent orientation map with higher CI, IQ, 587 

and fit parameters than the as-collected dataset under identical conditions. The ability to index 588 

EBSD datasets with greater noise tolerance can allow for faster data collection rates at the 589 

detector, enable higher spatial resolution data collection for mesoscale EBSD experiments, and 590 

the higher orientation fit accuracy enabled by DA-processing serve to improve the Hough-591 

transform method as a whole. 592 

The improvements made to EBSP quality and subsequent indexing metrics also had implications 593 

for cross correlative absolute strain measurement, although there are challenges still present with 594 

the method. When using the denoised EBSPs and the higher fit accuracy Euler angles in absolute 595 

strain cross correlation, the DA-processed dataset resulted in a more accurate generation of 596 

simulated EBSPs from which strain is calculated and required less computational iteration to 597 

arrive at a solution. When using the DA-processed EBSPs, there was less apparent 598 

misorientation between the experimental pattern and simulated one, which resulted in a reduced 599 

ROI shifts necessary to correlate the two patterns and the origin of the reduced phantom strains. 600 

Thus, using DA-processed and re-indexed EBSPs offers improvement of correspondence 601 

between the experimental and simulated patterns being cross correlated, and much more reliable 602 

absolute strain measurements are enabled via HR-EBSD, in addition to improving the 603 

indexability of noisy EBSD datasets in general. 604 
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