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Abstract

Uncertainty analyses typically recognize separate stochastic and subjective sources of
uncertainty, but do not systematically combine the two, although a large amount of data
used in analyses is partly stochastic and partly subjective. We have developed
methodology for mathematically combining stochastic and subjective data uncertainty,
based on new “hybrid number” approaches. The methodology can be utilized in
conjunction with various traditional techniques, such as PRA (probabilistic risk
assessment) and risk analysis decision support. Hybrid numbers have been previously
examined as a potential method to represent combinations of stochastic and subjective
information, but mathematical processing has been impeded by the requirements inherent
in the structure of the numbers, e.g., there was no known way to multiply hybrids. In this
paper, we will demonstrate methods for calculating with hybrid numbers that avoid the
difficulties. By formulating a hybrid number as a probability distribution that is only
fuzzily known, or alternatively as a random distribution of fuzzy numbers, methods are
demonstrated for the full suite of arithmetic operations, permitting complex mathematical
calculations. It will be shown how information about relative subjectivity (the ratio of
subjective to stochastic knowledge about a particular datum) can be incorporated.
Techniques are also developed for conveying uncertainty information visually, so that the
stochastic and subjective constituents of the uncertainty, as well as the ratio of knowledge
about the two, are readily apparent. The techniques demonstrated have the capability to
process uncertainty information for independent, uncorrelated data, and for some types of
dependent and correlated data. Example applications are suggested, illustrative problems
are worked, and graphical results are given.
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Backggouhd

Subjective uncertainty can be propagated under a theory of fuzzy numbers with important
differences from stochastic analysis [1]. These disparate forms of uncertainty are not
readily combined in a single comprehensive theory. Kaufmann and Gupta [2] suggested
that instead of confounding the two forms of uncertainty, they could be considered
together but separately in a pair (f; p), where fis a fuzzy number and p is a probability
distribution. These pairs, which they termed “hybrid numbers,” can be added together by
convolving the respective elements according to normal rules for fuzzy arithmetic and

Portions of this work were supported by the United States Department of Energy under Contract DE-
AC04-94A1.85000.

probability theory. Kaufmann [3] further explored the algebraic structure of such hybrid
numbers. The Kaufmann/Gupta formulation of hybrid numbers allows addition and
subtraction. Addition is defined as:

(f1,p1) + (&2,p2) = (Fr+,prtp2) 6]

where the plus signs on the right side of the equation represent fuzzy max-min convolution
[1,2] and ordinary probabilistic sum-product convolution, respectively. This formulation
of hybrid numbers does not directly allow multiplication or a full hybrid arithmetic (eg,
the product of a completely fuzzy number and a completely probabilistic number is
undefined).

In this paper we describe other formulations for hybrid numbers that do permit
multiplication, division, and other operations. These can be used in risk analysis problems
where variability and subjectivity coexist. We propose that hybrid numbers can be thought
of in two ways: a fuzzy probability distribution, or a random distribution of fuzzy
numbers. These two concepts are equivalent, but have complementary interpretations and
calculation strategies.

Subjective/Stochastic Hybrid Formulation

A hybrid number can be formulated as a probability that is only fuzzily known. Bounds on
probability distributions can be used to express interval-type uncertainty about a random
number in a pair of cumulative distributions that bound the random number’s cumulative
distribution. By nesting these probability distribution bounds at levels of presumption
about the breadth of fuzzy uncertainty, we obtain a representation for hybrid numbers that
is relatively simple to depict and understand.

A formal definition depends on monotonicity of the probability functions and nestedness of
the fuzzy functions. Let P denote the set of cumulative probability functions defined on
the real numbers R, so each element peP is a surjective function p:R—[0,1] such that




p(x1)<p(xz) whenever x;<x,. A hybrid number can be defined as a set of closed intervals,
each characterized by a pair of functions from P:

H:[0,1]1> PxP:0. P (Pa,qe) )
such that for a,B€[0,1], pa(*)2pp(x) = qp(X) 2q«(X) Whenever a<p. Here, o and

represent fuzzy membership values (a,  cuts) for values of x. The collection of cuts
across p(x) is from the set F of fuzzy numbers. In Fig. 1, cumulative

Figure. 1. Example Three-Dimensional Image of a Hybrid Number

probability functions p(x) and fuzzy uncertainty functions f{x) are shown in three-
dimensional form. When fuzzy functions can be represented by a few key vertices (e.g.,
three for triangular fuzzy numbers, four for trapezoidal fuzzy numbers), the two-
dimensional view of the three-dimensional form of Fig. 1 taken along the f axis represents
sufficient information without using the third dimension. This two-dimensional view is
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Figure 2. Two-Dimensional Representation of Fig. 1



useful for bompufer routine output displays. The concept is illustrated in Fig. 2, where the
four lines shown are loci for the four vertices of the trapezoidal fuzzy numbers in Fig. 1.

This formulation allows the full suite of arithmetic operations to be defined in ways to be
described subsequently. The proposed hybrid numbers generalize probability distributions,
fuzzy numbers, intervals, and scalars. When the image viewed along the f axis shows p
functions that are nearly coincident, the hybrid number approaches a probability
distribution that lacks fuzziness, as illustrated in Fig. 3.
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Figure 3. Example of a Highly Stochastic Hybrid Number

When the image viewed along the p-axis shows f functions that are nearly coincident as
shown in Fig. 4 (or the view along the f-axis shows abrupt transitions of the p functions

14 \
T ] T T T T T T T =x
4 5 6 7 8 9

0 1 2 3
Figure 4. Example of a Highly Subjective Hybrid Number




from zero to one), the hybrid number approaches a fuzzy number that lacks stochastic
variability.

When the functions viewed along the p-axis have abrupt transitions between f=0 and f=
1, and the p functions viewed along the f-axis have abrupt transitions between p=0 and
p=1, the hybrid number approaches an interval [4]. When the f functions viewed along the
p-axis and the p functions viewed along the f-axis both show abrupt and nearly coincident
transitions, the hybrid number approaches a scalar real number that lacks all uncertainty.

The formulation described in this section is mathematically equivalent to one based on
fuzzy numbers and probability density functions. However, due to lack of monotonicity of
density functions, the graphical images for hybrid numbers lack the appealing simplicity
inherent in the cumulative distributions and will not be used here.

Mathematical Operations

1) Probabilistic Calculation. Algorithms for doing arithmetic with hybrid numbers can be
built up from the lower-level algorithms that do arithmetic on pairs of bounding
probability functions (Williamson and Downs [5]). Each of the arithmetic operations may
be performed either with an assumption of independence, or without making any
assumption about the stochastic dependence between the operands (in which case the
bounds are generally wider). Applications of the methods to problems in risk analysis are
illustrated in [6], [7]. A representative sample problem is illustrated in the final section of
this paper.

Although the Williamson/Downs algorithms work very well for addition and subtraction,
and can easily be extended for minimization and maximization, they only work for
multiplication and division so long as the supports of the operands are nonnegative.
Multiplication operands including negative regions (and division operand regions including
zero so long as the divisor support does not include zero) can presumably be handled if
additional algorithmic complexity is added.

An example will illustrate multiplication of two nonnegative hybrid numbers. Fig. 5
illustrates two hybrid operands for multiplication, where the fuzzy functions are
trapezoidal.

The hybrid number on the left is centered near 2 and has values falling as low as 0.5 and
rising as high as 3.5. The hybrid number on the right is centered near 6 and has values
falling as low as 3.5 and rising as high as 9.5. The product of these two hybrid numbers
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Figure 5. Two Example Hybrid Operands for Multiplication

(under an assumption of independence) is shown in Fig. 6. The product is centered near
15 and ranges almost from 2 to 30.
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0 15 30
Figure 6. Hybrid Product of Hybrid Operands in Fig. 5
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2) Fuzzy Calculation. One can also formulate hybrid numbers from a perspective in which
they are probability distributions of elements that contain fuzziness. A formal definition of
hybrid numbers that emphasizes this perspective is equivalent to the definition given

above. We will describe one of the sampling strategies that can effect simulation solutions
of the operations of hybrid arithmetic. Fuzzy number deviates from the hybrid number can
be generated in the same way as for probability distributions of real numbers (Monte Carlo
simulation or Latin Hypercube sampling). A random number is selected from the standard
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uniform distribution on [0,1]. It defines a horizontal cut through a three-dimensional
hybrid operand at one value of p. An example of generating a random sample trapezoidal
fuzzy number is illustrated in Fig. 7. The dashed line depicts a fuzzy cut corresponding to
a sample of the p functions at sample point u.

Figure 7. A Fuzzy Number Randomly Selected from a Hybrid Number

Another random number is selected to specify a fuzzy number cut through the other -
operand. The random fuzzy numbers generated are combined according to the rules of
fuzzy arithmetic [2]. All of the standard arithmetic operations are defined, including
addition, subtraction, multiplication, division, minimization, and maximization. Except for
division by a fuzzy number whose support includes zero, these operations are closed in the
set of fuzzy numbers.

3) Separate Probabilistic/Fuzzy Calculation. It can be appropriate (as illustrated in the
following section) to compute probabilistic and fuzzy portions separately and to combine
the two results in a hybrid representation. This is equivalent to combining stochastic
information and fuzzy information separately, but portraying the results together for
overall perspective. The use of hybrid formulations in this approach is mainly to associate
the separate views in a more informative entity.

Scale Factor Metrics

When the values of input variables are not well known, risk analysts may expect to
improve their analyses by incorporating new information that is learned through additional
tests, accident assessments, etc. In a Bayesian sense, stochastic information can be
improved. However, there are significant differences between Bayesian and fuzzy
analyses. For example, a “non-informative” prior distribution in a Bayesian analysis might
be considered an oxymoron by a fuzzy-algebra analyst, since even a uniform distribution is
precisely defined. The general effect of Bayesian and other forms of probabilistic analysis
is that extremes (tails of the distributions) are suppressed relative to the results of fuzzy
analysis [8]. Since new input data may only slightly improve the stochastic knowledge
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about ill-defined situations such as abnormal environment responses, a non-Bayesian
hybrid analysis has a useful role. A reasonable approach to this problem that does not
assume nonexistent stochastic information is to provide for smooth transitioning from
subjective (fuzzy) characterization to stochastic characterization as information about
inputs is obtained.

1) Uniform Scale Factors. First, consider the case where the extent of knowledge about a
problem is fractionally partitioned between stochastic and subjective portions. An input
variable to an analysis whose variation characteristics are known partly stochastically and
partly subjectively can be represented by a hybrid number with the relative
stochastic/subjective information apportioned according to a scaling fraction:

h(x) = axp(x) + (1 —a)xRx) 3)

where a is an estimated scale factor representing the fractional stochasticity of the overall
knowledge (0<a<1), and where x and + are operators on x values.

The scale factor is a scalar, which Eqn. 3 suggests can be used to fractionally compress the
abscissa (numeric) representation of the probabilistic constituent of variability by a, along
with compression of the fuzzy constituent of uncertainty by (1-a). The total variation is
then additive along the abscissa, i.e., a scaled sum of the two constituents.

A visual description of the uncertainty represented by a scaled hybrid number is shown in
Fig. 8, for an example scale factor of 1/2. The axes represent the numeric variability due
to the constituents of stochastic knowledge and subjective knowledge. The dashed
indication of a fuzzy function has been scaled down by a factor of two along the x axis
from the subjective estimate. The dot-dashed indication of a probability function has also
been scaled down by a factor of two from the stochastic estimate. The x-axis sum of the
scaled variabilities is shown plotted as a three-dimensional hybrid number (solid lines).

This formulation is understood most clearly if the spread and shape of the fuzzy function
and the probability fanction do not interact with each other, and if separate stochastic and
fuzzy mathematics are used.

In the limited case for which the scale factor applies uniformly to all input variables in a
mathematical analysis (and therefore also to the output), the conventional mathematical
properties (identities, commutative property, and associative property for addition and
multiplication, and multiplication distributive over addition and subtraction) hold for scale-
factor arithmetic with no further requirements’.

! An important point is that variability for an operand must be entered only one time in equations in
which there are multiple occurrences. For example, 4 — A =0_(We may be uncertain about the value of
A , but not about the result of subtracting any value of A from itself).

11




Figure 8. A Visual Depiction of a Scaled Hybrid Number

2) Individual Scale Factors. The more general case (allowing the scale factor to be
individually chosen for each input operand), is of more practical interest. For this, a
subscripted scale factor, a;, will be introduced.

hi(x)= aixpi(x)+ (1 — a)xfi(x) . @

As one way to maintain the desired mathematical properties and to also assure that results
meet physical expectations, we choose to average operand scale factors to obtain a
resultant scale factor for multiplication and to use an average weighted by the relative
contribution of the operands for addition. The following binary operations illustrate the
concept:

by +h, = 2P 8P () 4 p g+ L0 1O 720
1 2 p +p 1 2 £ +f
1 2 1 2

%2 (p,(x) xpy () + 2212 %)

(£,(®) +£,(x)) &)

a, +

h, xh, = 2

(£, (x) x£,(x)) (6)

where p; and £ represent either point estimates of pi(x) and fi(x), respectively, or
functions (probabilistic and fuzzy, respectively); the operations on the p;(x) are ordinary
sum-product convolution; and the operations on the fi(x) are fuzzy max-min convolution.
The use of the logic represented by Eqns. 5 and 6 assures that the desired mathematical
properties (e.g., associativity, commutativity, distributivity) will be maintained.

Eqns. 5 and 6 can be generalized to n operands (n>2) by extending the number of
subscripts in the equations from two to n. Alternatively, n operands can be combined in
successive binary operations by retaining information about prior operations. This is
analogous to computing the average of the numbers x, y, and z by averaging x and y,
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multiplying the result by 2 (number of previous operands), adding z and dividing by 3
(total number of operands).

Y

Note that if the additive weighting ratios are consistent (e.g., — Py — = L —), the scale
pl + p 2 f] + fz

factors resulting from mathematical operations sum to one. This is an interesting but

unnecessary property, e.g., 2 hybrid number could have a well known fuzzy constituent

and a well known stochastic constituent.

The attribute of scale factors is that they provide a metric for the amount of relative
knowledge about stochastic information and subjective information, supplementing the
indications about the total amount of stochastic variability and subjective uncertainty
shown qualitatively (e.g., in Figs. 3 and 4).

Software

One software package that is in use [8] permits addition, subtraction, multiplication,
division, powers, exponentiation, logarithms, square roots, and a variety of other
operations. Another [9] incorporates scale factors for each hybrid input variable and
computes hybrid outputs along with scale factors for event tree and fault tree models.
Both provide informative graphical representations.

Sample Problem

A sample problem (highly simplified version of an actual problem) is outlined here. An
undesired event, E, can be the result of an incident, A, and an undesired response to the
incident, R. The undesired response can be due to the failure of three subsystems, I, T,
and F, or due to a bypass of the three subsystems. Symbolically,

E=AN(R|A)=AA(IATAFVB) @)

The hybrid input probabilities are shown in Fig. 9.
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Figure 9. Hybrid Inputs for Sample Problem

The input probability axis is shown logarithmically. If failure of the three subsystems is
independent, an arithmetic solution for P(E) is*:

P(E)=P(A) xP(B)+P(A) x[1-P@B)]xP(C) ®)

The Ref. 9 software was used to obtain the results shown in Fig. 10.

P a=0.55,b=045

1
E
0 1 T T f T T T T T T T T T >
16'f5' 201t 16126%16%16710%0%16416316%16 1100
Figure 10. Hybrid Output for Solution to Eqn. 7.
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