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Highly Transferable Atomistic Machine-Learning Potentials from 
Curated and Compact Datasets Across the Periodic Table 

Christopher M. Andolinaa and Wissam A. Saidi*,a,b 

Machine learning atomistic potentials (MLPs) trained using density functional theory (DFT) datasets allow for the modeling 

of complex material properties with near-DFT accuracy while imposing a fraction of its computational cost.  The curation of 

the DFT datasets can be extensive in size and time-consuming to train and refine.  Herein we focus on addressing these 

barriers by developing minimalistic and flexible datasets for many elements on the periodic table regardless of mass, 

electron configuration, and ground state lattice.  These DFT datasets have, on average, ~4000 different structures and 27  

atoms per structure,  which we found sufficient to maintain predictive accuracy of DFT properties and notably with high 

transferability. We envision these highly curated training sets as starting points for the community to expand, modify, or use 

with other machine learning atomistic potential models, whatever may suit individual needs, further accelerating the 

utilization of machine learning as a tool for materials design and discovery.

1. Introduction 

A large body of work describing code development, training, 

validation, and transferability of machine learning atomistic 

potentials (MLPs) has recently been reported, highlighting 

notable and significant advances in materials modeling.1-4 Many 

of these studies underscore that MLPs have high fidelity in 

simulating different properties and are significantly less 

computationally demanding than density functional theory 

(DFT) calculations.4  Therefore, MLPs can readily be used to 

model known materials at large sizes (a recent study claiming 

ten billion atoms5) and long timescales and to discover 

applications of interest6, all while further accelerating the 

computational modeling of materials7. Recent refinements of 

machine learning (ML) approaches8, 9 and training 

methodologies7, 10 have further improved the accuracy, 

precision, and utility of these atomistic potentials and their use 

for various material applications.11 Computational material 

science has seized upon the development of these ML  advances 

for chemical modeling applications12 and applied them to 

describe complex dynamics systems ranging from single 

elementals13, bimetallic systems14-16, supported metal 

nanoclusters17, hybrid perovskites18, and metal oxides19. 

Although MLPs, in general, are less time-consuming to 

train/refine and more robust at describing systems outside of 

their training datasets (transferability)20-23 compared to classical 

atomistic potentials (e.g., embedded atom model potentials), 

the training workflow and database composition are areas that 

could benefit from further optimization as noted in current 

reviews of the literature24, 25.   

We aim to further advance MLP development by providing 

a clear and systematic approach to curating minimalistic DFT 

datasets that can be applied to almost any element on the 

periodic table (Figure 1). Creating databases to train ML 

potentials is a challenging endeavor, on its own, regardless of 

the ultimate application of the atomistic potential26. Herein, we 

focus on using deep neural network models to develop 

atomistic potentials. Although we specifically examine the 

predictive accuracy of the deep neural network potentials 

(DNP) with these DFT datasets, we expect other MLP models to 

have a similar accuracy based on prior investigations27. We note 

there are few examples of these highly applicable 

methodologies for multiple (over 23) elements28 distinct from 

this approach and rely on the automated workflows of DP-

GEN29. 

We demonstrate our approach by sampling elements with 

distinct masses, electron configurations, and ground-state 

crystal phases (excluding the rare earth elements). Our method 

for developing single-element datasets relies on the curated 

Material Project database (MPDB)30 and the NOMAD repository 

and archive31, and a DeePMD-kit neural network approach32. 

We refine our DNP models using adaptive learning. We apply an 

ensemble approach to compare single-element inter-DNP 

deviations of randomly seeded models and select 

configurations with the more significant force deviations for 

further training. The final single-element potentials were 

trained up to three iterations, containing less than 3857 ± 1032 

with an overall average of 27 ± 12 atoms per structure (see 

Table S1 for more details). These DNPs can accurately predict 
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several properties of five low-energy lattice configurations for 

each element. As shown below, the resulting potentials have 

good transferability to atomic environments not explicitly 

included in the training database (e.g., other lattice 

configurations, vacancies, surfaces, and thermal stability of the 

solid phase).   

Figure 1.  Schematic of the Period Table visualizing the elements selected for this 

work and highlighting ground state lattice configurations.   

2. Computational Methods 

2.1 Curation of the DFT Dataset for DNP Training. 

Initial DFT parent structures  consisted of five of the lowest 

energy lattice structures deposited in MPDB33 (e.g., face-center-

cubic (fcc), body-center-cubic (bcc), hexagonal, hexagonal 

close-pack (hcp), rhombohedral, orthogonal, tetragonal, 

trigonal, simple cubic, and/or diamond cubic.)  If five structures 

were not located in the MPDB for a select element, additional 

lattice crystal systems were obtained from the NOMAD 

Repository and Archive31 or generated34 and optimized using 

DFT (VASP)35-37 before training.  The specific lattices used for 

training vary from element to element; the electronic 

supporting information (ESI) notes a complete list of phases 

(Table S2). Generally, for the ground state configuration, single-

point defect structures (vacancy Table S4 or interstitial Table 

S5) were generated from a DFT-optimized 2x2x2 supercell of 

the conventional lattice structure.  Additionally, each dataset 

contained a set of deformed lattices in twelve directions, 

typically employed to calculate elastic constants from finite 

differences. For each parent structure (point defect type and 

each of the 12 deformed lattices), 20 configurations were 

generated from a molecular dynamics (MD) trajectory with 

constant volume and temperature (NVT) at two temperatures 

(Tm  and 0.25 Tm) for the elements with melting temperatures 

Tm at < 2000 K, and three temperatures (Tm, 0.6 Tm and 0.25 Tm) 

for select elements with Tm > 2000 K.  

 The VASP calculations were performed using Perdew-Burke-

Ehrenzhof (PBE) exchange-correlation functional with 

projector-augmented wave pseudopotentials35-37, which 

correspond to those used by the corresponding elements listed 

in the MPDB33, 38. We selected a plane-wave cut-off of 400 eV 

that was used consistently across all materials.  We used a tight 

break condition of 10-8 eV free energy change between steps in 

the electronic relaxation loop.  Moreover, we applied 

Methfessel-Paxton39 smearing of 2nd-order with 0.15 eV, 

broadening to sample the Brillouin zone.  We used a k-spacing 

value of 0.24 Å-1 for all calculations, which we previously 

showed to be sufficient for training purposes as DNPs generated 

using the DFT training database were found to be less sensitive 

to errors from under-sampling the Brillouin zone than the 

standard DFT calculations13. 

 

2.2 Description of DNP Training Procedure 

 Machine learning potentials were trained using DeePMD-kit 

(v2.1.2)40 within the DeepPot-SE41 approach. DeePMD-kit 

utilizes neural networks to interpolate the relationship between 

atomic coordinates (model input samples) and the energies, 

forces, and virials (model output labels) in DFT training data. We 

used a consistent training protocol with identical 

hyperparameters for each DNP, including randomly initialized 

weights in the neural networks. The complete set of 

hyperparameters used for training is provided in a DeePMD-kit 

input file in the ESI. 

 Three DNPs with initial randomized weights were generated 

at each step of the iterative training process.  LAMMPS was 

utilized to calculate various properties (vide infra) for each 

element. The averages and standard deviations of the DNPs-

calculated properties were examined and compared to VASP 

reference properties with the same initial structures to 

determine the overall accuracy and precision of the potential.  

At least two training iterations (iterations 0 and 1) were 

performed for every element to hone the DNP accuracy.   

 

2.2.1  Adaptive Learning 

All subsequent training iterations beyond the initial dataset 

(iteration 0) were generated by an "adaptive-learning" 

(iterations 1, 2, or 3) process utilizing the same initial structures 

used to create the iteration 0 dataset.  We used force-based 

criteria to select additional configurations (0.07 to 2 eV/Å) to be 

included in the next iteration of the DNP training utilizing 

LAMMPS NVT ensemble approach with the DeePMD-kit, 

outside of the force tolerance range.  We then generated up to 

ten new DFT structures using VASP NVT to train each structure. 

Again, as with the validation of "iteration 0", the mean of the 

material properties (and the standard deviation of the mean) 

were compared to the VASP reference values to verify improved 

DNP accuracy.  The process was repeated until the computed 

cohesive energies (Ecoh) and per atom volumes were ≤ 12% of 

the corresponding DFT reference values (Figure 2, Table S2). 

 

2.2 DFT Reference Values 

DFT material property references were calculated for the five 

lattices used as training data sets using VASP parameters similar 

to the training dataset.  For basic lattice properties such as 

lattice constants, unit cell volume per atom, and cohesive 

energy (Ecoh), we used a conventional primitive unit cell (1x1x1) 

and previously reported methodologies16. For single atom 

vacancies and interstitials, we used a 2x2x2 supercell.   
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 Elastic constant calculations were made using VASP with the 

same convergence thresholds, 2x2x2 supercell (if the 

conventional cell contained ≤ four atoms), IBRION value of six, 

and NFREE value of two.  All other parameters were the same 

for the VASP static property calculations, including the energy 

cut-off of 400 eV.  We used a POTMIN value of 0.01 Å, for the 

atomic displacements. Our values generally agree with the 

elastic constant reported in the MPDB42 (Table S5). 

 

2.4 LAMMPS Calculations 

We have detailed descriptions of our process to calculate 

material properties using LAMMPS and the DNPs reported 

elsewhere in the literature13-16. We used convergence criteria 

based on 1x10-10 eV for energy and forces between 

minimization steps.  A 4x4x4 supercell was used for elastic 

calculations with a 0.005-0.01 Å displacement. 

 Continuous heating curves for validation are obtained from 

molecular dynamics simulations employed within a NVT 

ensemble with one femtosecond timestep. The temperature 

was controlled using a Berendsen thermostat applied every 100 

steps.  The temperature was ramped (1 K / femtosecond) from 

0 K to approximately 100 K above the experimental melting 

temperatures starting with a ground-state lattice supercell 

relaxed at 0 (bar) pressure. We used 10x10x10 supercells for 

each element's identified ground-state lattice structure. We 

utilized a compressed version of the DNP for these MD heating 

simulations, which improved the speed of the simulation with a 

negligible impact on the accuracy of this calculation. 

 

2.5 Validation Check on Non-trained Structures. 

We assess the transferability of DNPs for each element on 

structures not explicitly included in the training.  Some of the 

structures were gathered from The MPDB some were 

generated43 by our group.  We compared DNP calculated and 

averaged cohesive energy (ECOH), per atom volume, and elastic 

constants to DFT reference values  (Tables S8-10).  

 

2.6 Surface Energy Calculations 

We utilized the LAVA code44 to calculate low energy non-

reconstructed Miller index surfaces (100), (110), and (111) (fcc, 

bcc, and diamond cubic phases and (0001), (101̅0) and (112̅0) 

for the hcp phase) surface energies using the LAMMPS wrapper 

with the DNPs. The average surface energies were determined 

from the three randomly seeded DNPs and compared to 

corresponding DFT (VASP) calculated reference values from the 

MPDB45.   

3. Results and Discussion 

We developed a simplistic approach for generating and refining 

the DFT training dataset for 23 elements (Ag, Al, Au, Co, Cu, Ge, 

I, Li, Kr, Nb, Ni, Mg, Mo, Os, Pb, Pd, Pt, Re, Sb, Sr, Ti, Zn, and Zr) 

across the periodic table (Figure 1) to develop robust DNPs, 

which describe base material properties for many 

temperatures, various phases, and selected point defects. The 

elements chosen in this study represent a wide range of melting 

temperatures (e.g., Kr and Os), atomic masses (e.g., Li and Pb), 

electron configurations, elemental groups, and ground state 

phases (11 x fcc, 6x hcp, 2x bcc, 1x diamond cubic, 1 x 

tetragonal, 2 x orthorhombic). Applying these simplified and 

compact DFT training set criteria to a diverse selection of 

elements strongly suggests that this general approach applies 

to most elements on the periodic table for dataset creation, 

modeling, and refinement for DNPs, at least for single-element 

systems.  We did not investigate the impact of tailoring the 

model's hyperparameters to each element training dataset 

which may improve accuracy and performance; instead, we 

chose to use a "universal" set of parameters for all elements.  

Our dataset curation focused on achieving good accuracy of 

lattice constants, cohesive energies, single vacancy defects, 

interstitials atoms, elastic constants, and thermal stability of the 

solid phase between 0 K and the melting temperature.   

 To generate the 12 distortions of the lattice in the elastic 

limit for each lattice of the metal systems, we tested a variety 

of thresholds from 0.01 to 0.05 Å. We found that distortions of 

the lattice by 0.03 Å yielded DNPs that produced the most 

accurate results overall with the smallest number of 

configurations.  We ran NVT at the previously defined 

temperature(s) for each distorted structure to generate 20 

configurations. Additionally, we included single vacancy 

structures for each phase and a variety of self-interstitials (see 

below) for only the lowest energy phase of each element. We 

note that, at most, two additional adaptive learning training 

iterations were required, in addition to the initial training set to 

produce elastic properties that we considered converged with 

our calculated DFT reference values.  The general workflow is 

depicted in (Figure 2).   

Figure 2.  General training workflow for the single-element DNPs. 

 

As an additional quality check on the precision of the DNPs, 

while the training improves from iteration to iteration, the 

standard deviation between the three randomly seeded 

potentials decreases.  We believe this ensemble approach to 

DNP validation is an important metric to highlight as we 

envision these DFT datasets as a minimalistic "core" dataset 

that can be added to or combined for tailored applications by 

the community.  Reporting the average value and the standard 

deviation of the values from three DNPs allows others to assess 

the precision of the potential and determine whether these 

values are acceptable for their desired application or if more 

training will be required. Overall, the maximum number of 

configurations used for training was less than 6100, with no 

more than 231,000 total atoms per element (Table S1).  

3.1 Basic Material Properties and Phases 
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We find excellent agreement between the predicted DNP and 

the DFT reference values for lattice constants and cohesive 

energies (Figure 3,  Tables S2 and S3), exemplified by the 

proximity to the parity line and relatively small standard 

deviations shown in Figure 2. The percent deviation from the 

DFT reference values is < 12 % (excluding Kr, which has very 

small cohesive energies) per atom volume and < 11 % for 

cohesive energies ( Ecoh ).   The errors reported in the figures and 

the ESI tables are the standard deviation of the averaged 

material property from the three randomly seeded DNP 

potentials. Notably, we did not include any of these structures  

in the training datasets in the training data sets; only distorted 

or defected lattices at temperatures above 0 K, yet the 

prediction of the DNPs is accurate compared to DFT reference 

values reflecting its transferability.  

Figure 3.  Parity plot of A) cell volume/atom and B) cohesive energies for all 
elements and phases. 

 

3.2 Point Defects: Vacancies and Interstitials 

Real-world materials are not pristine, containing defects such as 

vacancies and interstitials.  Therefore, these common point 

defects were included in the training data sets for each element 

to improve the basic DNP applicability to real-world materials 

modeling (Figures 4 and 6). We compare structures included 

and excluded in training for single vacancy defect energies 

(Figure 4A and Table S4). The vacancy energies can be relatively 

small (less than an eV), so some structures' standard deviations 

appear more pronounced.  Generally, we observe good 

agreement for most vacancy energies. However, we do not 

achieve the same accuracy for the energies of the non-defected 

ground state lattices exemplified in Figure 3.  

 

Figure 4.  Parity plot of point defects A) vacancies B) single self-interstitial atom 
energies. 
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 For the self-interstitial facilities, we looked at a large variety 

of tetrahedral (Td), octahedral (Oh), dumbbell (db), and 

crowdion for the lowest energy/ground state phase for each 

element provided the phase was bcc46, fcc16, diamond cubic47, 

or hcp48 (Figure 4B and Table S5).  We observe good agreement 

between the average DNP value and the calculated DFT value; 

however, we note that few interstitials exhibit significant 

standard deviations of the mean. Upon closer scrutiny,  

corresponding interstitials were deemed unstable, as the initial 

and final structures exhibited an unusual change in the cell 

volume in the DFT reference calculations, therefore, were 

omitted from validation (Figure 4 and Table S5). 

 

3.3 Elastic Constants  

Generating DNPs that accurately predict elastic constants for 

multiple lattice phases per element is challenging, given that 

this relies on finite differences. Such has not been frequently 

reported in the literature19, 49.  Figure 5 compares the DNP and 

DFT calculation results for unique elastic constants (C11, C12, C13, 

C22, C33, C44, C55, and C66) for each element's ground state phase 

(Table S6). DFT calculations of elastic constants can be highly 

sensitive to cut-off energies, kgrid spacings, and supercell size13. 

We observe a more significant standard deviation for the 

elements with heavier nuclei and unfilled electron shells (e.g., 

Os and Re). Therefore, the observed standard deviations scale 

with the magnitude of the average value of the elastic constant. 

Figure 5.  Calculated DNP and DFT elastic constants. 

 

3.4.1 Summary 

We summarize our training validation results in Table S7, which 

highlights the % deviations of the DNP from that of the DFT reference 

values (Tables S2, S4-6, and Figures 3-5) for each parameter class. 

Generally, the average error in the per atom volume and Ecoh are less 

than 5%, excluding Krypton (Table S2 and Table S7) which has 

relatively small cohesive energy (~ 0.04-0.08 eV ). Similarly, we 

observe a trend of larger % deviations point defect energies 

increases. However, the % Ecoh for these point defect structures is 

less than 10% (excluding Kr) from the DFT reference. Minor 

deviations from the DFT reference value 0.01-0.02 eV in both the 

pristine and defected can lead to significant errors in the calculated 

defect energy. Elastic constants are ≤ 25 % in error for most elements 

on average. However, we observe, on average, larger discrepancies 

for Pb, Re, Sb, Ti, Zn, and Zr (Table S7). These deviations can be 

further reduced with additional training focused on these structures. 

Overall the observed variations are similar to what Zuo et al. 27 

described for multiple MLP models. We note, however, that Zuo et 

al. trained on a single lattice phase, and the transferability of the 

MLPs was not thoroughly explored. 

 

3.5.1 Transferability of the DNPs 

The transferability of a DNP reflects its ability to accurately 

predict structures or properties structures that were not 

included in the training set.  Our previous work noted good 

transferability of the DNP14, 15. 

Figure 6.  DNP Predictive accuracy for elemental phases not included in the 

training dataset for A) Volume/atom and  B) Cohesive energy. 
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Here we start examining the transferability by testing a limited 

number of phases (either from the MPDB or generated by us) 

per element and comparing them to DFT reference values.  

Figure 6 shows that the potentials predict the per atom 

volume (Figure 6A) and Ecoh (Figure 6B) well, with only a small 

number of structures where Ecoh and per atom volumes were 

poorly predicted (Figure 6 and Table S9).  However, the % 

average vacancy energy error (and standard deviation) in the 

single atom vacancy is more significant than we observed for 

the trained structures, respectively (Tables S4 and S10), 

highlighting the boundaries of DNP transferability. 

Additionally, comparing elastic constant for non-

groundstate phases demonstrates agreement with DFT 

reference values (Table S8). Although the agreement is less 

than desirable for some of these lattices, additional training 

would be necessary to describe the untrained vacancies and 

non-refined elastic constant predictions. However, the overall 

transferability of these simple phases and point defects is 

remarkable. Further, these DNPs can be extended to other 

properties.  

 

3.5.2 Surface Energies 

Surface energies are essential properties for materials for 

understanding material growth, adsorbate behavior, and 

catalytic performance.50, 51  Despite the importance of planar 

structures, we did not include these in the initial training to 

reduce the size of the dataset.  However, as shown in Figure 7,  

the DNPs predict surface energies reasonably well for low Miller 

index structures (e.g., fcc, bcc, diamond– (001) (011), and (111); 

or hcp – (0001), (101̅0), and (112̅0)) (Table S11). Although 

further training is required to improve the accuracy of the 

surface energy predictions, the transferability of these DNPs is 

surprising as we have not introduced any aperiodic structures 

resembling a surface in the training set.  

Figure 7. DNP prediction of low Miller index surfaces (< 2) for selected elements 
compared with DFT reference values. The DNPs are trained only on bulk 
configurations.  

3.5.3 Thermal Stability of the Solid Phase 

As a final assessment of these DNPs' robustness, we conducted 

MD simulations from 0 K approaching each element's melting 

temperature (Figure 8) using an NVT approach and a Benderson 

thermostat.  During the iterative training, we observed poor 

thermal stability for the elements with relatively high melting 

temperatures (above 2000 K).  This leads us to include an 

additional group of training data at a temperature of 60% of the 

melting point.  Including these data vastly improved the solid-

state thermal stability up to the melting temperature and 

improved the initial (iteration 0) predictions of the elastic 

constants. Even though the training data set only included two 

temperatures, we found well-behaved heating of these 

elemental bulk materials with supercells of 10x10x10 for each 

element's ground state configuration. This result is surprising 

but not wholly unexpected given that the interpolation of the 

material properties using DNPs has been noted by us14-16 and 

others in the literature52. We note that the training did not 

explicitly include the structures describing liquid phase 

behavior; therefore, we do not expect the phase transition from 

solid to liquid to be reasonably predicted for all these elemental 

DNPs. Future investigations focusing on the refinement of 

modeling solid-liquid phase transitions are the focus of ongoing 

investigations. 

Figure 8.  Potential energy vs. temperatures for all 23 DNPs generated the 
difference in the potential energy from 0 K for each element with A) element with 
melting temperatures less than 1700 K and B) element with melting temperatures 
over 1700 K. 
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4. Conclusions 

We have described a general curation methodology 

constructing relatively small sets of DFT configurations (< 6000) 

for the training single-element atomistic potentials using the 

DeePMD-kit with a DeepPot-SE approach.  Our dataset curation 

recipe works for a diverse sampling of elements across the 

periodic table, describing various benchmark materials 

properties with reasonable fidelity to DFT reference values. 

Additionally, we estimate the DNP's predictive accuracy range 

from the three randomized seeded versions to give a baseline 

range of values before the training sets are modified. Lastly, we 

find that these compact training sets, along with the DNP 

training approach, produced highly robust and transferrable 

potentials that can predict many properties that were not 

explicitly included in the training data. Ultimately, this work will 

allow users to augment and build upon these small datasets 

and/or curation methodologies for their unique scientific 

queries. 

Lastly, we note various limitations and future extensions of 

and to this work that would benefit the community. Using these 

hand-curated systematic training datasets, we only focused on 

DeepPot-SE approach and did not assess other MLP models.   

Such a comparative investigation of MLPs, similar to Zuo et al.27 

or Morrow et al.53 would be helpful to the community to assess 

the fidelity of the dataset + model combination.  We hope this 

work, particularly the developed and shared datasets, will 

motivate such extensive comparative studies. Additionally, 

informative metrics describing the DFT training dataset 

parameters such as structural, energies, and forces landscapes 

would be beneficial for evaluating and comparing training 

datasets regardless of the MLP model employed. We poise that 

these future works would be highly informative for all atomistic 

potential development and benchmarking going forward.  
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