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« Combustion science relies on Direct Numerical Simulation (DNS) - w o

* DNS of reactive flows is expensive : ~10 billion DOF and ~10 million ey
CPU-hours for relevant (3D) problem 65*/“3

* The key phenomena are often occurring in a lower dimensional manifold 3 /

Principal Component Analysis (PCA) is an alternative to expedite DNS calculations

» Significant dimensionality reduction in chemical species space ;

* Requires knowledge of the composition space accessed by (expensive) simulations a priori 2 mm e - g
Transfer learning o L I == O
» Leverage PCA models trained/calibrated for similar regimes of operation (source domains) | 2 oo TN v

« Improve the training process on a target domain having limited data

Autoencoders for probabilistic characterization of PCA modes

 Utilize Autoencoders with linear activation functions to mimic dimensionality reduction @

achieved via PCA '@\
+ Autoencoders calibrated using Bayesian methodologies based on variational inference Vet | %
Application of new probabilistic transfer learning framework 5 @\ /@
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Introduce DNS for Turbulent Combustion @ ool

« DNS simulations often target conditions related to propulsion systems such as gas turbines and internal
combustion engines ‘

« Experimental measurements provided limited information about the highly non-linear problem
* DNS is necessary to develop reduced-order models

» Pele code (part of the Exascale Computing Project - ECP): finite volumes formulation; Adaptive Mesh Refinement;
Embedded Boundary treatment

» Approximately 1 billion DOF: with 98 chemical species
« Limitation: limited runs on parametric space

Exemplary DNS set up ‘

Cross-flow experiment

Image: MTU

Spark-ignition DNS under
cross-flow conditions
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Courtesy: Isaac Ekoto (SNL)




Principal Component Analysis to Expedite DNS
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« PCs are optimum and generic parameters to describe the combustion state
space manifold (in lieu of the traditional parameters, e.g. mixture fraction).

« PCA: a dimension reduction technique that converts a set of correlated
variables (species and temperature) to weakly correlated ones:

Mathematically: ¢ = Q70
¢: PCs vector (size N), 0: representative species (size M), Q: matrix of
eigenvectors of the covariance matrix of 0 (size NxN)

« Strategy: Retain a subset (Npc<< N) of the PCs that represent the bulk of the
data variance:

¢red = AT, with A the leading Npcvectors of Q

» Linear: thermo-chemical scalars to PCs; Recover non-linearly from PCs and
thermo-chemical scalars (here using artificial neural networks, ANNSs)

* Instantaneous transport equations for the PCs in DNS can be derived
(Sutherland and Parente, 2009):

6P¢k apuj(pk _ 9 % B L

« These equations can be averaged (RANS) or filtered (LES)
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A Priori: 3D DNS of SACI with Ethanol (C2H50H)

A Priori ... (an important step in PC transport)

Determine PCs from slides of solution
Retain subset of the PCs

Reconstruct solutions at different snapshots using
the retained PCs.

@
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Original Manifold: 29 dimensional (28 species +
temperature)

Linear PCA performed in a subspace spanned of 6
representative scalars: T, O,, H,O, CO, CO, and
C5HsOH .

PCA-ANN tabulation of all 29 variables are
satisfactory based on first 2 PCs.

Potentially, an order of magnitude saving in
computational time.

Also potential for reducing stiffness if fast reactions
are eliminated from the reduction process.
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A Posteriori: 2D DNS of Methane-Air Premixed Flame wrinkling
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A Posteriori: PC Transport in DNS (an a priori step is needed
prior to a posteriori)

* (31) Thermo-chemical scalars: (30 species + temperature) and
184 reactions

* (8) Representative scalars: 7, CH,, O,, H,O, CO,, CO, H, and O
(O need to capture curvature/differential diffusion effects).

» (8) Potential PCs
* (4) Retained PCs

» The PCs capture the flame topology and are correlated with
different key scalars.

« Saving in computational cost:
* 4 vs. 31 scalars transported
A factor of 4 spatial resolution saving
« A factor of 10 temporal resolution saving

« 2D DNS with species and energy has a similar computational cost
to 3D DNS with PCs (huge saving)

» PC transport is not limited to a particular combustion mode.
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(Owoyele & Echekki, 2018)



Alleviating lll-Posedness in Training of PCA Models in Sparse Data Settings @ Natorel
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« Challenge: Training of PCA model requires knowledge of the composition space accessed by the

simulations a priori
X Excessive expense of DNS simulations limits the applicability of PCA due to lack of sufficient
training data (snapshots)

« Goal: Aid the construction of PCA models predictions within sparse (and possibly noisy) data
settings

* Proposed Solution: Application of novel probabilistic transfer learning framework

» Transfer learning (TL): knowledge gained through
similar training tasks is used to possibly improve

the training process on a target domain having
limited/noisy data:

Better start

Faster convergence

» Proposed framework will aim to alleviate potential
negative transfer: TL resulting in decreased
Performance

v Improved initialization 5
= Improved asymptote N
v Increased rate of convergence Ll — Traditional ML
v/ Greater achievable perf S \ N
reater achievable performance 2 — Negative TL
9
o
o

Training cycles



Novel Probabilistic Transfer Learning Framework
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* Proposed TL framework aims to address the shortcomings in existing methodologies: It determines
when to apply TL, which model to use, and how much knowledge to transfer.
* It relies on probability/measure theories to characterize and propagate uncertainties, thereby enhancing

the trustworthiness of ML models in making predictions based on noisy and sparse training data.

Traditional ML

= [solated, single task learning
* Knowledge is not retained
* Learning is performed while ignoring previously obtained

knowledge
Source
data, Dg

Target
data, Dy
lll-posed learning
. problem due to

data sparsity!

Proposed TL

+ Learnings a new task relies on previously learned tasks
* Learning process on new task may be more accurate
with sparse target data

Source
data, Dg

Tempering
transformation,
parameterized by 3

Target
data, D+
\ Well-posed
. learning problem

Expediting Turbulent Combustion Modeling via Probabilistic Transfer Learning for Autoencoders



Training of ML Models — Bayesian Approach @ Natond
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M(x,0) =y = d+e

MLmodeI// \ \ \ noise

features observation
parameters target
« Forward Problem: Given ML model, /M, model parameters, 6, and feature vector, x, predict “clean” targets, y i
* Inverse Problem: Given a set of “noisy” observations, D = {d;, ..., dy}, and feature vectors, X = {x4, ..., xy}, infer parameters I
» Observations are
* inherently noisy with unknown (or weakly known) noise model §
« sparse in space and time (insufficient resolution)
* Problem typically ill-posed, i.e. no guarantee of solution existence nor uniqueness
« Solution: Probability density function (PDF) over the parameter space obtained using Bayes’ rule:

likelihood rior

ikeli oczgl)\p(mg)p(g)/ P

R D
posterior p(D)—__ evidence

* p(0) is the prior PDF of 68: describes prior knowledge, inducing regularization
« p(d|0) is the likelihood PDF of 8: describes data fit
« p(0]d) is the posterior PDF of 9: full Bayesian solution

« Not a single point estimate

« Completely characterizes the uncertainty in 6

« Subsequently used in making predictions under uncertainty



Transferal of “Learning” in a Probabilistic Setting @ Natona
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* In a transfer learning context, we have a target task of interest (regression/classification) with
associated target data, D;. We also have access to "supplementary” source data, Ds.

« Our idea: Extend mechanisms of propagating knowledge in sequential data assimilation (e.g.
Kalman-based filters) by which captured knowledge from the source training task is used as prior

(6]Dr,Ds) < p(Dr|@)ps(@)

: p :
posterior — prior from source data ]

« Challenge: This approach does not provide flexibility in allowing the modeler to dictate how much
knowledge, if any, is transferred from source to target tasks

« Our solution: Tempering-based methodologies |

« The following is an example of the extension of power-based prior tempering transformation to
“diffuse” knowledge in the prior PDF:

p(0|D,B) xp(D|6)p(6)”
 Full transfer: § — 1 reverts back to the full likelihood from the source training task (i.e.
traditional Bayes)

* No transfer: f§ — 0 results in a flat prior
 Partial transfer: 0 < < 1



Degree of Knowledge/Learning to Transfer - Empirical Bayes @ Natorel
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« The “tempering” hyper-parameter(s) 8 allow us to control the degree to which learning is
transferred from the source task to the target task

« Our idea: Empirical Bayesian treatment to provide point estimates associated with some objective
function

- Challenge: What objective function? Although empirical Bayes has been applied in numerous
contexts for various purposes, there is not precedent for its use in transfer learning in determining
such hyper-parameters

« Our solution: Follow an information-theoretic approach, focusing on the relative entropy that
measures the information geometry in moving from the prior to posterior:

lDKL[p(G |D,B),p(6|B)] = —H[p(6 | D,B),p(D | 9)]'=|f logp(D | 6) p(6 | D’ﬁ).

Relative entropy Cross entropy Expected data-fit
(prior & posterior) (likelihood & posterior) (posterior-averaged log-likelihood)

This objective function (usually employed for Bayesian experimental design) has multiple
interpretations, including an “average” log-likelihood one, resulting in a maximum “expected”
likelihood estimate for hyper-parameter(s) S



Probabilistic PCA via Autoencoders and Variational Inference
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« Challenge: The TL framework requires a probabilistic characterization of PCA modes

 Solution: Bayesian Autoencoders

« Autoencoders with single fully-connected hidden layer, linear
activation function and a squared error cost function trains
weights that span the same subspace as PCA

v Trained with variational inference

v Leverage backpropagation for gradient calculation

v Leverage TPLs (TensorFlow Probability, Pyro)

v Easily switch to nonlinear activation
functions (nonlinear-PCA) Data matrixX.__

v PCA modes can be recovered from » features (species)
autoencoder weights [Plaut, 2018] \samples (snapshots)

Weight matrix W i

I
Linear Encoder: z = Wx Linear Decoder: ¥ = W'z ‘

AN e

Linear Autoencoder: ¥ = W W'x



Probabilistic PCA via Autoencoders and Variational Inference @ ool
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Methodology applied on a 1D flame in a canonical configuration:
« Hydrogen fuel with different compositions
« Chemical reactions captured with 19 chemical species

* Flame is in steady-state
Normalized PCA eigenvalues
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Probabilistic PCA via Autoencoders and Variational Inference @ ool
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Results of applying variational inference to train a probabilistic autoencoder using 1D flame data
* Reduce dimensionality of composition space from 19 down to 2 or 4
Utilize a mean-field approximation (with Gaussian PDFs) of the weight distributions
Jointly infer observational/measurement noise intensity (assuming white Gaussian noise)
Modeling achieved using Pyro’s SVI capabilities with approx. 700 snapshots
Mean variational parameters for the weights are warm-started using PCA (pre-processing step)
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« PCA to expedite DNS of turbulent combustion
« Dimensionality reduction of state space manifold
 Limited training data
 New TL methodologies to reduce the number of snapshots required to train a PCA model
1. Reducing the validation/testing errors of such models by leveraging data from similar domains
2. Propagating parametric, model-form, and data uncertainties towards predictions
3. Allowing for optimal ML model selection within the TL paradigm
4. Safeguarding against negative learning (decreased accuracy due to task disparity, w.r.t.
baseline)
5. Consisting of strictly non-intrusive methods, applicable to most ML models without needing to
modify the model (architecture) or implementation.
» Autoencoders used in lieu of PCA
« Allows training using variational inference with established TPLs
Future work
» Application of presented TL framework to the training of probabilistic autoencoders
» Test framework on flames with different initial compositions



