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Abstract—The smart grid represents the next generation of
electricity distribution systems that utilizes recent technological
innovations. It uses digital communication between its compo-
nents and entities to attain more automation, self-sufficiency,
and reliability. One of the many concerns in smart grid digital
communication discussions is the possibility of violating cus-
tomers’ privacy. Violating customers’ privacy imposes a signifi-
cant barrier as smart grid desirable attributes are tightly tied to
customers’ participation. Employing privacy models can address
concerns regarding information privacy in smart grid digital
communication. In this work, we provide an approach to utilizing
K-anonymity to ensure data within the system excludes Person-
ally Identifiable Information. Results suggest that a dynamically
generated generalization hierarchy minimizes information loss
incurred by the anonymization process.

Index Terms—Anonymization, privacy, K-anonymity, Dis-
tributed Energy Resource, DERMS

I. INTRODUCTION

The traditional power distribution concept is becoming
outdated, predominantly because it has yet to keep pace with
recent technological advancements. Arguably, it is the most
complex system ever created. Nevertheless, this comes with
disadvantages as well as virtues. Empirical data bring to
light the irreversible side effects of the traditional approach.
Indeed, the evidence of carbon emissions produced by power
generation is undeniable.

The research community has been exploring the new con-
cept and its shortcomings. In particular, the cyber-security and
privacy of Smart Grid (SG) subsystems have been widely
studied areas of research. This work extends that foundational
work to provide security and privacy in a SG implementation.

Applying K-anonymity to SG components is not a par-
tially novel notion in that there are many similar works.
For instance, Stegelmann and Kesdogan proposed a privacy-
preserving smart metering architecture [1]. This approach
provides means for collecting energy consumption information
without violating consumers’ privacy. However, smart meter-
ing is only one component of the much broader concept of
SGs, which Energy Grid of Things (EGoT) Distributed Energy
Resource Management System (DERMS) attempts to address.

Similarly, Yuce et al. studied solutions for consumer data
privacy in a district-level microgrid [2]. They obtained privacy
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guarantees using k-anonymity for consumers’ demographic
and associated energy consumption information. This ap-
proach differs from the EGoT DERMS approach as the level of
operation is much broader and attempts to apply k-anonymity
on the trust layer.

And, Li et al. proposed an approach focusing on demand re-
sponse in microgrids using vehicle-to-vehicle technology [3].
The approach adds a privacy-preserving attribute to their
auction scheme by applying k-anonymity to achieve location
privacy guarantees.

All the previously examined works consider applying
anonymization to some aspects of SG implementations. This
work is not different in that it also explores the K-anonymity
application for the EGoT DERMS. Rather, it differs from other
works in applying the anonymization technique to the trust
layer. None of the discussed works explore anonymization
combined with a trust layer concept.

II. BACKGROUND
A. The Energy Grid of Things

The EGoT DERMS is Portland State University (PSU)’s
implementation of a SG system. It employs Service-Oriented
Load Control (SOLC) methods for Demand-Side Management
(DSM), and was designed with interoperability in mind. There
is heterogeneity in the types of protocols supported by smart
appliance manufacturers. Hence, the EGoT DERMS relies
on IEEE 2030.5 as the primary protocol for communication
between entities when possible [4]. The protocol allows for
the maximum degree of flexibility that can be leveraged to
accommodate the largest number of off-the-shelf products [5].
Figure 1 presents a conceptual view of the overall structure of
EGoT DERMS.

In the EGoT DERMS, customers who own smart appli-
ances are called Service Provisioning Customers (SPCs), and
aggregators are referred to as Grid Service Providers (GSPs).
Ideally, each GSP can dispatch a large number of Distributed
Energy Resources (DERs) such that the grid services it
provides to a Grid Operator (GO) are impactful [6]. The
motivation is that SPCs own grid-enabled appliances, DERs,
that can provide various DER services to a GSP. The GSP
can use these appliances in large numbers to provide grid
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Fig. 1. An overview of the system architecture. The trust layer (shown in
red) comprises the DTM System.

services that meet grid Operators’ operation objectives, as
needed depending on the state of the grid.

GOs are entities that manage the grid to achieve operational
objectives. The operational objectives can be to either to main-
tain operations within the physical constraints that must be
honored to prevent damage to grid components and equipment;
or attain operational goals associated with stable, reliable,
economical delivery of power at nominal conditions. To do so,
GOs seek grid services from GSPs to meet their operational
objectives. Note that the GSP provides grid services to the
GOs. It does that by using the offered DER services provided
by the DERs.

Due to the variability of DER manufacturers and the hetero-
geneity of the protocols they obey, there must be a mechanism
for interoperability. Interoperability is accomplished through
software and hardware support. Distributed Control Modules
(DCMs) in the system are tasked with expanding DER func-
tionalities such as the support of IEEE 2030.5, scheduling, and
network communication. Therefore, DCMs are the realization
of hardware and software support for interoperability [7].

B. The Trust Model

Trust is a notion with multiple definitions derived from vari-
ous disciplines. Generally speaking, it is the degree of reliance
an entity can place on another to achieve an objective [8]-[10].
This definition is relevant to distributed systems such as the
EGoT DERMS where reliability plays a crucial part [11]. Most
importantly, the trust model provides a detective, passive role
for the EGoT DERMS. Namely, it monitors communication
between actors without interfering. The trust model is referred
to as the DTM System.

The DTM System comprises two types of actors: many
Distributed Trust Model Clients (DTMCs) and one corre-
sponding Central Distributed Trust Aggregator (CDTA). The
DTMCs are components placed adjacent to DCMs, as shown
in Figure 1. These DTMCs monitor their respective DCMs
without interfering with the DCMs functionalities in an effort
to measure trust in the system. Each DTMC measures the trust
by monitoring the DCM communication with other actors in
the system, specifically the DER and the GSP. The DTMC
is able to quantifying the local trust of the DCM, DER, and
GSP by developing a communication fingerprint of each actor,

978-1-6654-6441-3/23/$31.00 ©2023 IEEE

which is referred to as a Metric Vector of Trust (MVoT).
Finally, DTMCs send their local trust information, the MVoTs,
to the CDTA where the distributed trust is aggregated and an
overall trust of the EGoT DERMS is computed.

C. Common Smart Inverter Profile v2.0

Among the many propositions put forth in the Common
Smart Inverter Profile (CSIP) standard is the topological
grouping of DERs. Figure 2 illustrates the topological and
non-topological groupings as described in CSIP. The Figure
depicts a topology tree on which several service points are
located. Note that only several paths are highlighted, and the
rest are omitted for clarity purposes. The topological location
of each node is the result of concatenating all its ancestors.
This location also represents the physical location of each
node. For example, node D1, which corresponds to a feeder,
is physically connected to substation C1. Notice that each
node in the Figure is a group itself. In addition, the grouping
needs not to be topological. For instance, Group-Z shown
in the Figure, does not conform to the topology. Instead,
it is placed according to the utility needs. Given that the
EGoT DERMS adopts IEEE 2030.5, it is only natural to adopt
the CSIP grouping. However, note that the non-topological
groups are not considered in this stage of EGoT DERMS and,
by extension, are outside the scope of this work.

D. K-Anonymity

Many organizations aim to publish microdata for research
purposes, such as demographic, health, and other data do-
mains. However, such microdata may contain Personally
Identifiable Information (PII) that breaches the privacy of
customers, patients, and citizens. For example, combining
published data with publicly available external data sets can
pinpoint individuals even though the microdata’s obvious
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Fig. 2. Topological grouping as described in CSIP v2.0 [12].
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PII was removed. Sweeny demonstrated this in 2002 by
re-identifying individuals from public health records, which
resulted in exposing the health records of Massachusetts
governor William Weld [13].

Sweeny proposed K-anonymity to protect individuals’ pri-
vacy and reduce the chances of launching successful re-
identification attacks. The key idea is based on aggregating
records in the data such that each record has at least K — 1
identical records (K is a user-defined number of identical
records desired). K-anonymity is conditioned on producing
valuable anonymized data to fulfill the purpose of publishing
data to advance research.

The problem of optimal K-anonymity is classified as an NP-
hard problem even with simple restrictions [14]. Consequently,
finding an optimal solution in a reasonable time is not easy. An
optimal solution means the data set is anonymized optimally
according to various metrics. Due to the inherent hardness
of the problem, it is crucial to identify efficient methods of
finding/approximating a good enough solution: a solution that
does not cause significant information loss.

III. METHODS
A. The Mondrian Algorithm

LeFevre, DeWitt, and Ramakrishnan proposed a multi-
dimensional model for k-anonymization and a greedy algo-
rithm for k-anonymization [15]. This Mondrian algorithm aims
to approximate the optimal anonymization contrasted with
finding it. Essentially, it finds a solution by partitioning the
instances with respect to all quasi-identifiers in a Mondrian
manner. That is, all partitions used are axis-aligned. The
proposed approach has a far better complexity than previously
proposed methods for achieving K-anonymity. The fact that it
relies on a greedy algorithm gives us the benefit of achieving
anonymization in O(nlogn) time complexity.

The Mondrian assigns a penalty cost for each tuple T in the
anonymized view V. The most straightforward penalty metric
applicable is the discernibility metric (C'pys). It computes the
penalty based on the number of tuples in each equivalence
class. The metric is defined as:

|E|? (1)

>

EcEquivClasses

Cpm =

LeFevre et al., however, proposed an alternative metric for
calculating the cost penalty called the Normalized average
equivalence class size metric (Cqyg). Caug is defined by the
following:

NumO f Records/NumO f EquivClasses
K

Both metrics penalize classes with more records. While
classes with fewer records might be desirable in some cases,
the metrics do not capture the distribution in the quasi-
identifier attributes space [16]. A more accurate metric, the
Normalized Certainty Penalty (NCP), accounts for the car-
dinality of the equivalence classes and the scope of the

Cavg = (2)
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quasi-identifier attributes space [17]. NCP can be defined for
numerical attributes as follows, where C' is the equivalence
class, and A is a numerical attribute:

maz§ — min§

NCP4(C) = (3)

max, — mina

Equation 3 contains a definition of NCP that would not
work for categorical attributes as the concept of distance is
non-existent. For such a case, the metric can be defined as
follows:

size(u)

NCPA(C) = =1

4)

where |A| is the number of distinct values of attributes of
the categorical A, u is the closest common ancestor in the
generalization hierarchy for the attribute value, and size(u) is
the number of leaves in the sub-tree of u. Additionally, NCP
can be converted into a percentage by dividing the NCP value
over the number of values in the data set; such a percentage is
more comprehensible and thus used as the primary metric for
information loss in this work. Finally, keep in mind that all
attributes in EGoT DERMS topological IDs are categorical,
which means Equation 4 is the equation used to compute the
penalty.

B. Generalization Hierarchy

The Mondrian algorithm utilizes a generalization hierarchy
to generalize, or suppress, attribute values. This reliance
on generalization hierarchy aligns with the topological load
groupings in distribution systems. For example, every load has
a topological location that describes its associated substation,
segment, feeder, and service point to which it is connected,
as described in Figure 2. This topological location is used as
an identifying value for loads in an electrical and distribution
system. However, this work uses the distribution part of the
topological hierarchy to create the IDs, starting from the
substation down to the service point. Such topology can
be morphed and used as a generalization hierarchy for the
Mondrian algorithm. Figure 3 shows an example hierarchy
constructed for the service point (substituted by DERs instead)
attribute in the ID. For this example, both K and H have the
same value of five.

EXAMPLE:

DEH

0 = DER < 5
DEFW DER1 DEH? DER3 DER‘ DERS ]

Fig. 3. An example of DER attribute hierarchy in the system, where K is 5,
and H is five.

—
’_@EH <10

DERG DERT oers | | oems |
——
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IV. RESULTS
A. K-Anonymity

Since a GSP has access to records of all DCMs regis-
tered with its DERMS, such a dataset was used to produce
anonymized data. This data set was generated according to
the IEEE 13-node feeder design, which is a test feeder used
as the system is still in development. Figure 4 shows the visible
effects of the H value as the records are aggregated in groups
of twos, threes, and fives, which is greater or equal to two and
satisfies the 5-anonymization requirement.

Effects of the Mondrian Algorithm on a data set with K =2
| [segment | o fseoment | e |

I 1
segment 9 transformer 2 DER O substation 0 segment 0-5  transformer 0-5 DER 0-5

L
substation 0

substation 0 segment 2 transformer 1 DER 1 substation 0 segment 0-5  transformer 0-5 DER 0-5
substation 0 segment 1 transformer 3 DER 2 substation 0 segment 5-10 transformer 0-5 DER 0-5
substation 0 segment 8 transformer 0 DER 3 substation 0 segment 5-10 transformer 0-5 DER 0-5
‘substation 0 segment 7 transformer 4 DER4 - 5 |
“substation 0 segment 7 transtormer 4 DERS substation 0 segment 7 transformer 4 0
substation 0 segment 7 transformer 4 DER & substation 0 segment 7 transformer 4  DER 5-10
substation 0 segment 7 transformer 4 DER 7 i substation 0 segment 7 transformer 4  DER 5-10
substation 0 segment 7 transformer 4 DER & substation 0 segment 7 transformer 4  DER 5-10
substation 0 segment 7 transformer 4 DER 9 substation 0 segment 7 transformer 4  DER 5-10
substation 0 segment 7 transformer 4 DER 10 substation 0 segment 7 transformer 4  DER 10-15
substation 0 segment 7 transformer 4 DER 11 substation 0 segment 7 transformer 4  DER 10-15
substation 0 segment 7 transformer 4 DER 12 substation 0 segment 7 transformer 4  DER 10-15

Fig. 4. Sample of 2-anonymization effects on IEEE 13 node feeder data.
The table on the left contains records sampled from the IEEE 13 node
feeder topology, whereas the table on the right contains the records after
anonymization.

Since the Mondrian Algorithm provides multi-dimensional
K-anonymity, it takes into account recording all sensitive
attributes when anonymizing. For instance, all the attributes in
the highlighted record in Figure 4 were used when constructing
equivalence classes. Suppose the algorithm did not account
for all attributes, which means it is not multi-dimensional.
Without the DER attribute, the record could easily be part
of the equivalence classes below it in the resulting table due
to matching values in all attributes except the DER. However,
the algorithm would suppress the DER value to achieve the K-
anonymity property, which not only would increase the NCP
penalty, but the record would be the first in an equivalence
class by itself. This leads to other records being suppressed
such that the table meets the K-anonymity property and more
penalties.

B. Information Loss

The anonymization degree, which in this case is denoted
by K, exerts influence on the information loss observed in
the resulting data set. Figure 5 demonstrates the information
loss observed when the algorithm is run on the 13-node test
feeder data set under various K-values. Figure 5 shows that as
K grows in size, the penalty grows slowly, approaching 20%.
This behavior is because the algorithm finds fewer and fewer
ways to partition data that contains five attributes, with four
attributes containing value variations. The fifth attribute, the
substation attribute, is intentionally treated as an insensitive
attribute, primarily due to the need for having accessibility to
such information for the DERMS.

Figure 6 shows a plot of information loss against variable
values of K. In Figure 6, only the first half of the data set

978-1-6654-6441-3/23/$31.00 ©2023 IEEE

NCP vs K
100 +—— H=K
80 4
_ 60+
g
=%
o
4
.
204 ——
= 1 |
- ™7
T
0
0 96 192 288 384 480 576 672 768 864 960

K

Fig. 5. Plot of NCP against different K values for IEEE 13 node feeder data.
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Fig. 6. Plot of NCP against different K values for half of IEEE 13 node
feeder data.

was plotted. This was done to zoom into the behavior the
algorithm displays when K is relatively small. Note that there
are recurring periodic dips up to the half-point where K is
equal to one-half the size of the data set. These frequent
dips are caused by the greedy algorithm finding and picking
new, better partitions that result in less information loss. Such
behavior indicates the existence of H values that produce
optimal structure such that it minimizes information loss with
respect to the IEEE 13-node feeder topology.

C. Information Loss

As discussed earlier, results shown in Figure 5 and Figure 6
indicate the existence of some [{ values that minimize infor-
mation loss. Figure 7 and Figure 8 demonstrate the perfor-
mance of a simple heuristic used to reduce the information
loss for the used scheme and the generalization hierarchy
used in this work. The heuristic relies on finding such H in
advance to pick the best I value for a given K. Finding
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H in advance requires one to empirically sample H values
based on the results obtained by naively setting ' equal to
K. The dependence on prior knowledge of the underlying is
a significant limitation of the heuristic described here.
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Fig. 7. Plot of NCP against different K values using two different heuristics.
Choosing H to equal K results in higher overall penalty incurrence than
dynamically selecting H.
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Fig. 8. Plot of NCP against K values using different heuristics for half of the
data from Figure 7. A staircase effect can be observed when H is dynamically
selected where each step corresponds to dips in the naive heuristic.

V. CONCLUSION

The EGoT DERMS adopts a Service-Oriented Load Control
approach to manage Distributed Energy Resource. This archi-
tecture relies on heavy digital interaction between the system
actors to achieve its operational objectives. The digital infor-
mation exchange could potentially infringe upon customers’
privacy. Guarantees of privacy promote customer participation,
which boosts the system’s ability to counterbalance disruptive
events using large aggregations of DERs.
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This work proposes a privacy-preserving strategy for the
EGoT DERMS trust layer. The method involves using K-
anonymity to guarantee communication on the trust layer to
exclude PII. Also, the strategy secures the communication
channel according to IEEE 2030.5 specifications. Findings
suggest that the generalization hierarchy for the 13-node feeder
shows an Identical Generalization Hierarchy. Such guarantees
of identicalness would not hold in a real-world setting.
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