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Abstract—In this paper, we present a sensor encoding tech-
nique for the detection of stealthy false data injection attacks
in static power system state estimation. This method implements
low-cost verification of the integrity of measurement data, al-
lowing for the detection of stealthy additive attack vectors. It is
considered that these attacks are crafted by malicious actors with
knowledge of the system models and capable of tampering with
any number of measurements. The solution involves encoding all
vulnerable measurements. The effectiveness of the method was
demonstrated through a simulation where a stealthy attack on
an encoded measurement vector generates large residuals that
trigger a chi-squared anomaly detector (e.g. χ2). Following a
defense in-depth approach, this method could be used with other
security features such as communications encryption to provide
an additional line of defense against cyberattacks.

Index Terms—bad data detection, cybersecurity, false data
injection, sensor encoding, state estimation.

I. INTRODUCTION

With the adoption of communications and data processing
capabilities, power grids have increased their operational flex-
ibility. Analysis of this new paradigm of communications-
enabled power grids has drawn attention to cybersecurity-
related risks. Recent cyberattacks on power grids (e.g. [1])
have confirmed the soundness of these concerns. In North
America, regulators have worked to enforce cybersecurity
regulations on bulk power systems [2].

In academia, several works have been dedicated to in-
vestigating cybersecurity risks and methods to make power
systems more robust and resilient to cyberattacks. Power
systems applications that have been identified as vulnerable to
cyberattacks include power system state estimators (PSSEs),
automatic generation control, voltage control, and energy
markets [3]. Cyberattacks targeting the integrity of data have
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been identified as a serious threat and they add up to challenges
PSSE faces in practical applications, such as model errors [4]–
[6]. One such attack named False data injection (FDI) attack
has received considerable attention from researchers. FDI is
the modification of data, such as power system measurements
or control signals, by a threat actor. FDI attacks targeting
PSSEs could be implemented as an integrity attack to modify
the values of measurements, circuit breaker statuses, and other
critical data. These attacks can be perpetrated at the meter
or communication system levels, and their goal is to harm
the situational awareness of power system operators and to
induce errors in the operation of applications that rely on
state estimates. In [7], the authors have introduced models
for stealthy cyberattacks on PSSEs. The measurements used
in the PSSE could be manipulated by an additive FDI vector
capable of defeating traditional residual-based approaches for
bad data detection (BDD), therefore called stealthy. To achieve
this goal, a malicious actor needs knowledge of the system
model and the capability to manipulate several measurements.
The system representations of the static state estimator used
in the paper are linear, which limits the scope of attacks. This
approach was extended for nonlinear state estimators in [8].
In [9], the authors have designed a method to quantify the
cost of attacks as a function of the number of measurements
that need to be compromised to obtain a stealthy FDI attack
vector. Additionally, a method to obtain the largest minimum
cost attack is proposed as a criterion to determine the best set
of measurements to protect under constraints of the number
of protected meters.

Several methods based on statistical tests have been pro-
posed. To detect stealthy FDI attacks on supervisory con-
trol and data acquisition (SCADA) measurements, an online
anomaly detection algorithm that leverages load forecasts,
generation schedules and synchrophasor data was proposed by
[10]. It is assumed that remote terminal unit (RTU) measure-
ments communicated over SCADA systems are vulnerable to
attacks while it requires a significantly larger effort to compro-
mise Synchrophasor measurements, generation schedules and
load forecasts. The algorithm obtains an estimate of the states
based on the protected data and compares it to the results
of the SCADA-fed PSSE. In [11] the authors have proposed
a modified χ2 test for the detection of gross errors in power978-1-6654-6591-5/22/$31.00 ©2022 IEEE



system measurements that combines residuals from a weighted
least-squares state estimator (WLSSE) with a score obtained
by the Mahalanobis distance of a Reed-Xiaoli (RX) Anomaly
Detector [12]. Methods for FDI detection in dynamic state
estimation have also been proposed. In [13], the χ2 and the
Euclidean detectors were applied to the pre-fit residuals of the
Kalman Filter (KF) used for dynamic PSSE.

Machine learning approaches have also been proposed as an
alternative to detect FDI attacks on PSSE. In [14], a mixture
Gaussian distribution learning method was applied to FDI
detection in linear PSSE and has shown higher detection scores
than support-vector machines, multi-layer perceptron neural
networks, and a semi-supervised anomaly detection method.

Outside of the research on FDI attacks targeting static
PSSEs, researchers have proposed other solutions for detecting
integrity cyberattacks in dynamical systems. One of such tech-
niques, known as measurement encoding, involves modifying
the values of sensor readings to harm the capability of the
attacker to design a stealthy attack sequence in measurements.
Conditions for designing undetectable cyberattacks capable
of introducing estimation errors on KF have been designed
in [15]. A measurement encoding strategy was developed in
[16] to increase the residuals obtained by the KF applied
to the attack sequence previously defined in [15]. Those
methods, however, are tailored for dynamic systems and their
applicability to static PSSE is limited.

In this paper, we propose two sensor encoding techniques
for the detection of stealthy FDI attacks in static PSSE.
These methods implement low-cost verification of the integrity
of measurement data, allowing for the detection of stealthy
additive attack vectors. It is considered that these attacks are
crafted by malicious actors with knowledge of system models
and capable of tampering with any number of measurements.
The solution involves encoding the measurements, such that if
an attacker tries to add bias and remain undetected, its attack
should generate large residuals that will trigger an anomaly de-
tector (e.g. χ2). Because this method is based on the numerical
transformation of measurements values, it can be applied to
any communications protocol. While practical implementation
aspects are not the focus of the paper, conceptually, this
approach could be implemented in the measurement device
level in a way similar to calibration.

These methods can be combined with other information
security features, such as data encryption and network seg-
mentation. Compared to common encryption techniques, the
proposed methods have some advantages:

1) The encoding and decoding of measurements are faster
when compared to data encryption methods. For a real-
time PSSE, the encryption overhead could be significant.

2) An attacker would notice that the data is being en-
crypted, and either they can crack it to inject data or
they cannot. Here the attacker might not even notice
that the data had been encoded, which means you have
better ability to flag the FDI.

The remainder of the paper is organized as follows. The
problem is stated in more detail in Section II. Section III

presents the details of the proposed solution. The application
of the solution to a simulated problem is presented in Section
IV. Finally, the conclusions are presented in Section V.

II. PROBLEM DESCRIPTION

Let’s consider the system shown in Fig. 1. In this frame-
work, a malicious actor attacks a power system. The defense
of this power system is performed by PSSE and the RTUs. The
PSSE is used to estimate the states of the power system based
on knowledge of the physical system (topology, parameters,
etc) and measurements obtained from this system, z. These
measurements are collected from several points in the power
grid by RTUs and transmitted over an insecure network
connection to the state estimator. It is assumed that the RTUs
are secure, i.e., it is impossible for an attacker to compromise
them, and they are capable of encoding data before transmis-
sion. The PSSE is capable of decoding measurement data and
is also considered secure. Both sensor encoding and decoding
functions have access to a secret encoding vector, w.

Fig. 1. Problem depiction. The attacker has access to system parameters and
encoded measurements and it can change any measurement.

It is considered that a malicious actor is capable of cir-
cumventing any data protection schemes implemented within
the communications system (e.g. packet encryption). Con-
sequently, the attacker can read data-in-flight between the
meters and the PSSE. Furthermore, the attacker can craft
measurement data packets and impersonate the meters gath-
ering power and voltage data from the power system. With
these capabilities, the attacker performs a man-in-the-middle
attack on the system. Furthermore, the attacker knows in detail
the physical model of the power system. The goal of the
attacker is to manipulate arbitrarily the state estimate obtained
by the PSSE while remaining undetected. The attacker uses
PSSE-based methods such as [8] to obtain a stealthy attack
vector from manipulated meter data. It is considered that the
bias the attacker will want to introduce in the state estimates
remains unknown by the defender. In this paper, the goal of
the defender is to detect a FDI attack to its measurements. Any
response procedures following the attack detection are out of
the scope of the paper.

A. Weighted Least-Squares State Estimation

In this paper, it is assumed that both attacker and defender
utilize WLSSE algorithm. The problem of state estimation of



steady-state condition of power systems using noisy measure-
ments is given by a set of algebraic equations described by

z = h(x) + e. (1)

where z ∈ Rm is the vector of measurements, x ∈ Rn
is the state vector, h(x) : Rn → Rm is the vector of
measurement functions and e ∈ Rm, is the vector of zero-
mean (E[e] = 0), uncorrelated measurement errors with
known diagonal covariance matrix (Cov[e] = R ∈ Rm×m).
The states are bus voltage angles (θ) and magnitudes (V),
while the measurements are composed of real and reactive
branch power flows, real and reactive bus power injections,
and bus voltage magnitudes.

The solution of the WLSSE is achieved by obtaining the
vector of states x∗ that minimizes the weighted least-squares
problem described by (2).

min
x
J(x) =

1

2
[z− h(x)]TW[z− h(x)] (2)

where the weight matrix is defined as W = R−1. The optimal
solution is found at the point where the first-order optimality
condition, ∇xJ(x) = 0, is observed. The gradient of the
objective function can be defined as (3).

∇xJ(x) = −H(x)TW[z− h(x)] (3)

where H(x) = ∂h(x)
∂x .

Due to the nonlinear relationships between system states
and the measurement models of power flows and injections,
the Newton-Raphson algorithm is used to obtain a solution.
Starting from an initial guess x̂0, the algorithm iteratively
approaches the optimal solution x∗ by solving successive
linear approximations, (4) - (6), of the original problem (3).

h(x̂k) ≈ h(x̂k−1) + Hk−1∆x̂k−1 (4)

∆zk = z− h(x̂k) (5)

x̂k = x̂k−1 + ∆x̂k−1 (6)

where k is the iteration number and Hk−1 is a shorthand
notation for H(xk−1). The estimate for the k-th state update
vector, ∆x̂k, is obtained by

∆x̂k = (HT
kWHk)−1HT

kW∆zk. (7)

The solution of the problem is obtained when the gradient
(3) is sufficiently close to zero, which means that, in practice,
the first-order optimality condition has been achieved. Alter-
natively, a very small ∆xk indicates that x∗ has been found.

B. Bad Data Analysis

The detection of bad data in the measurement set can be
achieved by the χ2 (chi-squared) test, shown in (8). It is
assumed that both attacker and defender can perform this
test. Given that 2 · J(x∗) ∼ χ2

ν,α where ν is the number of
degrees of freedom and α is the significance level. In this
case ν = m − n. This statistical test aims at determining the
goodness of fit of data with respect to a model. To perform

the χ2 test, it is first necessary to obtain a threshold C for the
significance level.

P (J(x) ≥ C) = α (8)

α can be determined based on an acceptable level of false pos-
itives, for example. If J(x) ≥ C is true, then it is considered
that the data (z) poorly fits the model (h (x∗)). In the context
of this paper, this could signify that an attack targeting the
integrity of data has been performed. Furthermore, if the data
fits well the model, it is expected that the vector of residuals
r ∈ Rm obtained by (9) has a small magnitude.

r = z− h(x∗) (9)

C. Stealthy False-Data Injection Attacks

The goal of the FDI attack is to introduce a bias, c, in x∗:

xc = x∗ + c. (10)

To achieve that, an attack vector a is devised to bias the
measurements used as inputs to the PSSE.

za = z + a (11)

A stealthy FDI attack can be achieved by crafting a to
produce a vector r with a magnitude smaller or equal than
the one that would be obtained by solving the WLSSE for the
original data z [8]. Such vector can be calculated by:

a = −Kcr + h(xc)− h(x∗), (12)

Kc = Hc(H
T
cWHc)

−1HT
cW. (13)

where Hc = H(xc). Since Kc is a projection vector, we can
decompose it in two parts: a part that is orthogonal to it, ra
and a component that is in the column space of Kc, rc = Kcr.

r = ra + rc (14)

If the measurement vector z has passed the χ2 test, then we
have that 1

2‖r‖
2
R < C. Consequently, we have

‖ra‖2R = ‖r‖2R − ‖rc‖2R ≤ ‖r‖2R < 2C. (15)

which means that za it is not detected by the χ2 test.

III. SENSOR ENCODING

The proposed solution is inspired by symmetric cryptogra-
phy, where the same encryption key is used to encrypt and
decrypt plaintext. In this case, the solution involves encoding
all vulnerable measurements using a secret encoding vector,
w ∈ Rm, such that if an attacker tries to add bias and remain
undetected, its attack should generate residuals large enough
to trigger the anomaly detector (8).

Given w, the encoding function f(z,w) should produce an
encoded vector zw, which can be used to recover the original
measurement vector zd = z following the application of a
decoding function g (zw,w).

zw = f (z,w) (16a)

zd = g (zw,w) (16b)



A. Naive sensor encoding (NSE)

For this application, an ideal encoding function should have
the following characteristics: i) support distributed encoding
of data, ii) be hard to identify, iii) induce triggering of the
anomaly detector, and iv) not be easily identifiable. In order
to allow distributed encoding, a simple pair of encoding and
decoding functions could be implemented by additive scalar
encoding and decoding pair

zw = z + w, (17a)

zd = zw −w, (17b)

where zd = z must be true at the end of the decoding process.
The magnitude of w should be chosen such that it can

trigger an anomaly detector but still generate values that are
within an acceptable range and reasonably close to the original
values so the attacker does not suspect an encoding method
is being used. The additive encoding vector can move the
solution of (2) to a point where the Jacobian matrices assume
a value that is significantly different from the original solution.
In that way, the encoding vector can introduce errors in Hc

that propagate to za to generate large residuals when the zd is
processed. Furthermore, the encoding vector should have high
entropy to reduce the chances of brute-force attacks. For these
reasons the additive encoding vector was chosen as a sequence
of numbers from a uniform distribution between −0.05 and
0.05 p.u., i.e, wi ∼ U(−0.05, 0.05), i ∈ {1, 2, . . . ,m}. In
practice, this encoding step could be performed as part of a
calibration of an instrument or by a feature of the equipment.

B. Undetectable sensor encoding (USE)

Even though the NSE approach described above could
be designed to evade some data integrity checks on PSSE
inputs, an attacker utilizing any BDD method would identify
that there is a large mismatch between the system model
and measurements. That could lead the attacker to suspect
the defender is using some sort of encoding method and to
devise ways to circumvent this defense. To avoid detection of
encoding by the attacker, the defender can utilize an additive
encoding function that uses the same strategy used to design
a stealthy cyberattack [8], as defined by (10)–(13).

xu = x∗ + u (18a)

wu = −Kur + h(xu)− h(x∗) (18b)

Ku = Hu(HT
uWHu)−1HT

uW (18c)

where Hu = H(xu).
Unlike in the case where the attacker aims at manipulating

the state estimate in an undetected manner, the defense ap-
proach for USE does not have the goal to obtain a predefined
state estimate by the adversary. Therefore, the state bias vector
u used to calculate the encoding vector can be chosen as
a random percent deviation of the estimated state such as
ui = x∗i · wui where wui ∼ U(−0.1, 0.1), i ∈ {1, 2, . . . , n}.

The process of obtaining an USE vector can be summarized
by the following steps:

1) Receive telemetered vector of measurements z;
2) Solve state estimation problem with z to obtain x∗;
3) Add random encoding vector to u (18a);
4) Obtain encoding vector wu (18b);
5) Apply encoding vector to measurements.

It is important to note that, depending on how the encoding
method is applied, Step 5 is unlikely to happen before a new
set of measurements is obtained. Consequently, the state of
the system changes due to fluctuations in load and generation,
so this USE vector might become detectable at some point in
the future.

IV. CASE STUDY

The effectiveness of the proposed strategy for FDI attack
detection was validated numerically. The simulations were
performed on the IEEE 14-bus power flow test case using
the MATLAB package MATPOWER [17]. The measurement
set included all real power flows, all real and reactive power
injections and all voltage magnitudes, resulting in 82 measure-
ments and a global redundancy index (ratio between number
of measurements and number of states) of 3.03. All measure-
ments are corrupted by Gaussian noise with standard deviation
of 0.01 p.u. and 0.001 p.u. for power and voltage magnitude
measurements, respectively. The FDI detection statistical tests
are performed with a confidence level of 99% (threshold of
χ2
55,99% = 82.29).

A. Unmitigated FDI attack

Suppose the attacker wants to increase the voltage magni-
tude at bus 1 by 0.1 p.u. In order to do that, the attacker
can obtain x∗ by solving the state estimation problem from
the original vector of measurements z. Then, xc is calculated
by adding 0.1 p.u. to the state of x∗ that corresponds to the
voltage magnitude of bus 1. Then, the attack vector a is crafted
using (12). In this example, the attack vector obtained by this
method is shown in Fig. 2. It is necessary to tamper with only
11 out of 82 measurements to obtain the desired attack.

Fig. 2. Stealthy FDI additive attack vector.

The J(x) score of the attacked PSSE is shown in Fig. 3.
The state estimation process converges after 5 iterations and
the J(x) is lower than the detection threshold. Therefore, the
estimator accepts this result. As a consequence, the error of
the state estimator incorporates the 0.1 p.u. error introduced
by the attacker, as shown in Fig. 4.



Fig. 3. Convergence of state estimation under stealthy FDI.

Fig. 4. Errors of state estimation when FDI is unmitigated.

B. Detecting FDI Attack with Naive Sensor Encoding

By applying the encoding method described in Section III-A
we obtain the NSE vector shown in Fig. 5. When the attacker
uses the encoded vectors zw to generate its attack vector, the
WLSSE of the attacker converges to a solution that would
be rejected by the BDD approach, as shown in Fig. 6. If
the attacker proceeds to use this solution to try to produce
a stealthy attack, the defender’s state estimator converges
to a solution with high J(x) (Fig. 7), triggering the BDD.
Consequently, the PSSE solution is rejected, and the attack
fails.

Fig. 5. The NSE vector is full with small magnitude relative to other
measurements.

Fig. 6. The attacker’s state estimator can detect an NSE vector method has
been used.

C. Detecting FDI Attack with Undetectable Sensor Encoding

The encoding method described in Section III-B produces
the encoding vector shown in Fig. 8. After the attacker runs

Fig. 7. The defender’s state estimator can detect FDI attack when NSE is
used.

its PSSE with the encoded measurement vectors it converges
to a solution that is accepted by the BDD approach, as shown
in Fig. 9. Unaware that the measurements are encoded, the
attacker produces a stealthy attack vector and adds it to the
encoded measurement vector. The defender’s state estimator
takes the biased and encoded measurements produced by
the attacker, decodes it, and runs its PSSE. The estimator
converges to a solution with high J(x) as shown in Fig.
10, which is detected by the BDD method. Consequently, the
PSSE solution is rejected, and the attack fails.

Fig. 8. The USE vector is full.

Fig. 9. Attacker’s state estimator converges to an acceptable J(x) score when
USE is applied.

1) Continued Effectiveness of Undetectable Sensor Encod-
ing: Because the USE method is dependent on the current
state estimate of the system x∗, it is not known if after
several measurement scans the same result will be achieved. To
determine if the effectiveness of the USE approach fades over
time, 1001 sequential simulations were performed. In the first
time step, the meters are not yet attacked and the defender’s
PSSE obtains its USE vector wu and encodes all sensors. In



Fig. 10. The defender can detect a FDI attack when USE is used.

the following time steps, the attacker injects a new stealthy
FDI attack into all sensors and the defender tries to detect
the FDI using the decoding procedure and BDD method. The
encoding vector obtained at the first step remains the same
for all PSSE runs. The load changes over time following a
random walk with a standard deviation of 20% for both active
and reactive power injections in all load buses (Fig. 12).

The results shown in Fig. 11 show that the J(x) score of
the defender remains high and above the threshold, which
means that it is capable of detecting the FDI attacks all
the time, while the attacker’s J(x) score remains below the
detectability threshold, meaning that it remains unaware of the
measurement encoding defense.

Fig. 11. The USE method is effective after 1000 PSSE runs.

Fig. 12. Loads’ real and reactive power follow a random walk process.

V. CONCLUSION

In this paper, we have presented two simple methods for
defense against FDI attacks on PSSE using sensor encoding.
The case study has demonstrated their effectiveness by in-
ducing an attacked measurement vector to trigger the BDD
method used for data integrity verification on the defender’s
state estimator. The proposed method has detected attacks that
could circumvent traditional residual-based BDD approaches.
This low-cost method could be applied to PSSEs with minimal
intervention. Following a defense in depth strategy for de-
fending the PSSE application, this method could be used with

other security features such as communications encryption to
provide an additional line of defense against cyberattacks.

In future work we plan to extend this approach to incorpo-
rate considerations to practical implementation and to enable
its application in dynamic PSSE. Also, we plan to provide
analytical demonstrations for conditions in which the encoding
approaches are effective and undetectable. Furthermore, we
want to extend the approach to incorporate constraints in the
number of encoded measurements.
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