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Summary

• Combustion science relies on Direct Numerical Simulation (DNS) 
• DNS of reactive flows is expensive : ~10 billion DOF and ~10 million 

CPU-hours for relevant (3D) problem
• The key phenomena are often occurring in a lower dimensional manifold
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Transfer learning
• Leverage PCA models trained/calibrated for similar regimes of operation (source domains)
• Improve the training process on a target domain having limited data

Principal Component Analysis (PCA) is an alternative to expedite DNS calculations
• Significant dimensionality reduction in chemical species space
• Requires knowledge of the composition space accessed by (expensive) simulations a priori

Autoencoders for probabilistic characterization of PCA modes
• Utilize Autoencoders with linear activation functions to mimic dimensionality reduction 

achieved via PCA
• Autoencoders calibrated using Bayesian methodologies based on variational inference

Application of new probabilistic transfer learning framework
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Introduce DNS for Turbulent Combustion

• DNS simulations often target conditions related to propulsion systems such as gas turbines and internal 
combustion engines

• Experimental measurements provided limited information about the highly non-linear problem
• DNS is necessary to develop reduced-order models

3

Exemplary DNS set up
• Pele code (part of the Exascale Computing Project - ECP): finite volumes formulation; Adaptive Mesh Refinement; 

Embedded Boundary treatment
• Approximately 1 billion DOF: with 98 chemical species
• Limitation: limited runs on parametric space

Courtesy: Isaac Ekoto (SNL)

Cross-flow experiment

Spark-ignition DNS under 
cross-flow conditions
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Principal Component Analysis to Expedite DNS
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• PCs are optimum and generic parameters to describe the combustion state 
space manifold (in lieu of the traditional parameters, e.g. mixture fraction).

• PCA: a dimension reduction technique that converts a set of correlated 
variables (species and temperature) to weakly correlated ones: 

Mathematically: 𝛟 = 𝐐!𝛉

𝛟: PCs vector (size N), 𝛉: representative species (size N), 𝑸: matrix of 
eigenvectors of the covariance matrix of 𝛉 (size 𝑁×𝑁)
• Strategy: Retain a subset (𝑁"#<< N) of the PCs that represent the bulk of the 

data variance: 
𝛟𝐫𝐞𝐝 = 𝐀!𝛉, with 𝐀 the leading 𝑁"#vectors of 𝐐

• Linear: thermo-chemical scalars to PCs; Recover non-linearly from PCs and
thermo-chemical scalars (here using artificial neural networks, ANNs)

• Instantaneous transport equations for the PCs in DNS can be derived 
(Sutherland and Parente, 2009):
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• These equations can be averaged (RANS) or filtered (LES)
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A Priori: 3D DNS of SACI with Ethanol (C2H5OH)
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• Original Manifold: 29 dimensional (28 species + 
temperature)

• Linear PCA performed in a subspace spanned of 6 
representative scalars: T, O2, H2O, CO, CO2 and
C2H5OH .

• PCA-ANN tabulation of all 29 variables are 
satisfactory based on first 2 PCs.

• Potentially, an order of magnitude saving in 
computational time.

• Also potential for reducing stiffness if fast reactions 
are eliminated from the reduction process.

A Priori … (an important step in PC transport)

• Determine PCs from slides of solution

• Retain subset of the PCs

• Reconstruct solutions at different snapshots using 
the retained PCs.
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A Posteriori: 2D DNS of Methane-Air Premixed Flame wrinkling
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A Posteriori: PC Transport in DNS (an a priori step is needed 
prior to a posteriori)
• (31) Thermo-chemical scalars: (30 species + temperature) and 

184 reactions
• (8) Representative scalars: T, CH4, O2, H2O, CO2 , CO, H2 and O 

(O need to capture curvature/differential diffusion effects).
• (8) Potential PCs

• (4) Retained PCs
• The PCs capture the flame topology and are correlated with 

different key scalars.
• Saving in computational cost:

• 4 vs. 31 scalars transported
• A factor of 4 spatial resolution saving
• A factor of 10 temporal resolution saving

• 2D DNS with species and energy has a similar computational cost 
to 3D DNS with PCs (huge saving)

• PC transport is not limited to a particular combustion mode.

CO mass fraction

(Owoyele & Echekki, 2018)

Obtained with PCsFull Thermo-chemical scalars
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Alleviating Ill-Posedness in Training of PCA Models in Sparse Data Settings

• Challenge: Training of PCA model requires knowledge of the composition space accessed by the 
simulations a priori
✘Excessive expense of DNS simulations limits the applicability of PCA due to lack of sufficient 

training data (snapshots)
• Goal: Aid the construction of PCA models predictions within sparse (and possibly noisy) data 

settings
• Proposed Solution: Application of novel probabilistic transfer learning framework
• Transfer learning (TL): knowledge gained through

similar training tasks is used to possibly improve
the training process on a target domain having
limited/noisy data:
! Improved initialization
! Increased rate of convergence
!Greater achievable performance

• Proposed framework will aim to alleviate potential
negative transfer: TL resulting in decreased
Performance

7
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Novel Probabilistic Transfer Learning Framework

• Proposed TL framework aims to address the shortcomings in existing methodologies: It determines 
when to apply TL, which model to use, and how much knowledge to transfer.

• It relies on probability/measure theories to characterize and propagate uncertainties, thereby enhancing 
the trustworthiness of ML models in making predictions based on noisy and sparse training data. 
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Training of ML Models – Bayesian Approach

M 𝑥, 𝜃 = 𝑦 ≈ 𝑑 + 𝜖

• Forward Problem: Given ML model, M, model parameters, 𝜃, and feature vector, 𝑥, predict “clean” targets, 𝑦
• Inverse Problem: Given a set of “noisy” observations, 𝐷 = {𝑑1, … , 𝑑2}, and feature vectors, 𝑋 = {𝑥1, … , 𝑥2}, infer parameters

• Observations are
• inherently noisy with unknown (or weakly known) noise model
• sparse in space and time (insufficient resolution)

• Problem typically ill-posed, i.e. no guarantee of solution existence nor uniqueness
• Solution: Probability density function (PDF) over the parameter space obtained using Bayes’ rule:

𝑝 𝜃 𝐷 =
𝑝 𝐷 𝜃 𝑝(𝜃)

𝑝(𝐷)

• 𝑝(𝜃) is the prior PDF of 𝜃: describes prior knowledge, inducing regularization
• 𝑝 𝑑 𝜃 is the likelihood PDF of 𝜃: describes data fit
• 𝑝 𝜃 𝑑 is the posterior PDF of 𝜃: full Bayesian solution

• Not a single point estimate
• Completely characterizes the uncertainty in 𝜃
• Subsequently used in making predictions under uncertainty
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Transferal of “Learning” in a Probabilistic Setting

• In a transfer learning context, we have a target task of interest (regression/classification) with 
associated target data, 𝐷!. We also have access to ”supplementary” source data, 𝐷".

• Our idea: Extend mechanisms of propagating knowledge in sequential data assimilation (e.g. 
Kalman-based filters) by which captured knowledge from the source training task is used as prior 
knowledge in the target task:

𝑝 𝜃 𝐷!, 𝐷" ∝ 𝑝 𝐷! 𝜃 𝑝"(𝜃)

• Challenge: This approach does not provide flexibility in allowing the modeler to dictate how much 
knowledge, if any, is transferred from source to target tasks

• Our solution: Tempering-based methodologies
• The following is an example of the extension of power-based prior tempering transformation to 

“diffuse” knowledge in the prior PDF:
𝑝 𝜃 𝐷, 𝛽 ∝ 𝑝 𝐷 𝜃 𝑝(𝜃)𝛽

• Full transfer: 𝛽 ⇾ 1 reverts back to the full likelihood from the source training task (i.e. 
traditional Bayes)

• No transfer: 𝛽 ⇾ 0 results in a flat prior 
• Partial transfer: 0 < 𝛽 < 1

10

prior from source data

likelihood of target data

posterior
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• The “tempering” hyper-parameter(s) 𝛽 allow us to control the degree to which learning is 
transferred from the source task to the target task

• Our idea: Empirical Bayesian treatment to provide point estimates associated with some objective 
function

• Challenge: What objective function? Although empirical Bayes has been applied in numerous 
contexts for various purposes, there is not precedent for its use in transfer learning in determining 
such hyper-parameters

• Our solution: Follow an information-theoretic approach, focusing on the relative entropy that 
measures the information geometry in moving from the prior to posterior:

DKL 𝑝 𝜃 | 𝐷, 𝛽 , 𝑝 𝜃 | 𝛽 = −H[ 𝑝 𝜃 | 𝐷, 𝛽 , 𝑝 𝐷 | 𝜃 ] = ∫ log 𝑝 𝐷 | 𝜃 𝑝 𝜃 | 𝐷, 𝛽

• This objective function (usually employed for Bayesian experimental design) has multiple 
interpretations, including an “average” log-likelihood one, resulting in a maximum “expected” 
likelihood estimate for hyper-parameter(s) 𝛽

Degree of Knowledge/Learning to Transfer - Empirical Bayes
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Relative entropy
(prior & posterior)

Cross entropy
(likelihood & posterior)

Expected data-fit
(posterior-averaged log-likelihood)
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Probabilistic PCA via Autoencoders and Variational Inference

• Challenge: The TL framework requires a probabilistic characterization of PCA modes
• Solution: Bayesian Autoencoders
• Autoencoders with single fully-connected hidden layer, linear

activation function and a squared error cost function trains
weights that span the same subspace as PCA

! Trained with variational inference
! Leverage backpropagation for gradient calculation
! Leverage TPLs (TensorFlow Probability, Pyro)
! Easily switch to nonlinear activation

functions (nonlinear-PCA)
! PCA modes can be recovered from

autoencoder weights [Plaut, 2018]

12
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Probabilistic PCA via Autoencoders and Variational Inference

Methodology applied on a 1D flame in a canonical configuration:
• Hydrogen fuel with different compositions
• Chemical reactions captured with 19 chemical species
• Flame is in steady-state

13

Composition realizations (snapshots) at varying locations

Spatial distribution of 
temperature of the flame

PCA 4 components required to 
capture 99% of variance

Normalized PCA eigenvalues
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Probabilistic PCA via Autoencoders and Variational Inference

Results of applying variational inference to train a probabilistic autoencoder using 1D flame data
• Reduce dimensionality of composition space from 19 down to 2 or 4
• Utilize a mean-field approximation (with Gaussian PDFs) of the weight distributions
• Jointly infer observational/measurement noise intensity (assuming white Gaussian noise)
• Modeling achieved using Pyro’s SVI capabilities with approx. 700 snapshots
• Mean variational parameters for the weights are warm-started using PCA (pre-processing step)
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Uncertainties in weights

Observational noise
estimates

Decrease in standard deviation 
with 4 components

Decrease in noise

Weights,
second latent variable

Weights,
first latent variable
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Summary and future work

• PCA to expedite DNS of turbulent combustion
• Dimensionality reduction of state space manifold
• Limited training data

• New TL methodologies to reduce the number of snapshots required to train a PCA model
1. Reducing the validation/testing errors of such models by leveraging data from similar domains
2. Propagating parametric, model-form, and data uncertainties towards predictions
3. Allowing for optimal ML model selection within the TL paradigm
4. Safeguarding against negative learning (decreased accuracy due to task disparity, w.r.t.

baseline)
5. Consisting of strictly non-intrusive methods, applicable to most ML models without needing to 

modify the model (architecture) or implementation.
• Autoencoders used in lieu of PCA

• Allows training using variational inference with established TPLs
Future work
• Application of presented TL framework to the training of probabilistic autoencoders
• Test framework on flames with different initial compositions
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