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1 Introduction

Short wavelength FELs impose stringent requirements on the quality of the
electron beams. The key factor in obtaining a single-pass UV or x-ray FEL is
the generation of small emittance electron beams with ultra-high brightness.
The pioneering work at Los Alamos National Laboratory in the last decade
has resulted in a dramatic improvement in the production of high electron
beam brightness and small beam emittance using rf photocathode gun. The
lower bound on the emittance of a 1-nC bunch without any emittance com-
pensation is on the order of 3 # mm-mrad. This is well within the emittance
requirement being considered here. Although the original R&D work at Ar-
gonne [1], in collaboration with the University of Illinois at Chicago and Uni-
versity of Wisconsin-Madison, has produced encouraging results in the area
of rf structure design, x-ray mask fabrication, and LIGA processing (Lithog-
raphy, Electroforming, and Molding), the goal to prove feasibility has not yet
been achieved. In this paper, we will present feasibility studies for a compact
single-pass mm-linac FEL based on LIGA technology. This system will con-
sist of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting
constant gradient structure operated at 60 GHz, and a microundulator with
1-mm period.

2 FEL parameters

The mm-wave linac-based FEL under feasibility study will consist of a 31-cell
photocathode rf gun operated at 30 GHz, a 5-meter-long superconducting con-
stant gradient structure operated at 60 GHz, and a 2-meter-long microundu-
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lator with 1-mm period. The FEL main design parameters are summarized in
Table L.

3 Photocathode rf gun

The rf gun considered for design studies here is a 30-GHz 31-cell side coupled
structure. The gun is designed to operate in the 7-mode phasing on the beam
axis. A 30-GHz structure will allow us to reach a very high peak electric
field in excess of 500 MV /m at the cathode. The gun is designed to produce
electron beams with energies up to 6 MeV. The rf power is fed from a single
waveguide which couples power directly to cells 2 and 3. MAFIA [2] numerical
codes including particle-in-cell simulations were used to model the 30-GHz rf
gun. The initial simulation results indicate that the beam rms emittance is
between 3 and 7 # mm-mrad depending on the initial rf phase. The chosen
photocathode material is copper with a cathode quantum efficiency of 0.01%.
A 15-GHz 3%-cell model was fabricated for cold model rf measurements. The
results are reported in [3].

4 Accelerating structure

To relax the rf power requirement, we are are considering a 60-GHz super-
conducting constant gradient structure fabricated by the LIGA process. For a
planar constant gradient structure, the cell-to-cell coupling must be controlled.
Since the LIGA process requires that the the structure to be fabricated as a
single piece on a wafer, the cell-to-cell coupling adjustment can be done by
varying the cell width and length with a constant depth within the structure.
A Z traveling wave is chosen as the accelerating mode. The 5-meter structure
is composed of fifty standard 10-cm-long sections. For a 60-GHz structure a
1-mm aperture height can be used for the required coupling to obtain a con-
stant gradient with 6 = 4.4 mm, g = 1.266 mm, and ¢ = 0.4 mm, see Figure
1. For a 60-cell section the shunt impedance is 200 £ and the required group
velocity normalized to the speed of light is in the range of 0.096 to 0.022 [4].

5 Microundulator

An undulator of period 1 mm has been designed. The undulator consists of
a silver conductor embedded in poles and a substrate of nickel-iron. The un-
dulator will be fabricated by the LIGA process to improve the fabrication
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accuracy. Silver is chosen as a conductor for its high electrical conductivity
and its softness. Nickel-iron is chosen for its high permeability and suitable
mechanical properties. A shortened (2-period) version of the undulator was
modeled using the eddy-current numerical code ELEKTRA [5]. The silver and
nickel-iron were treated as different vector-potential regions. The surrounding
“air” was treated as a combination of vector-potential and magnetic scalar-
potential regions as needed for consistency with the current specifications.
Simulation results indicate that within the midplane, the field is fairly uni-
form transversely across the central region and, with the slotted poles, most
of the current remains in the silver. A ten-times (10-mm period) model was
designed using 1010 steel for the substrate and insulated copper wire for the
conductor. Stainless steel spacers held the top and bottom halves in the cor-
rect relative positions. The model was driven with a current of 10 A from a
DC power supply. This gave a peak field of 25.5 G, in agreement with the 26.6
G predicted by a 2-D computation. The full undulator design and the initial
measurements are reported in [6].
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Table 1

Basic 300-nm Linac FEL Design Parameters.

Beam energy 50 MeV
Peak beam current 600 A
Beam pulse length 3 ps

Normalized rms emittance

3 © mm-mrad

Micropulse charge 1.8 nC
Au 0.3 cm
Magnetic field, B 07T
Deflection parameter, K 0.196
AFEL 300 nm
FEL parameter, p 7x 10~
Lsat 43 m
Lgain 20 cm
Lund 5m




Figure 1 - A constant gradient planar cavity structure with cuts in irises




