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Machine learning atomistic potentials (MLPs) trained using density functional theory (DFT) datasets allow for the modeling
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of complex material properties with near-DFT accuracy while imposing a fraction of its computational cost. The curation of

the DFT datasets can be extensive in size and time-consuming to train and refine. Herein we focus on addressing these

barriers by developing minimalistic and flexible datasets for many elements on the periodic table regardless of mass,

electron configuration, and ground state lattice. These DFT datasets have, on average, ~4000 different structures and 27

atoms per structure, which we found sufficient to maintain predictive accuracy of DFT properties and notably with high

transferability. We envision these highly curated training sets as starting points for the community to expand, modify, or use

with other machine learning atomistic potential models, whatever may suit individual needs, further accelerating the

utilization of machine learning as a tool for materials design and discovery.

1. Introduction

A large body of work describing code development, training,
validation, and transferability of machine learning atomistic
potentials (MLPs) has recently been reported, highlighting
notable and significant advances in materials modeling.2* Many
of these studies underscore that MLPs have high fidelity in
simulating different properties and are significantly less
computationally demanding than density functional theory
(DFT) calculations.* Therefore, MLPs can readily be used to
model known materials at large sizes (a recent study claiming
ten billion atoms®) and long timescales and to discover
applications of interest®, all while further accelerating the
computational modeling of materials’. Recent refinements of
machine learning (ML) approaches® ° and training
methodologies”> 1© have further
precision, and utility of these atomistic potentials and their use
for various material applications.!? Computational material
science has seized upon the development of these ML advances
for chemical modeling applications’?2 and applied them to
ranging from single

supported metal
and metal

improved the accuracy,

describe complex dynamics systems
bimetallic systems14-16,
nanoclusters!’, hybrid perovskites!s,

Although MLPs, in general, are less time-consuming to

train/refine and more robust at describing systems outside of

elementals?3,
oxides?®.
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their training datasets (transferability)29-22 compared to classical
atomistic potentials (e.g., embedded atom model potentials),
the training workflow and database composition are areas that
could benefit from further optimization as noted in current
reviews of the literature?# 25,

We aim to further advance MLP development by providing
a clear and systematic approach to curating minimalistic DFT
datasets that can be applied to almost any element on the
periodic table (Figure 1). Creating databases to train ML
potentials is a challenging endeavor, on its own, regardless of
the ultimate application of the atomistic potential?6. Herein, we
focus on using deep neural network models to develop
atomistic potentials. Although we specifically examine the
predictive accuracy of the deep neural network potentials
(DNP) with these DFT datasets, we expect other MLP models to
have a similar accuracy based on prior investigations?’. We note
there are few examples of these highly applicable
methodologies for multiple (over 23) elements?8 distinct from
this approach and rely on the automated workflows of DP-
GEN2°,

We demonstrate our approach by sampling elements with
distinct masses, electron configurations, and ground-state
crystal phases (excluding the rare earth elements). Our method
for developing single-element datasets relies on the curated
Material Project database (MPDB)3% and the NOMAD repository
and archive3!, and a DeePMD-kit neural network approach32.
We refine our DNP models using adaptive learning. We apply an
ensemble approach to compare single-element inter-DNP
deviations of randomly seeded models and select
configurations with the more significant force deviations for
further training. The final single-element potentials were
trained up to three iterations, containing less than 3857 + 1032
with an overall average of 27 + 12 atoms per structure (see
Table S1 for more details). These DNPs can accurately predict



several properties of five low-energy lattice configurations for
each element. As shown below, the resulting potentials have
good transferability to atomic environments not explicitly
included in the training database (e.g., other lattice
configurations, vacancies, surfaces, and thermal stability of the
solid phase).
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Figure 1. Schematic of the Period Table visualizing the elements selected for this
work and highlighting ground state lattice configurations.

2. Computational Methods
2.1 Curation of the DFT Dataset for DNP Training.

Initial DFT parent structures consisted of five of the lowest
energy lattice structures deposited in MPDB33 (e.g., face-center-
cubic (fcc), body-center-cubic (bcc), hexagonal, hexagonal
close-pack (hcp), rhombohedral, orthogonal, tetragonal,
trigonal, simple cubic, and/or diamond cubic.) If five structures
were not located in the MPDB for a select element, additional
lattice crystal systems were obtained from the NOMAD
Repository and Archive3! or generated3* and optimized using
DFT (VASP)35-37 before training. The specific lattices used for
training vary from element to element; the electronic
supporting information (ESI) notes a complete list of phases
(Table S2). Generally, for the ground state configuration, single-
point defect structures (vacancy Table S4 or interstitial Table
S5) were generated from a DFT-optimized 2x2x2 supercell of
the conventional lattice structure. Additionally, each dataset
contained a set of deformed lattices in twelve directions,
typically employed to calculate elastic constants from finite
differences. For each parent structure (point defect type and
each of the 12 deformed lattices), 20 configurations were
generated from a molecular dynamics (MD) trajectory with
constant volume and temperature (NVT) at two temperatures
(Tm and 0.25 Tr) for the elements with melting temperatures
Tm at <2000 K, and three temperatures (Tm, 0.6 T, and 0.25 Tr,)
for select elements with Tn, > 2000 K.

The VASP calculations were performed using Perdew-Burke-
Ehrenzhof (PBE) exchange-correlation functional with
projector-augmented wave pseudopotentials35-37, which
correspond to those used by the corresponding elements listed
in the MPDB33 38, We selected a plane-wave cut-off of 400 eV
that was used consistently across all materials. We used a tight
break condition of 108 eV free energy change between steps in
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the electronic relaxation loop. Moreover, we applied
Methfessel-Paxton3® smearing of 2"d-order with 0.15 eV,
broadening to sample the Brillouin zone. We used a k-spacing
value of 0.24 Al for all calculations, which we previously
showed to be sufficient for training purposes as DNPs generated
using the DFT training database were found to be less sensitive
to errors from under-sampling the Brillouin zone than the
standard DFT calculations?3.

2.2 Description of DNP Training Procedure

Machine learning potentials were trained using DeePMD-kit
(v2.1.2)4° within the DeepPot-SE*! approach. DeePMD-kit
utilizes neural networks to interpolate the relationship between
atomic coordinates (model input samples) and the energies,
forces, and virials (model output labels) in DFT training data. We
used a consistent training protocol with identical
hyperparameters for each DNP, including randomly initialized
weights in the neural networks. The complete set of
hyperparameters used for training is provided in a DeePMD-kit
input file in the ESI.

Three DNPs with initial randomized weights were generated
at each step of the iterative training process. LAMMPS was
utilized to calculate various properties (vide infra) for each
element. The averages and standard deviations of the DNPs-
calculated properties were examined and compared to VASP
reference properties with the same initial structures to
determine the overall accuracy and precision of the potential.
At least two training iterations (iterations 0 and 1) were
performed for every element to hone the DNP accuracy.

2.2.1 Adaptive Learning

All subsequent training iterations beyond the initial dataset
(iteration 0) were generated by an "adaptive-learning"
(iterations 1, 2, or 3) process utilizing the same initial structures
used to create the iteration O dataset. We used force-based
criteria to select additional configurations (0.07 to 2 eV/A) to be
included in the next iteration of the DNP training utilizing
LAMMPS NVT ensemble approach with the DeePMD-kit,
outside of the force tolerance range. We then generated up to
ten new DFT structures using VASP NVT to train each structure.
Again, as with the validation of "iteration 0", the mean of the
material properties (and the standard deviation of the mean)
were compared to the VASP reference values to verify improved
DNP accuracy. The process was repeated until the computed
cohesive energies (Econ) and per atom volumes were < 12% of
the corresponding DFT reference values (Figure 2, Table S2).

2.2 DFT Reference Values

DFT material property references were calculated for the five
lattices used as training data sets using VASP parameters similar
to the training dataset. For basic lattice properties such as
lattice constants, unit cell volume per atom, and cohesive
energy (Econ), we used a conventional primitive unit cell (1x1x1)
For single atom
vacancies and interstitials, we used a 2x2x2 supercell.

and previously reported methodologies?®.
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Elastic constant calculations were made using VASP with the
same convergence thresholds, 2x2x2 supercell (if the
conventional cell contained < four atoms), IBRION value of six,
and NFREE value of two. All other parameters were the same
for the VASP static property calculations, including the energy
cut-off of 400 eV. We used a POTMIN value of 0.01 A, for the
atomic displacements. Our values generally agree with the
elastic constant reported in the MPDB*? (Table S5).

2.4 LAMMPS Calculations

We have detailed descriptions of our process to calculate
material properties using LAMMPS and the DNPs reported
elsewhere in the literature!3-16, We used convergence criteria
based on 1x101° eV for energy and forces
minimization steps. A 4x4x4 supercell was used for elastic
calculations with a 0.005-0.01 A displacement.

Continuous heating curves for validation are obtained from
molecular dynamics simulations employed within a NVT
ensemble with one femtosecond timestep. The temperature
was controlled using a Berendsen thermostat applied every 100
steps. The temperature was ramped (1 K / femtosecond) from
0 K to approximately 100 K above the experimental melting
temperatures starting with a ground-state lattice supercell
relaxed at O (bar) pressure. We used 10x10x10 supercells for
each element's identified ground-state lattice structure. We
utilized a compressed version of the DNP for these MD heating
simulations, which improved the speed of the simulation with a
negligible impact on the accuracy of this calculation.

between

2.5 Validation Check on Non-trained Structures.

We assess the transferability of DNPs for each element on
structures not explicitly included in the training. Some of the
structures were gathered from The MPDB some were
generated*? by our group. We compared DNP calculated and
averaged cohesive energy (Econ), per atom volume, and elastic
constants to DFT reference values (Tables S8-10).

2.6 Surface Energy Calculations

We utilized the LAVA code** to calculate low energy non-
reconstructed Miller index surfaces (100), (110), and (111) (fcc,
bec, and diamond cubic phases and (0001), (1010) and (1120)
for the hcp phase) surface energies using the LAMMPS wrapper
with the DNPs. The average surface energies were determined
from the three randomly seeded DNPs and compared to
corresponding DFT (VASP) calculated reference values from the
MPDB4>,

3. Results and Discussion

We developed a simplistic approach for generating and refining
the DFT training dataset for 23 elements (Ag, Al, Au, Co, Cu, Ge,
I, Li, Kr, Nb, Ni, Mg, Mo, Os, Pb, Pd, Pt, Re, Sb, Sr, Ti, Zn, and Zr)
across the periodic table (Figure 1) to develop robust DNPs,
which describe base material properties for many
temperatures, various phases, and selected point defects. The
elements chosen in this study represent a wide range of melting
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temperatures (e.g., Kr and Os), atomic masses (e.g., Li and Pb),
electron configurations, elemental groups, and ground state
phases (11 x fcc, 6x hcp, 2x bcc, 1x diamond cubic, 1 x
tetragonal, 2 x orthorhombic). Applying these simplified and
compact DFT training set criteria to a diverse selection of
elements strongly suggests that this general approach applies
to most elements on the periodic table for dataset creation,
modeling, and refinement for DNPs, at least for single-element
systems. We did not investigate the impact of tailoring the
model's hyperparameters to each element training dataset
which may improve accuracy and performance; instead, we
chose to use a "universal" set of parameters for all elements.
Our dataset curation focused on achieving good accuracy of
lattice constants, cohesive energies, single vacancy defects,
interstitials atoms, elastic constants, and thermal stability of the
solid phase between 0 K and the melting temperature.

To generate the 12 distortions of the lattice in the elastic
limit for each lattice of the metal systems, we tested a variety
of thresholds from 0.01 to 0.05 A. We found that distortions of
the lattice by 0.03 A yielded DNPs that produced the most
accurate results overall with the smallest number of
configurations. We ran NVT at the previously defined
temperature(s) for each distorted structure to generate 20
configurations. Additionally, we included single vacancy
structures for each phase and a variety of self-interstitials (see
below) for only the lowest energy phase of each element. We
note that, at most, two additional adaptive learning training
iterations were required, in addition to the initial training set to
produce elastic properties that we considered converged with
our calculated DFT reference values. The general workflow is
depicted in (Figure 2).
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Figure 2. General training workflow for the single-element DNPs.

As an additional quality check on the precision of the DNPs,
while the training improves from iteration to iteration, the
standard deviation between the three randomly seeded
potentials decreases. We believe this ensemble approach to
DNP validation is an important metric to highlight as we
envision these DFT datasets as a minimalistic "core" dataset
that can be added to or combined for tailored applications by
the community. Reporting the average value and the standard
deviation of the values from three DNPs allows others to assess
the precision of the potential and determine whether these
values are acceptable for their desired application or if more
training will be required. Overall, the maximum number of
configurations used for training was less than 6100, with no
more than 231,000 total atoms per element (Table S1).

3.1 Basic Material Properties and Phases

J. Name., 2013, 00, 1-3 | 3
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We find excellent agreement between the predicted DNP and
the DFT reference values for lattice constants and cohesive
energies (Figure 3, Tables S2 and S3), exemplified by the
proximity to the parity line and relatively small standard
deviations shown in Figure 2. The percent deviation from the
DFT reference values is < 12 % (excluding Kr, which has very
small cohesive energies) per atom volume and < 11 % for
cohesive energies ( Econ). The errors reported in the figures and
the ESI tables are the standard deviation of the averaged
material property from the three randomly seeded DNP
potentials. Notably, we did not include any of these structures
in the training datasets in the training data sets; only distorted
or defected lattices at temperatures above 0 K, yet the
prediction of the DNPs is accurate compared to DFT reference
values reflecting its transferability.
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Real-world materials are not pristine, containing defects such as
vacancies and interstitials. Therefore, these common point
defects were included in the training data sets for each element
to improve the basic DNP applicability to real-world materials
modeling (Figures 4 and 6). We compare structures included
and excluded in training for single vacancy defect energies
(Figure 4A and Table S4). The vacancy energies can be relatively
small (less than an eV), so some structures' standard deviations
appear more pronounced. Generally, we observe good
agreement for most vacancy energies. However, we do not
achieve the same accuracy for the energies of the non-defected
ground state lattices exemplified in Figure 3.

Figure 3. Parity plot of A) cell volume/atom and B) cohesive energies for all
elements and phases.

3.2 Point Defects: Vacancies and Interstitials
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For the self-interstitial facilities, we looked at a large variety
of tetrahedral (T4), octahedral (On), dumbbell (db), and
crowdion for the lowest energy/ground state phase for each
element provided the phase was bcc?®, fccl®, diamond cubic??,
or hcp*8 (Figure 4B and Table S5). We observe good agreement
between the average DNP value and the calculated DFT value;
however, we note that few interstitials exhibit significant
standard deviations of the mean. Upon closer scrutiny,
corresponding interstitials were deemed unstable, as the initial
and final structures exhibited an unusual change in the cell
volume in the DFT reference calculations, therefore, were
omitted from validation (Figure 4 and Table S5).

3.3 Elastic Constants

Generating DNPs that accurately predict elastic constants for
multiple lattice phases per element is challenging, given that
this relies on finite differences. Such has not been frequently
reported in the literature!® 49, Figure 5 compares the DNP and
DFT calculation results for unique elastic constants (C11, C12, C13,
C32, Cs3, Ca4, Css, and Cgg) for each element's ground state phase
(Table S6). DFT calculations of elastic constants can be highly
sensitive to cut-off energies, kgrid spacings, and supercell sizel3.
We observe a more significant standard deviation for the
elements with heavier nuclei and unfilled electron shells (e.g.,
Os and Re). Therefore, the observed standard deviations scale
with the magnitude of the average value of the elastic constant.
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Figure 5. Calculated DNP and DFT elastic constants.

3.4.1 Summary

We summarize our training validation results in Table S7, which
highlights the % deviations of the DNP from that of the DFT reference
values (Tables S2, S4-6, and Figures 3-5) for each parameter class.
Generally, the average error in the per atom volume and Eon are less
than 5%, excluding Krypton (Table S2 and Table S7) which has
relatively small cohesive energy (~ 0.04-0.08 eV ). Similarly, we
observe a trend of larger % deviations point defect energies

This journal is © The Royal Society of Chemistry 20xx
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increases. However, the % E.on for these point defect structures is
less than 10% (excluding Kr) from the DFT reference. Minor
deviations from the DFT reference value 0.01-0.02 eV in both the
pristine and defected can lead to significant errors in the calculated
defect energy. Elastic constants are <25 % in error for most elements
on average. However, we observe, on average, larger discrepancies
for Pb, Re, Sb, Ti, Zn, and Zr (Table S7). These deviations can be
further reduced with additional training focused on these structures.
Overall the observed variations are similar to what Zuo et al. %7
described for multiple MLP models. We note, however, that Zuo et
al. trained on a single lattice phase, and the transferability of the
MLPs was not thoroughly explored.

3.5.1 Transferability of the DNPs

The transferability of a DNP reflects its ability to accurately
predict structures or properties structures that were not
included in the training set. Our previous work noted good
transferability of the DNP1% 15,
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Figure 6. DNP Predictive accuracy for elemental phases not included in the
training dataset for A) Volume/atom and B) Cohesive energy.
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Here we start examining the transferability by testing a limited
number of phases (either from the MPDB or generated by us)
per element and comparing them to DFT reference values.

Figure 6 shows that the potentials predict the per atom
volume (Figure 6A) and E.on (Figure 6B) well, with only a small
number of structures where Ecn and per atom volumes were
poorly predicted (Figure 6 and Table S9). However, the %
average vacancy energy error (and standard deviation) in the
single atom vacancy is more significant than we observed for
the trained structures, respectively (Tables S4 and $S10),
highlighting the boundaries of DNP transferability.

Additionally, comparing elastic constant for non-
groundstate phases demonstrates agreement with DFT
reference values (Table S8). Although the agreement is less
than desirable for some of these lattices, additional training
would be necessary to describe the untrained vacancies and
non-refined elastic constant predictions. However, the overall
transferability of these simple phases and point defects is
remarkable. Further, these DNPs can be extended to other
properties.

3.5.2 Surface Energies

Surface energies are essential properties for materials for
understanding material growth, adsorbate behavior, and
catalytic performance.5% 51 Despite the importance of planar
structures, we did not include these in the initial training to
reduce the size of the dataset. However, as shown in Figure 7,
the DNPs predict surface energies reasonably well for low Miller
index structures (e.g., fcc, bcc, diamond—(001) (011), and (111);
or hcp — (0001), (1010), and (1120)) (Table S11). Although
further training is required to improve the accuracy of the
surface energy predictions, the transferability of these DNPs is
surprising as we have not introduced any aperiodic structures

resembling a surface in the training set.
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3.5.3 Thermal Stability of the Solid Phase

As a final assessment of these DNPs' robustness, we conducted
MD simulations from 0 K approaching each element's melting
temperature (Figure 8) using an NVT approach and a Benderson
thermostat. During the iterative training, we observed poor
thermal stability for the elements with relatively high melting
temperatures (above 2000 K). This leads us to include an
additional group of training data at a temperature of 60% of the
melting point. Including these data vastly improved the solid-
state thermal stability up to the melting temperature and
improved the initial (iteration 0) predictions of the elastic
constants. Even though the training data set only included two
temperatures, we found well-behaved heating of these
elemental bulk materials with supercells of 10x10x10 for each
element's ground state configuration. This result is surprising
but not wholly unexpected given that the interpolation of the
material properties using DNPs has been noted by us!416 and
others in the literature®2. We note that the training did not
explicitly include the structures describing liquid phase
behavior; therefore, we do not expect the phase transition from
solid to liquid to be reasonably predicted for all these elemental
DNPs. Future investigations focusing on the refinement of
modeling solid-liquid phase transitions are the focus of ongoing
investigations.
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4, Conclusions

We have described a general curation methodology
constructing relatively small sets of DFT configurations (< 6000)
for the training single-element atomistic potentials using the
DeePMD-kit with a DeepPot-SE approach. Our dataset curation
recipe works for a diverse sampling of elements across the
periodic table, describing various benchmark materials
properties with reasonable fidelity to DFT reference values.
Additionally, we estimate the DNP's predictive accuracy range
from the three randomized seeded versions to give a baseline
range of values before the training sets are modified. Lastly, we
find that these compact training sets, along with the DNP
training approach, produced highly robust and transferrable
potentials that can predict many properties that were not
explicitly included in the training data. Ultimately, this work will
allow users to augment and build upon these small datasets
and/or curation methodologies for their unique scientific
queries.

Lastly, we note various limitations and future extensions of
and to this work that would benefit the community. Using these
hand-curated systematic training datasets, we only focused on
DeepPot-SE approach and did not assess other MLP models.
Such a comparative investigation of MLPs, similar to Zuo et al.?”
or Morrow et al.>3 would be helpful to the community to assess
the fidelity of the dataset + model combination. We hope this
work, particularly the developed and shared datasets, will
motivate such extensive comparative studies. Additionally,
informative metrics describing the DFT training dataset
parameters such as structural, energies, and forces landscapes
would be beneficial for evaluating and comparing training
datasets regardless of the MLP model employed. We poise that
these future works would be highly informative for all atomistic
potential development and benchmarking going forward.
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