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ABSTRACT

We construct a 141 dimensional superstring-bit model for D=3 Type
IIB superstring. This low dimension model escapes the problems en-
countered in higher dimension models: (1) It possesses full Galilean
supersymmetry; (2) For noninteracting polymers of bits, the exactly
soluble linear superpotential describing bit interactions is in a large
universality class of superpotentials which includes ones bounded at
spatial infinity; (3) The latter are used to construct a superstring-bit

" model with the clustering properties needed to define an S-matrix for
closed polymers of superstring-bits.
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String-bit models are attempts to reformulate string theories in D—1 space dimensions as
field theories of point-like string-bits moving in d = D — 2 space dimensions, in which string
is composite, not fundamental [1-5]. The bits bind together to form long closed polymer
chains, which in the continuum limit have precisely the properties of closed relativistic string.
String-bits must carry an internal “color” degree of freedom which defines ordering around
the chain. This can be achieved if the bits transform in the adjoint representation of the
unitary group U(N,), with N, > 2. A crucial feature of our light-cone approach to string-
bit models is that they possess Galilean invariance in d space dimensions, not Poincaré
invariance in d + 1 space dimensions: the bits enjoy a non-relativistic dynamics.

Second-quantization of string-bits employs a string-bit creation operator ¢t (z)?, where
a and f run over the N, colors and z denotes the d space coordinates. Denote the zero-bit

state by |0). A bare closed chain of M bits is then described by:

[T(zy, ..., z0)) =/da:1---dxM
XTe[g" (1) - - ¢1 @p))|0)E (21, . .., zaa) (1)

implying that U(z1,...,Za) is cyclically symmetric. To describe closed chains and their
interactions, the Hamiltonian governing string-bit dynamics must allow for their formation
and assure their stability.

Chain formation requires that string-bits have an attractive interaction between nearest
neighbors on a chain, with non-nearest neighbors interacting much ‘more weakly. It is well-
known [6,3,5] that this pattern of interactions arises in a many body system of particles
described by N. x N, matrix creation operators using *t Hooft’s N, — co limit [7]. For an

interaction Hamiltonian of the form

Hont = - [ dodyV (3 ~ 9) T8} ()6 )6 4)0 (), 2)
the limit V. — oo leads to nearest-neighbor interactions in a bare closed chain of string-bits.
For N, finite but large, O(1/N,) effects allow a single bare closed chain to break into two
bare closed chains. Thus 1/N, serves as a chain coupling constant, and ’t Hooft’s 1 /N,

expansion produces chain perturbation theory.
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Free light-cone string is recovered for N, — oo in the continuum limit given by M — oo,
m — 0, with mM kept fixed, or equivalently in the low energy limit given by E < To/m,
where Ty is the string tension and m is the Newtonian mass of a bit. The total Newtonian
mass of a chain becomes an effectively continuous P* of a string. The z~ coordinate of
string thus emerges dynamically in string-bit models as the conjugate to Newtonian mass.
The other light-cone coordinate z* is identified as time, and its conjugate P~ as the bit
Hamiltonian. The O(1/N,) chain interactions become string interactions in the continuum
limit.

Stability of string depends on the ground state energy of a long closed chain, generically
given by:

Eoy == aM + 2+ 0= )] 3)

The first term is the same for a single chain of M bits and two chains of M; and M, bits,
with M; + M, = M. For long chains, the nature of the true ground state then depends on
the second term. If b > 0 then Eoa < FEoa + Fo,, and a long chain is stable. If b <0
then Fy ar > Eo ur, + Eo,a1,, the chain is unstable to decay into two smaller chains, and it will
through the O(1/N.) terms alluded to before. Consider a chain of bosonic bits interacting
via the nearest-neighbor harmonic potential V(z) = (w?/2m)z%. The ground state energy

for an M-bit chain in d space dimensions is found to be [1,5)

dMl

nmw 7rwd ‘
Bos =5 3 singr = - T o - g7+ 0] )

and so a long chain of bosonic bits is unstable against decay into two smaller chains. This is
just the string-bit manifestation of the tachyonic instability qf bosonic string. The negative
coefficient of 1 / 2mM is the mass-squared of the tachyon.

This instability is absent in superstring theory which requires the addition of fermionic
modes on string in a supersymmetric fashion. For string-bit models the bits are in super-
multiplets with a “statistics” degree of freedom distinguishing bosons from fermions. This
degree of freedom gives rise to “statistics waves” on long chains, similar to spin waves. Su-

persymmetrizing the harmonic string-bit model leads to a cancellation of the contribution
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to the ground state energy of the coordinate “phonon” waves with that of the “statistics”
waves. In fact, the ground state energy is exactly zero for any M [5]. We shall see later
that this is a universal property of supersymmetric string-bit models, and not special to the
harmonic interaction. Note that recovering the free superstring mass spectrum at M = co
requires only b = 0, whereas in this model all the terms in (3) vanish. If this were not so,
the sign of the first nonvanishing term would determine the stability of finite long chains. If
these were unstable except when M = oo, the bit model could not provide a fundamental
basis for superstring theory, and at best would only make sense in the continuum limit.

We have constructed superstring-bit models in 2+ 1 and 8 + 1 dimensions that underlie
D =4 and D = 10 type IIB superstring theory respectively [5]. In the D = 4 case we could
include extra degrees of freedom either as real compactified dimensions, or as additional
internal bit degrees of freedom [8] which, on long chains, would produce “ﬂavc;r waves”
playing the role of extra dimensions. The N = 2 spacetime Poincaré supersymmetry of
the D-dimensional type IIB superstring requires the corresponding (D — 2) + 1-dimensional
superstring-bit model to possess an N = 1 Galilean supersymmetry. The symmetry is
Galilean because light-cone variables break the manifest SO(D — 1,1) to SO(D — 2) x
S50(1,1). Discretization of P* breaks this SO(1,1) and also mixes the right- and left-
moving supercharges, leaving only an N = 1 supersymmetry generated by the right + left
combinations. The Galilean supercharges @ and R transform as spinors of the transverse
SO(D —2) subgroup of SO(D —1,1), and have opposite chirality in the SO(1, 1) subgroup.
Together they build a single supercharge transforming as a spinor of the Lorentz group
SO(D —1,1), and generating the super-Poincaré algebra.

For general d the Galilean supercharges Q4, R4 must each have d components for a sat-
isfactory superstring limit of the string-bit model. The corresponding super-Galilei algebra,

then reads:

{04, 0P} =mMs*® | {QA,'R,B}=%QAB.P’

(RA RE} = 648 )2 5)




where M is the total number of bits, and P is their total momentum. The superstring-bit
models of [5] implement all but the last of these relations: There are additional terms not
proportional to 648 For the supersymmetric harmonic model these terms are sub-leading
in the 1/N, expansion, so the R-supersymmetry is broken by chain interactions. For other
superstring-bit models this happens already at the level of the free chain spectrum. In
either case, it might still be that the full Poincaré supersymmetry can be recovered in the
continuum stringy physics.

For d = 1, the full superalgebra closes by default, since R and Q then have only one
component each. A 1+ 1-dimensional superstring-bit model would underlie D = 3 super-
string, the lowest dimensional superstring possible [9]. Specializing the supercharges of [5]

to this case gives

Q= \/g [ a6} mh(z) + he]
R = -ﬁ [ daTele="4 4 () () + hc]

1
T / dzdyW (y — z)
xTr[e~"/*¢(z)p(y)¥(z) + hoc], (6)

where ¢'(z)? is the bosonic creation operator, 1(z)? is the fermionic creation operator, and

02 = [¢1¢ + ¥1p]2. The superalgebra is given by:
{Q, @} =mM, {Q,R}=~P/2, {R,R} = H/2. (7)

The last equation can be taken as the definition of the Hamiltonian for this system, which
in turn implies that the model is invariant under both @ and R.

If the function W(z) is taken to be odd, the two-bit sector is equivalent to Witten’s
supersymmetric quantum mechanics [10], where W(z) is the superpotential. In that case
the ground state energy of a two-bit closed chain vanishes. For understanding superstring
theory, we are interested in a class of superpotentials for which the ground state energy of
any length chain vanishes, and for which the gap to excite the chain is finite. Exploring this

issue for noninteracting chains, we consider the first-quantized system obtained by acting
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with R on a bare chain and taking the limit N, — co. The first-quantized supercharge is

then given by

1 M. i
R= 117/49 ) —in /4
3o 2o €70+ e o),

—(e_iﬂ'/liak + ei1r/47rk)W(a;k+1 - xk)} s (8)

where pr = —i0/8zy. and m; = 0/86;. The summation is understood to be cyclic, i.e.

k= M +1 is equivalent to ¥ = 1. The first-quantized M-bit Hamiltonian is then given by

1 d 2 2
Hy = %kz__:l{pk +W ($k+% —$k)
+ W’(:t:k.|.1 - :Bk)[ekﬂ'k - Wkek

+ Te4160k — Opp1me — (0 Okqr + 7fk7rk+1)]}- (9)

We denote states in the first-quantized Hilbert space of an M-bit chain by | - - -) to distinguish
them from states in the second-quantized bit Fock space, denoted |---). The ground state
of the chain is then denoted by |0).

Consider the linear superpotential
W(z) =Tz, (10)

which defines the supersymmetric harmonic model. The ground state is annihilated by R
implying it belongs to a “small” representation of the Galilei superalgebra and has zero
energy. In addition its spectrum approaches that of a relativistic superstring with tension

T in the continuum limit. Consider a deformation of the superpotential
W(z) = W(z) + W (z), (11)

where 6W (z) is small in the interval |z| < L. If L > 1/+/Ty this deformation can be treated
perturbatively, since for x| > L the unperturbed wavefunctions are exponentially small.
Due to the Galilei superalgebra (7), the exact Hamiltonian can be written as the square of
the new supercharge R+ JR. The change in the energy of the ground state to first order is

then:




6EO,M = 4(0I{R’ 5R}|0) > (12)

which vanishes since R|0) = (0|R = 0. We stress that this holds for any length chain.
The spectrum of excitations of the chain is generated by acting on the above ground
state with mode raising operators. For the 2 + 1-dimensional harmonic model these were

derived in [5]. Dropping a dimension and with it the spinor indices gives:

(ﬁn + iwn:i:n) A _ (ﬁn - iw‘né}n)
—_— n = ————=

Al = , .
2w, 2wy,

n

where w,, = 2Ty sinnw /M, for the coordinate modes raising and lowering operators, and
B-,T; = fnén + Maltn B, = nnén +&nfin (14)

where &, = (1/v/2)(sinnw/2M + cosnw/2M) and 7, = (1/V2)(sinnm/2M — cosnm/2M),
for the “statistics” modes raising and lowering operators. In the above Z,, O, Pn, T are the
Fourier transforms of z, 0%, pr, Tk, respectively. Consider an excitation with a single raising

operator Al |0). The zero'th order energy of this state is given by

EO), = (0lA.HAL0) = T2 6in 2T (15)

The shift in the energy due to the deformation (11) is given to first order by
8B = 4(0|An{R, SR}AL|0) . (16)
Using the commutation relations

[An,R] 2 z7rn/2M &Bn

-8 M
1nn7T/ Z {( i/, 4 & lim)

Xe1.1rn(2k+1)/M6WI($k+1 - xk)} ) (17)

[An, 6R] =

and the fact that (0|0W'(zry1 — zx)|0) is cyclically invariant we find

S B pg = —2i€™/2M, /%(mBnaRAUO) +he.

= -%(OldW'(xz — 21)|0) sin % . (18)



The net effect is then just to shift the string tension
To — T() + (0|6W’(1L‘2 - 3,‘1)]0) s (19)

so the gap remains finite for all M. For excitations of the form [J; Al.|0), with more than

one raising operator, we have
68 = 4(0| [ Ani (R, SR} ] 41,]0)

= —2; 3 efmil2M %(O]an I1 4-6RT] 4t J0)
J i#j k

+h.c.. (20)
As we commute the Alk ’s to the left we pick up an additional derivative of W and a factor
of y/wn, /M = O(1/M) for each A} that contracts with §R. The rest contract with some
of the Ay,’s. The remaining A,,’s are then commuted to the right, all contracting with R
to produce additional derivatives and additional powers of 1/M. Finally, B,,; is contracted
with what’s left. The result is a sum of terms of increasing odd number of derivatives of
0W multiplied by increasing powers of 1/M, the coefficient of §W(2H+1) being proportional
to M%7, In the limit M — oo only the the [ = 0 term contributes, so the analogue of
(18) holds for any excitation of the form IT; A}, |0). The argument for excitations created by
products of B}’s or products of both Al’s and B}’s is similar. Thus the only effect of the
deformation (11) on long chains is to renormalize the string tension as in Eq.(19).

We now argue that these results from first order perturbation theory hold to all orders,
and indeed should extend to a large universality class of superpotentials. The ground state
energy must remain zero as long as the ground state is in a “small” representation of the
superalgebra. Clearly the representation can’t change in perturbation theory, but more
generally it will remain “small” unless the first excited state becomes degenerate with the
ground state, i.e. unless the gap closes. Moreover, the properties of the O(To/mM) excita-
tions of long chains have a universal character determined by phonon and statistics waves,

which are inevitable collective excitations of stable long chains [4]. Formation of long bare




chains is ensured by a large bond-breaking energy and does not require the infinite range
harmonic force.

Finally we turn to the issue of interactions between closed chains. By exploiting the
N, — oo limit, we have been able to define a bare closed chain, whose interactions with
other closed chains is negligible. Taking N, to be finite will “dress” the bare chains, and
will give rise to interactions between different chains. The ionization energy required to
break a bond in the closed chain is O(Ty/m). As long as the scattering energy is below
threshold for such ionization, the only way for interactions to occur is through bond rear-
rangement. A necessary condition for defining a closed chain S-matrix is that the model
satisfy a clustering property: An initial state of two spatially separated closed chains must
evolve as two noninteracting chains until enough time has elapsed for them to get close to
one another. With a linearly growing superpotential as in (10), this is impossible at finite
N.. The supersymmetric harmonic model is thus unsatisfactory for describing chain scat-
tering. Asymptotically free chains require a bbunded superpotential. In order to keep the
jonization energy O(Tp/m), however, we must still insist that W — W, # 0 at spatial
infinity. The restricted universality established above indeed allows us to deform the linear

superpotential into
W = Tolz + (L — 2)0(z — L) — (L + z)0(—L — z)), (21)

with no change in the continuum properties of free chains.

With the bounded superpotential (21) there can still be large (O(To/m)) correlation
energies between spatially separated clumps of bits. If the clumps correspond to closed
chains, or more generally to singlet states, these correlation energies must vanish. This can

be achieved by first noting that the generators for color rotations given by

o= [dalp(z) —o@)l, (22)

where of =: [¢p¢' — ¥y1]f :, annihilate singlet states. This motivates replacing p(y) with

p(y) — o(y) in Eq. (6) for R. It is easy to check that such a change does not disturb the
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superalgebra. To see that it gives the desired clustering property, consider the action of the
new R on a state we denote by 515,|0), where S; and S, are any color singlet functions
of creation operators, such that the locations of all creation operators in \3; are more than
a distance L from all the locations in S;. Let (rS); and (rS), be the singlet functions of

creation operators defined by
:7251|0) = (rS8)1]0) , RS2|0) = (rS)2]0) . (23)
Then
R5152|0) = (rS)1.52]0) + (—)5251(rS)2|0) + R1S1.5,|0) (24)

where the action of R; is defined by requiring one of the two annihilation operators in the
two-body term of R to contract with a creation operator in S, and the other annihilation
operator to contract with a creation operator in S;. Because of the spatial separation of the
coordinates in S; and the coordinates in S5, the superpotential W (x) can be replaced with
its asymptotic value and taken out of the integral. Consequently one is left with the color
rotation operator f(p— o) acting on S; or S, either of which gives zero. Thus we conclude

that
'R,S'l,S'glO) = (TS)152|0> 4 (—)3181(7'5)2|0> . (25)

Applying R once again, using the supersymmetry algebra, and remembering that the su-

percharge is odd, we infer:
HS,15,|0) = 4[(r%S)15,|0) + S1(r28)5]0)], (26)

implying that the hamiltonian acts independently on the two singlets. Therefore as long as

they remain spatially well separated the two singlets propagate without mutual interaction.
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