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Abstract—The smart grid represents the next generation of
electricity distribution systems that utilizes recent technological
innovations. It uses digital communication between its compo-
nents and entities to attain more automation, self-sufficiency,
and reliability. One of the many concerns in smart grid digital
communication discussions is the possibility of violating cus-
tomers’ privacy. Violating customers’ privacy imposes a signifi-
cant barrier as smart grid desirable attributes are tightly tied to
customers’ participation. Employing privacy models can address
concerns regarding information privacy in smart grid digital
communication. In this work, we provide an approach to utilizing
K-anonymity to ensure data within the system excludes Person-
ally Identifiable Information. Results suggest that a dynamically
generated generalization hierarchy minimizes information loss
incurred by the anonymization process.

Index Terms—Anonymization, privacy, K-anonymity, Dis-
tributed Energy Resource, DERMS

I. INTRODUCTION

The traditional power distribution concept is becoming

outdated, predominantly because it has yet to keep pace with

recent technological advancements. Arguably, it is the most

complex system ever created. Nevertheless, this comes with

disadvantages as well as virtues. Empirical data bring to

light the irreversible side effects of the traditional approach.

Indeed, the evidence of carbon emissions produced by power

generation is undeniable.

The research community has been exploring the new con-

cept and its shortcomings. In particular, the cyber-security and

privacy of Smart Grid (SG) subsystems have been widely

studied areas of research. This work extends that foundational

work to provide security and privacy in a SG implementation.

Applying K-anonymity to SG components is not a par-

tially novel notion in that there are many similar works.

For instance, Stegelmann and Kesdogan proposed a privacy-

preserving smart metering architecture [1]. This approach

provides means for collecting energy consumption information

without violating consumers’ privacy. However, smart meter-

ing is only one component of the much broader concept of

SGs, which Energy Grid of Things (EGoT) Distributed Energy

Resource Management System (DERMS) attempts to address.

Similarly, Yuce et al. studied solutions for consumer data

privacy in a district-level microgrid [2]. They obtained privacy
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guarantees using k-anonymity for consumers’ demographic

and associated energy consumption information. This ap-

proach differs from the EGoT DERMS approach as the level of

operation is much broader and attempts to apply k-anonymity

on the trust layer.

And, Li et al. proposed an approach focusing on demand re-

sponse in microgrids using vehicle-to-vehicle technology [3].

The approach adds a privacy-preserving attribute to their

auction scheme by applying k-anonymity to achieve location

privacy guarantees.

All the previously examined works consider applying

anonymization to some aspects of SG implementations. This

work is not different in that it also explores the K-anonymity

application for the EGoT DERMS. Rather, it differs from other

works in applying the anonymization technique to the trust

layer. None of the discussed works explore anonymization

combined with a trust layer concept.

II. BACKGROUND

A. The Energy Grid of Things

The EGoT DERMS is Portland State University (PSU)’s

implementation of a SG system. It employs Service-Oriented

Load Control (SOLC) methods for Demand-Side Management

(DSM), and was designed with interoperability in mind. There

is heterogeneity in the types of protocols supported by smart

appliance manufacturers. Hence, the EGoT DERMS relies

on IEEE 2030.5 as the primary protocol for communication

between entities when possible [4]. The protocol allows for

the maximum degree of flexibility that can be leveraged to

accommodate the largest number of off-the-shelf products [5].

Figure 1 presents a conceptual view of the overall structure of

EGoT DERMS.

In the EGoT DERMS, customers who own smart appli-

ances are called Service Provisioning Customers (SPCs), and

aggregators are referred to as Grid Service Providers (GSPs).

Ideally, each GSP can dispatch a large number of Distributed

Energy Resources (DERs) such that the grid services it

provides to a Grid Operator (GO) are impactful [6]. The

motivation is that SPCs own grid-enabled appliances, DERs,

that can provide various DER services to a GSP. The GSP

can use these appliances in large numbers to provide grid
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Fig. 1. An overview of the system architecture. The trust layer (shown in
red) comprises the DTM System.

services that meet grid Operators’ operation objectives, as

needed depending on the state of the grid.

GOs are entities that manage the grid to achieve operational

objectives. The operational objectives can be to either to main-

tain operations within the physical constraints that must be

honored to prevent damage to grid components and equipment;

or attain operational goals associated with stable, reliable,

economical delivery of power at nominal conditions. To do so,

GOs seek grid services from GSPs to meet their operational

objectives. Note that the GSP provides grid services to the

GOs. It does that by using the offered DER services provided

by the DERs.

Due to the variability of DER manufacturers and the hetero-

geneity of the protocols they obey, there must be a mechanism

for interoperability. Interoperability is accomplished through

software and hardware support. Distributed Control Modules

(DCMs) in the system are tasked with expanding DER func-

tionalities such as the support of IEEE 2030.5, scheduling, and

network communication. Therefore, DCMs are the realization

of hardware and software support for interoperability [7].

B. The Trust Model

Trust is a notion with multiple definitions derived from vari-

ous disciplines. Generally speaking, it is the degree of reliance

an entity can place on another to achieve an objective [8]–[10].

This definition is relevant to distributed systems such as the

EGoT DERMS where reliability plays a crucial part [11]. Most

importantly, the trust model provides a detective, passive role

for the EGoT DERMS. Namely, it monitors communication

between actors without interfering. The trust model is referred

to as the DTM System.

The DTM System comprises two types of actors: many

Distributed Trust Model Clients (DTMCs) and one corre-

sponding Central Distributed Trust Aggregator (CDTA). The

DTMCs are components placed adjacent to DCMs, as shown

in Figure 1. These DTMCs monitor their respective DCMs

without interfering with the DCMs functionalities in an effort

to measure trust in the system. Each DTMC measures the trust

by monitoring the DCM communication with other actors in

the system, specifically the DER and the GSP. The DTMC

is able to quantifying the local trust of the DCM, DER, and

GSP by developing a communication fingerprint of each actor,

which is referred to as a Metric Vector of Trust (MVoT).

Finally, DTMCs send their local trust information, the MVoTs,

to the CDTA where the distributed trust is aggregated and an

overall trust of the EGoT DERMS is computed.

C. Common Smart Inverter Profile v2.0

Among the many propositions put forth in the Common

Smart Inverter Profile (CSIP) standard is the topological

grouping of DERs. Figure 2 illustrates the topological and

non-topological groupings as described in CSIP. The Figure

depicts a topology tree on which several service points are

located. Note that only several paths are highlighted, and the

rest are omitted for clarity purposes. The topological location

of each node is the result of concatenating all its ancestors.

This location also represents the physical location of each

node. For example, node D1, which corresponds to a feeder,

is physically connected to substation C1. Notice that each

node in the Figure is a group itself. In addition, the grouping

needs not to be topological. For instance, Group-Z shown

in the Figure, does not conform to the topology. Instead,

it is placed according to the utility needs. Given that the

EGoT DERMS adopts IEEE 2030.5, it is only natural to adopt

the CSIP grouping. However, note that the non-topological

groups are not considered in this stage of EGoT DERMS and,

by extension, are outside the scope of this work.

D. K-Anonymity

Many organizations aim to publish microdata for research

purposes, such as demographic, health, and other data do-

mains. However, such microdata may contain Personally

Identifiable Information (PII) that breaches the privacy of

customers, patients, and citizens. For example, combining

published data with publicly available external data sets can

pinpoint individuals even though the microdata’s obvious

Fig. 2. Topological grouping as described in CSIP v2.0 [12].
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PII was removed. Sweeny demonstrated this in 2002 by

re-identifying individuals from public health records, which

resulted in exposing the health records of Massachusetts

governor William Weld [13].

Sweeny proposed K-anonymity to protect individuals’ pri-

vacy and reduce the chances of launching successful re-

identification attacks. The key idea is based on aggregating

records in the data such that each record has at least K − 1
identical records (K is a user-defined number of identical

records desired). K-anonymity is conditioned on producing

valuable anonymized data to fulfill the purpose of publishing

data to advance research.

The problem of optimal K-anonymity is classified as an NP-

hard problem even with simple restrictions [14]. Consequently,

finding an optimal solution in a reasonable time is not easy. An

optimal solution means the data set is anonymized optimally

according to various metrics. Due to the inherent hardness

of the problem, it is crucial to identify efficient methods of

finding/approximating a good enough solution: a solution that

does not cause significant information loss.

III. METHODS

A. The Mondrian Algorithm

LeFevre, DeWitt, and Ramakrishnan proposed a multi-

dimensional model for k-anonymization and a greedy algo-

rithm for k-anonymization [15]. This Mondrian algorithm aims

to approximate the optimal anonymization contrasted with

finding it. Essentially, it finds a solution by partitioning the

instances with respect to all quasi-identifiers in a Mondrian

manner. That is, all partitions used are axis-aligned. The

proposed approach has a far better complexity than previously

proposed methods for achieving K-anonymity. The fact that it

relies on a greedy algorithm gives us the benefit of achieving

anonymization in O(nlogn) time complexity.

The Mondrian assigns a penalty cost for each tuple T in the

anonymized view V. The most straightforward penalty metric

applicable is the discernibility metric (CDM ). It computes the

penalty based on the number of tuples in each equivalence

class. The metric is defined as:

CDM =
∑

E∈EquivClasses

|E|2 (1)

LeFevre et al., however, proposed an alternative metric for

calculating the cost penalty called the Normalized average
equivalence class size metric (Cavg). Cavg is defined by the

following:

Cavg =
NumOfRecords/NumOfEquivClasses

K
(2)

Both metrics penalize classes with more records. While

classes with fewer records might be desirable in some cases,

the metrics do not capture the distribution in the quasi-

identifier attributes space [16]. A more accurate metric, the

Normalized Certainty Penalty (NCP), accounts for the car-

dinality of the equivalence classes and the scope of the

quasi-identifier attributes space [17]. NCP can be defined for

numerical attributes as follows, where C is the equivalence

class, and A is a numerical attribute:

NCPA(C) =
maxC

A −minC
A

maxA −minA
(3)

Equation 3 contains a definition of NCP that would not

work for categorical attributes as the concept of distance is

non-existent. For such a case, the metric can be defined as

follows:

NCPA(C) =
size(u)

|A| (4)

where |A| is the number of distinct values of attributes of

the categorical A, u is the closest common ancestor in the

generalization hierarchy for the attribute value, and size(u) is

the number of leaves in the sub-tree of u. Additionally, NCP

can be converted into a percentage by dividing the NCP value

over the number of values in the data set; such a percentage is

more comprehensible and thus used as the primary metric for

information loss in this work. Finally, keep in mind that all

attributes in EGoT DERMS topological IDs are categorical,

which means Equation 4 is the equation used to compute the

penalty.

B. Generalization Hierarchy

The Mondrian algorithm utilizes a generalization hierarchy

to generalize, or suppress, attribute values. This reliance

on generalization hierarchy aligns with the topological load

groupings in distribution systems. For example, every load has

a topological location that describes its associated substation,

segment, feeder, and service point to which it is connected,

as described in Figure 2. This topological location is used as

an identifying value for loads in an electrical and distribution

system. However, this work uses the distribution part of the

topological hierarchy to create the IDs, starting from the

substation down to the service point. Such topology can

be morphed and used as a generalization hierarchy for the

Mondrian algorithm. Figure 3 shows an example hierarchy

constructed for the service point (substituted by DERs instead)

attribute in the ID. For this example, both K and H have the

same value of five.

Fig. 3. An example of DER attribute hierarchy in the system, where K is 5,
and H is five.
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IV. RESULTS

A. K-Anonymity

Since a GSP has access to records of all DCMs regis-

tered with its DERMS, such a dataset was used to produce

anonymized data. This data set was generated according to

the IEEE 13-node feeder design, which is a test feeder used

as the system is still in development. Figure 4 shows the visible

effects of the H value as the records are aggregated in groups

of twos, threes, and fives, which is greater or equal to two and

satisfies the 5-anonymization requirement.

Fig. 4. Sample of 2-anonymization effects on IEEE 13 node feeder data.
The table on the left contains records sampled from the IEEE 13 node
feeder topology, whereas the table on the right contains the records after
anonymization.

Since the Mondrian Algorithm provides multi-dimensional

K-anonymity, it takes into account recording all sensitive

attributes when anonymizing. For instance, all the attributes in

the highlighted record in Figure 4 were used when constructing

equivalence classes. Suppose the algorithm did not account

for all attributes, which means it is not multi-dimensional.

Without the DER attribute, the record could easily be part

of the equivalence classes below it in the resulting table due

to matching values in all attributes except the DER. However,

the algorithm would suppress the DER value to achieve the K-

anonymity property, which not only would increase the NCP

penalty, but the record would be the first in an equivalence

class by itself. This leads to other records being suppressed

such that the table meets the K-anonymity property and more

penalties.

B. Information Loss

The anonymization degree, which in this case is denoted

by K, exerts influence on the information loss observed in

the resulting data set. Figure 5 demonstrates the information

loss observed when the algorithm is run on the 13-node test

feeder data set under various K-values. Figure 5 shows that as

K grows in size, the penalty grows slowly, approaching 20%.

This behavior is because the algorithm finds fewer and fewer

ways to partition data that contains five attributes, with four

attributes containing value variations. The fifth attribute, the

substation attribute, is intentionally treated as an insensitive

attribute, primarily due to the need for having accessibility to

such information for the DERMS.

Figure 6 shows a plot of information loss against variable

values of K. In Figure 6, only the first half of the data set

Fig. 5. Plot of NCP against different K values for IEEE 13 node feeder data.

Fig. 6. Plot of NCP against different K values for half of IEEE 13 node
feeder data.

was plotted. This was done to zoom into the behavior the

algorithm displays when K is relatively small. Note that there

are recurring periodic dips up to the half-point where K is

equal to one-half the size of the data set. These frequent

dips are caused by the greedy algorithm finding and picking

new, better partitions that result in less information loss. Such

behavior indicates the existence of H values that produce

optimal structure such that it minimizes information loss with

respect to the IEEE 13-node feeder topology.

C. Information Loss

As discussed earlier, results shown in Figure 5 and Figure 6

indicate the existence of some H values that minimize infor-

mation loss. Figure 7 and Figure 8 demonstrate the perfor-

mance of a simple heuristic used to reduce the information

loss for the used scheme and the generalization hierarchy

used in this work. The heuristic relies on finding such H in

advance to pick the best H value for a given K. Finding
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H in advance requires one to empirically sample H values

based on the results obtained by naively setting H equal to

K. The dependence on prior knowledge of the underlying is

a significant limitation of the heuristic described here.

Fig. 7. Plot of NCP against different K values using two different heuristics.
Choosing H to equal K results in higher overall penalty incurrence than
dynamically selecting H .

Fig. 8. Plot of NCP against K values using different heuristics for half of the
data from Figure 7. A staircase effect can be observed when H is dynamically
selected where each step corresponds to dips in the naive heuristic.

V. CONCLUSION

The EGoT DERMS adopts a Service-Oriented Load Control

approach to manage Distributed Energy Resource. This archi-

tecture relies on heavy digital interaction between the system

actors to achieve its operational objectives. The digital infor-

mation exchange could potentially infringe upon customers’

privacy. Guarantees of privacy promote customer participation,

which boosts the system’s ability to counterbalance disruptive

events using large aggregations of DERs.

This work proposes a privacy-preserving strategy for the

EGoT DERMS trust layer. The method involves using K-

anonymity to guarantee communication on the trust layer to

exclude PII. Also, the strategy secures the communication

channel according to IEEE 2030.5 specifications. Findings

suggest that the generalization hierarchy for the 13-node feeder

shows an Identical Generalization Hierarchy. Such guarantees

of identicalness would not hold in a real-world setting.
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