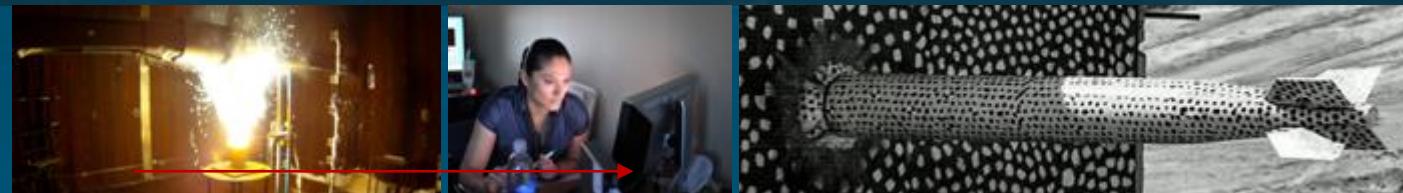


Peridynamic modeling of self-shaping in fibers



Stewart Silling

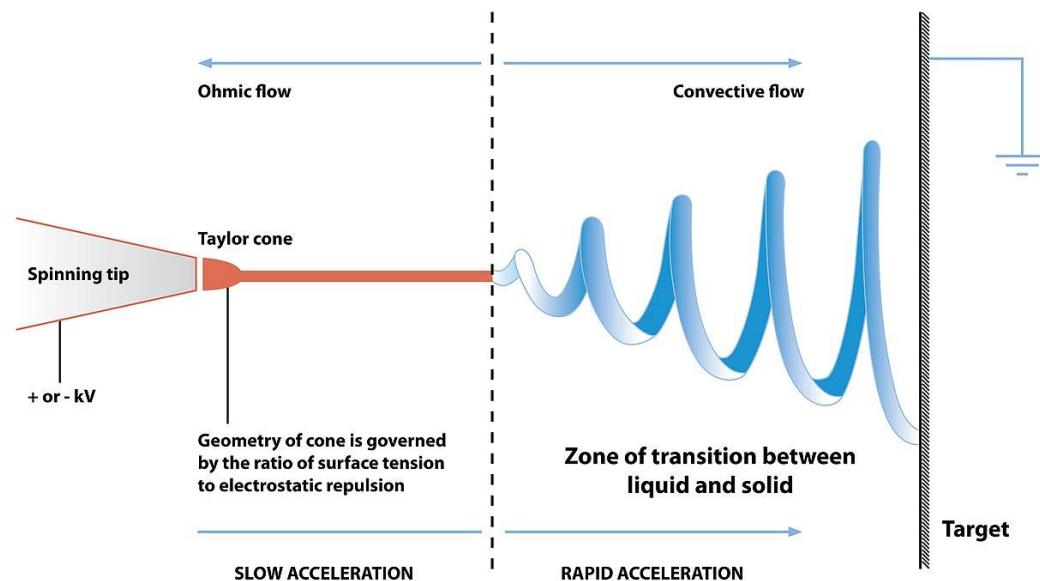
January 4, 2023
Joint Mathematics Meetings
Boston, Mass.

SAND2022-xxxx

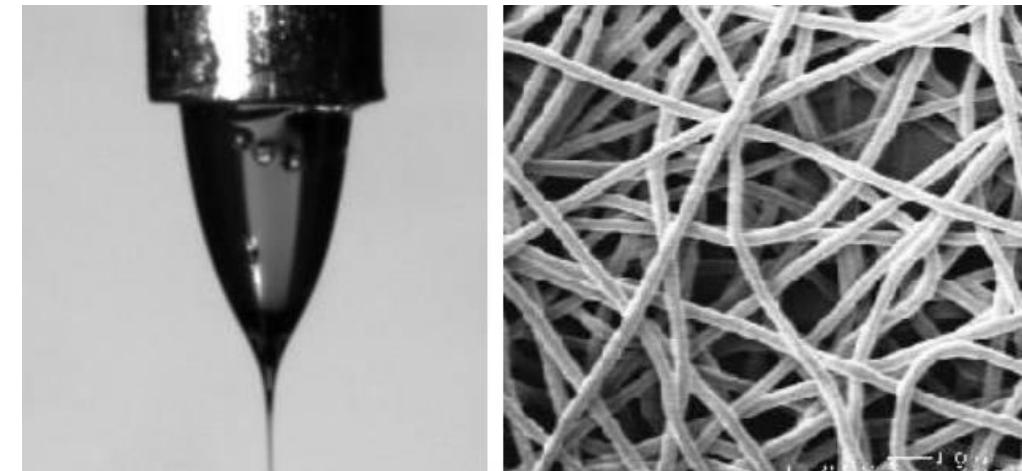
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Electrospinning

- Method for turning a liquid (such as a polymer) into a solid fiber.
- Applied electrostatic charge makes the liquid want to elongate.
- Process is used a lot to make nanofibers.
- How to model this?



Electrospinning schematic*



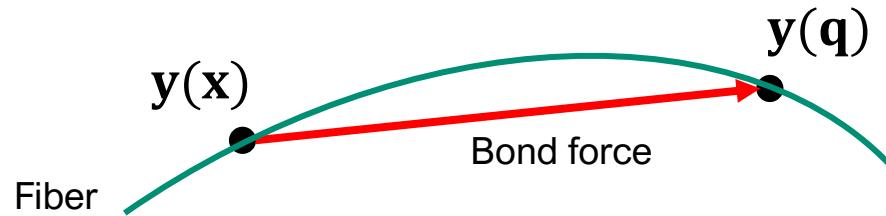
Nanofiber fabrication**

*Joanna Gatford - The New Zealand Institute for Plant and Food Research Ltd, CC BY 3.0, <https://commons.wikimedia.org/w/index.php?curid=5521755>

** Rutledge Research Group (MIT) <https://rutledgegroup.mit.edu/electrospinning-fundamentals/>

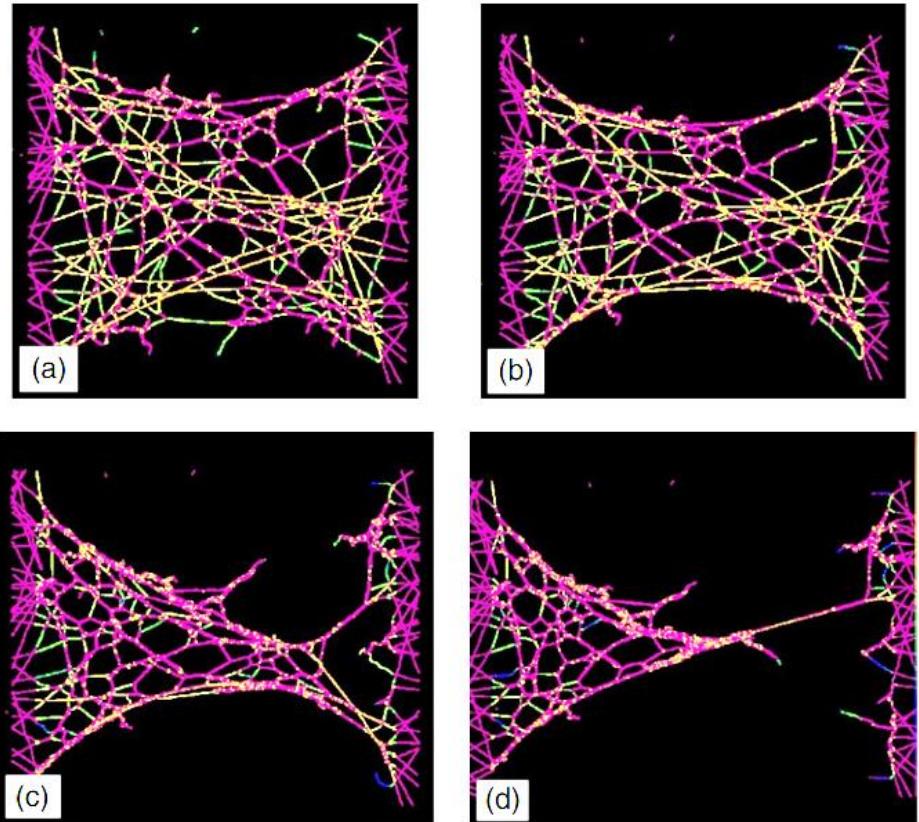
Outline

- We'll consider a peridynamic model of a long, thin structure.
 - The structure includes force interactions between points independent of the deformation.
 - These "internal forces" can be included in a nonlocal material model.
 - The equilibrium of the structure is affected by material stability.
 - The minimum energy configuration may or may not be straight.



Long-range forces

- Long-range forces are inherently nonlocal, for example:
 - Electrostatic
 - Van der Waals
 - Surface forces
 - Interatomic and intermolecular forces
- Molecular dynamics: All forces are explicitly nonlocal.
- **This talk: Long-range forces within a single structure.**



Fracture of nanofiber network held together by Van der Waals forces*.

*F. Bobaru, *Modelling and Simulation in Materials Science and Engineering* (2007).

Some concepts of stability (local theory)

- Real wave speeds (Hadamard stability, strong ellipticity)
- Minimum potential energy
- Bifurcations
- Well-posedness*
- Discontinuity in gradient (Ordinary ellipticity)

*Summary of well-posedness result for nonlocal theories: see:

- Qiang Du, "Nonlocal calculus of variations and well-posedness of peridynamics." *Handbook of peridynamic modeling*. (2016)
- R. Lipton's papers on nonconvex strain energy in crack nucleation.

Material vs. structural stability (local theory)

- Material instability:
 - Happens at a material point, triggered by local conditions
 - Not directly related to the geometry of the body
 - Example: Adiabatic shear band

- Structural instability:
 - Happens to the entire body collectively
 - Example: Buckling of a beam

- We'll see that this distinction becomes less useful in a nonlocal model.

Adiabatic shear band in aluminum
image: Baxevanis et al.,
www.ima.umn.edu/materials/2008-2009/SP7.13-31.09/8186/ima.pdf

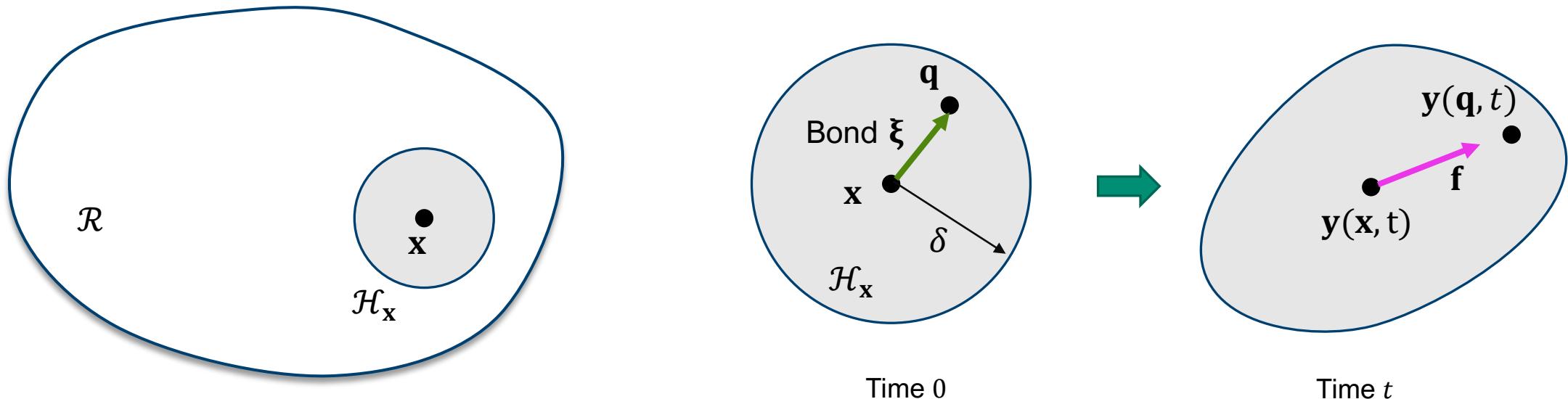
Buckling of a column
image: Klimchik
www.researchgate.net/figure/Examples-of-buckling-in-column-www-civildb-www-highline_fig11_281183936

Peridynamics background

- Peridynamic momentum balance in 3D:

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x}, t) = \int_{\mathcal{H}_x} \mathbf{f}(\mathbf{q}, \mathbf{x}, t) d\mathbf{q} + \mathbf{b}(\mathbf{x}, t) \quad \forall \mathbf{x} \in \mathcal{R}, t \geq 0.$$

- \mathbf{f} is the *pairwise bond force density* of the *bond* from \mathbf{q} to \mathbf{x} .
- \mathcal{H}_x is the *family* of \mathbf{x} , which is a ball centered at \mathbf{x} with radius δ (the *horizon*).



8 Bond deformation and rotation

- y = deformation map, \mathbf{u} = displacement vector,

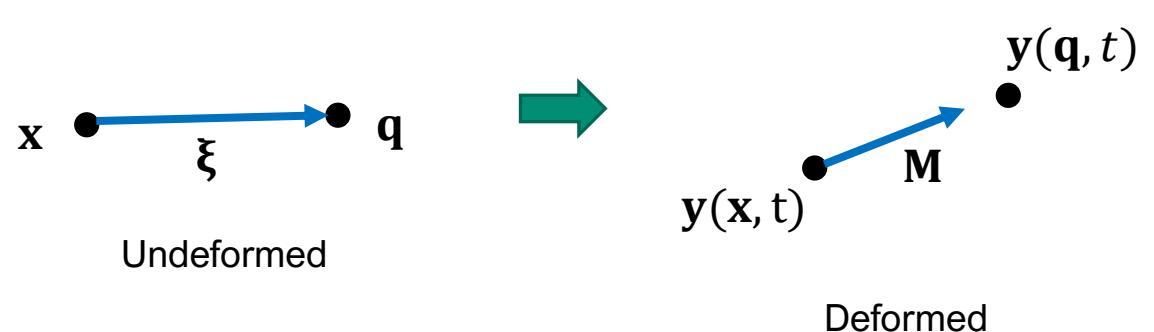
$$\mathbf{y}(\mathbf{x}, t) = \mathbf{x} + \mathbf{u}(\mathbf{x}, t).$$

- ξ = bond, p = deformed bond length, s = bond strain:

$$p = |\mathbf{y}(\mathbf{x} + \xi, t) - \mathbf{y}(\mathbf{x}, t)|, \quad s = \frac{p}{|\xi|} - 1.$$

- \mathbf{M} = deformed bond direction vector:

$$\mathbf{M} = \frac{\mathbf{y}(\mathbf{x} + \xi, t) - \mathbf{y}(\mathbf{x}, t)}{p}.$$



- Each bond has a *micropotential*:

$$w(s, \xi) = \frac{c(\xi)}{2} |\xi| s^2$$

where $c(\xi)$ is the bond micromodulus.

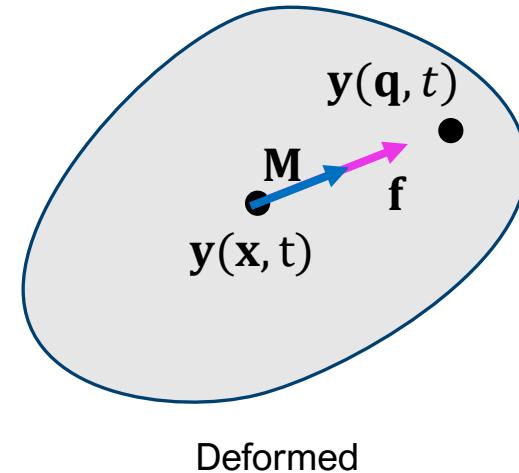
- The strain energy density at \mathbf{x} is

$$W(\mathbf{x}) = \frac{1}{2} \int_{\mathcal{H}} w(s, \xi) \, d\xi.$$

- The bond force for this material is

$$\mathbf{f}(\mathbf{q}, \mathbf{x}) = c(\xi) s \mathbf{M}.$$

- The model is linear in strain but accounts for large rotations.



Linear bond force model with internal force

- Quadratic micropotential led to a bond force that was linear in strain.
- Now a term that is linear in bond strain:

$$w(s, \xi) = \frac{c(\xi)}{2} |\xi| s^2 + f_i(\xi) |\xi| s.$$

where $f_i(\xi)$ is independent of the deformation.

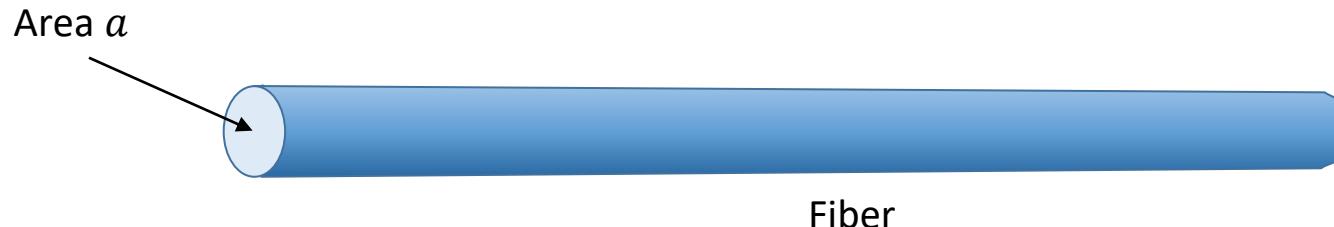
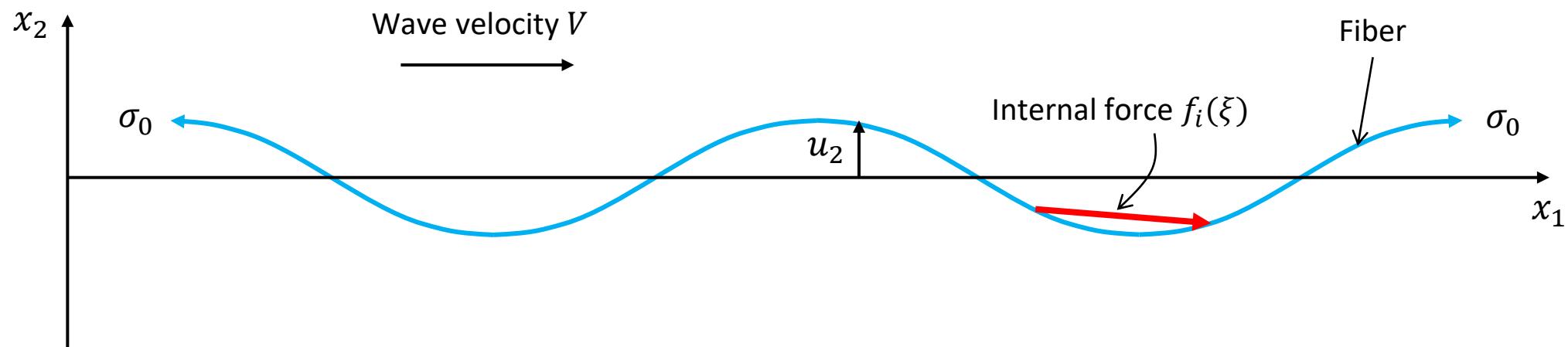
- The new term leads to

$$\mathbf{f}(\mathbf{q}, \mathbf{x}) = (c(\xi)s + f_i)\mathbf{M}.$$

- So the new force is independent of bond strain but rotates with the bond.

Fiber with internal forces

- Fiber is initially along the x_1 axis.
- It can have both u_1 and u_2 displacement components.
- It can have a remotely applied axial stress σ .
- Study transverse waves and their stability.



Transverse waves in the fiber

- Assume a wave of the form

$$u_2(x) = e^{i(kx - \omega t)}$$

where k is the wavenumber and ω is the (angular) frequency.

- The deflection leads to bond rotations:

$$M_2 = \frac{u_2(x_1 + \xi, t) - u_2(x_1, t)}{|\xi|}.$$

- The balance of momentum in the transverse direction becomes

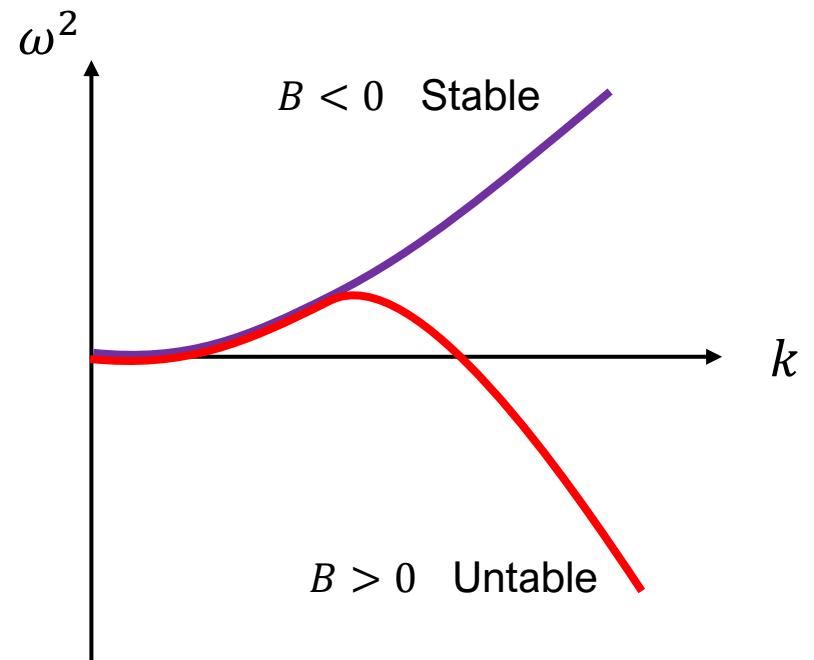
$$\rho \ddot{u}_2(x, t) = a \int_{-\delta}^{\delta} f_2(x_1 + \xi, x_1, t) d\xi.$$

- The dispersion relation for long waves turns out to be

$$\rho \omega^2(k) = \sigma_0 k^2 - B k^4$$

where

$$B = \frac{a}{12} \int_0^{\delta} (c(\xi) \varepsilon_0 + f_i(\xi)) \xi^3 d\xi.$$



Dispersion curves

The forms of $c(\xi)$ and $f_i(\xi)$ determine the stability of the fiber

- Example: Assume a material in which c is constant but f_i varies linearly with bond length ξ as shown.

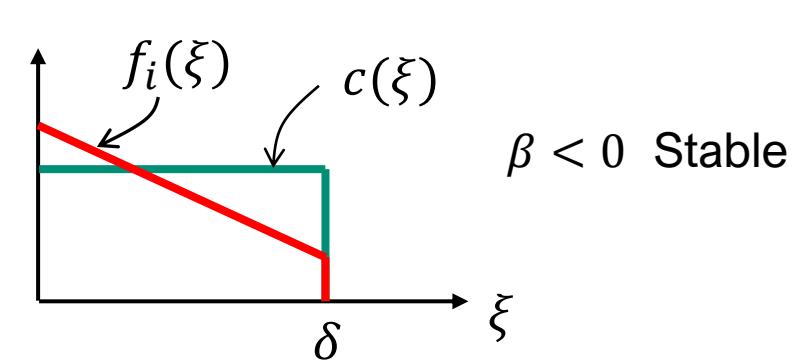
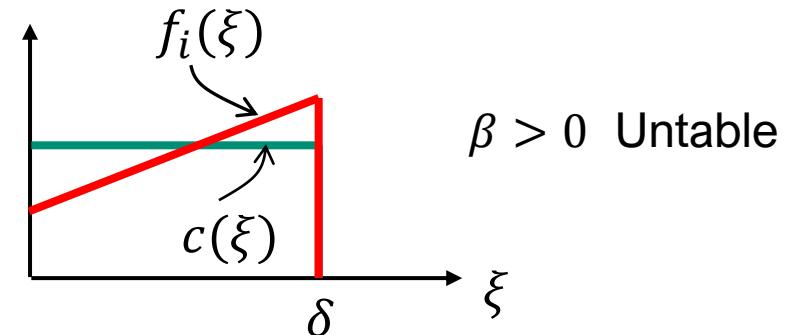
$$c(\xi) = 1, \quad f_i(\xi) = \eta + \beta \left(\frac{\xi}{\delta} - \frac{2}{3} \right)$$

where η and β are constants.

- Set $\sigma_0 = 0$ (fiber is floating in space). Then

$$\rho\omega^2(k) = \frac{a\delta^4}{360} \beta k^4.$$

- $\beta < 0 \implies$ stable (f_i more compressive for long bonds).
- $\beta > 0 \implies$ unstable (f_i more tensile for long bonds).



If a straight fiber is unstable, what does equilibrium look like?

- Suppose the fiber is unstable. Try to find the equilibrium curvature. Define

$$\kappa = \frac{1}{r^2}$$

where r is any radius of curvature.

- Let ε_0 be the axial strain in the *straight* fiber (known).
- Let ε be the axial strain in the *curved* fiber.
- Both ε and κ are unknown.
- Compute the strain energy at any point in terms of these unknowns:

$$W = W_0 + \sigma_0 \varepsilon - A_1 \kappa + A_2 \varepsilon^2 + A_3 \kappa^2 - A_4 \varepsilon \kappa$$

where

$$W_0 = a \varepsilon_0 \int_0^\delta \left[\frac{c(\xi)}{2} \varepsilon_0 + f_i(\xi) \right] \xi \, d\xi, \quad A_1 = \frac{a \lambda_0^3}{24} \int_0^\delta [c(\xi) \varepsilon_0 + f_i(\xi)] \xi^3 \, d\xi,$$

$$A_2 = \frac{a}{2} \int_0^\delta c(\xi) \xi \, d\xi = \frac{E}{2}, \quad A_3 = \frac{a \lambda_0^5}{1920} \int_0^\delta \left[c(\xi) \left(\frac{5 \lambda_0}{3} + \varepsilon_0 \right) + f_i(\xi) \right] \xi^5 \, d\xi,$$

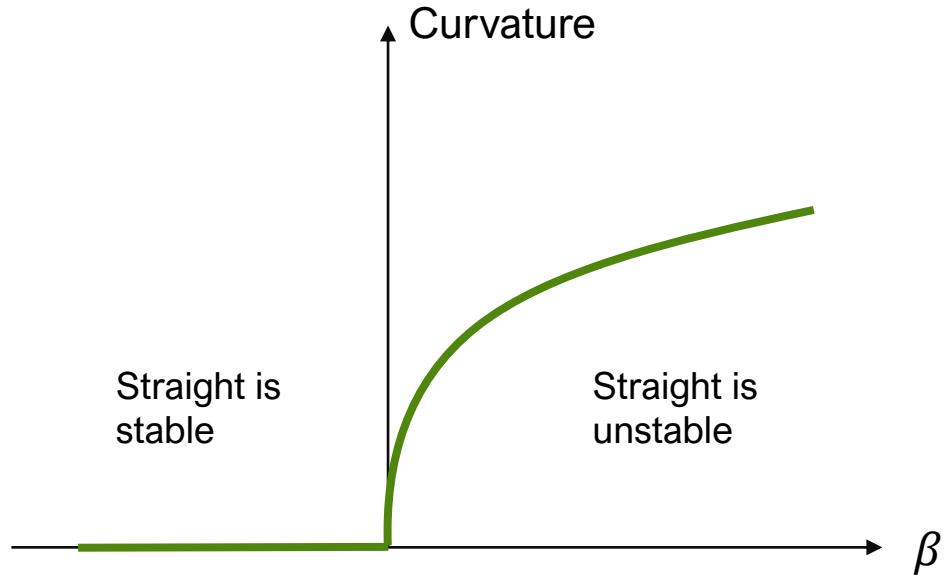
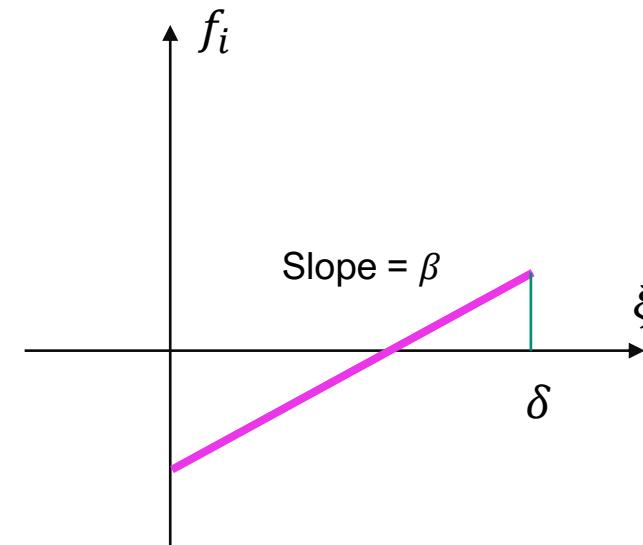
$$A_4 = \frac{a \lambda_0^2}{8} \int_0^\delta \left[c(\xi) \left(\frac{\lambda_0}{3} + \varepsilon_0 \right) + f_i(\xi) \right] \xi^3 \, d\xi.$$

If a straight fiber is unstable, what does equilibrium look like?

- For a given material, find the ϵ and κ that minimize W :

$$\kappa_{eq} = \max \left\{ 0, \frac{EA_1}{2EA_3 - A_4^2} \right\}, \quad \epsilon_{eq} = \frac{A_4 \kappa_{eq}}{E}$$

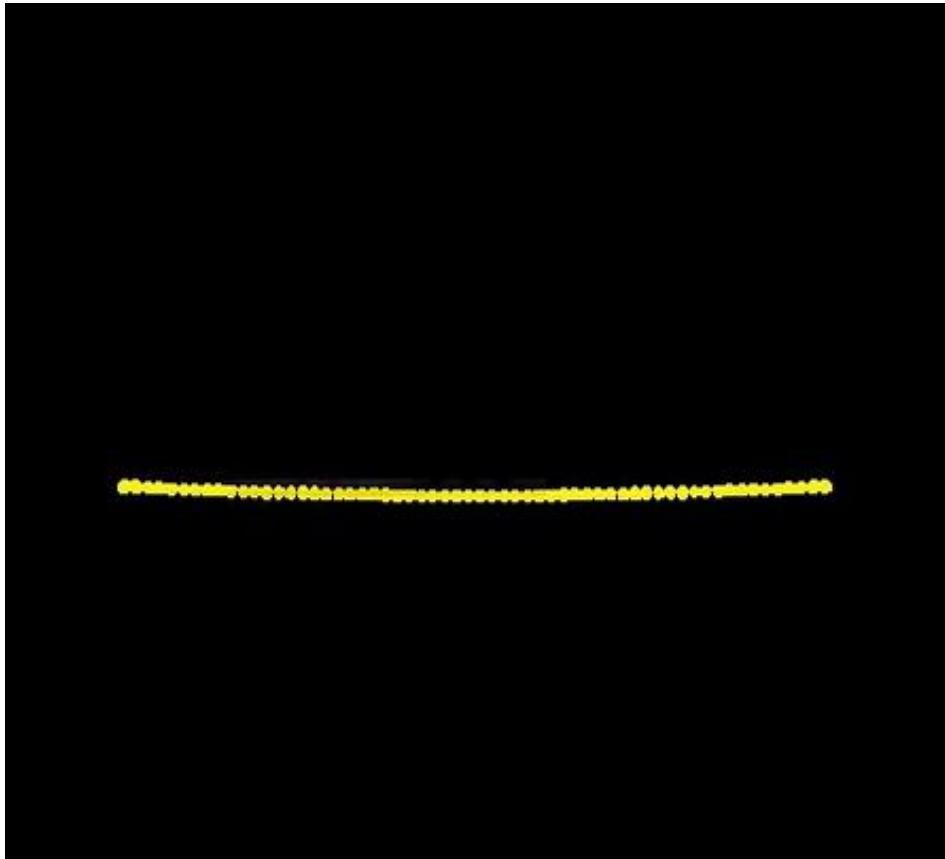
where E is the Young's modulus.



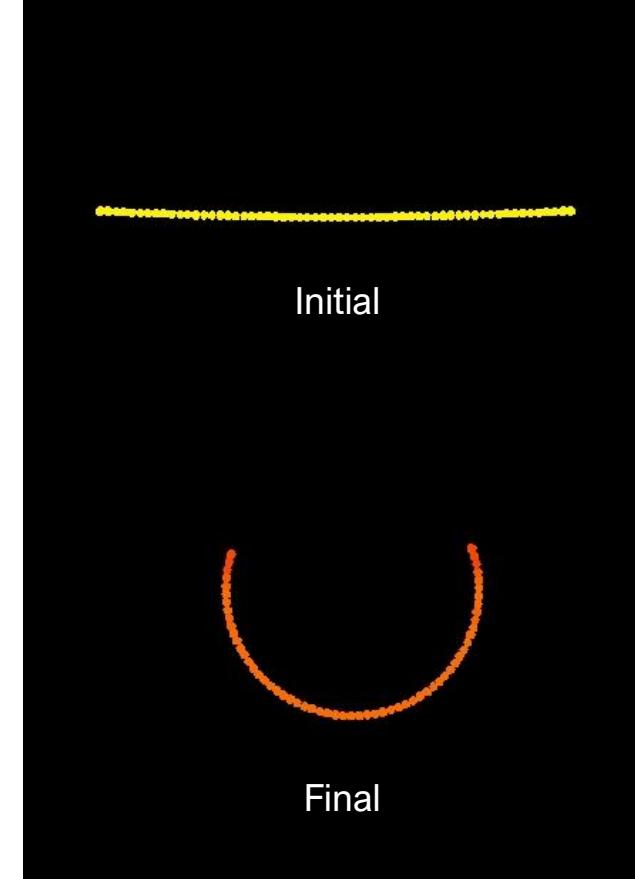
Emu simulation of an internally loaded fiber

- Internal loading is turned on suddenly.

VIDEO



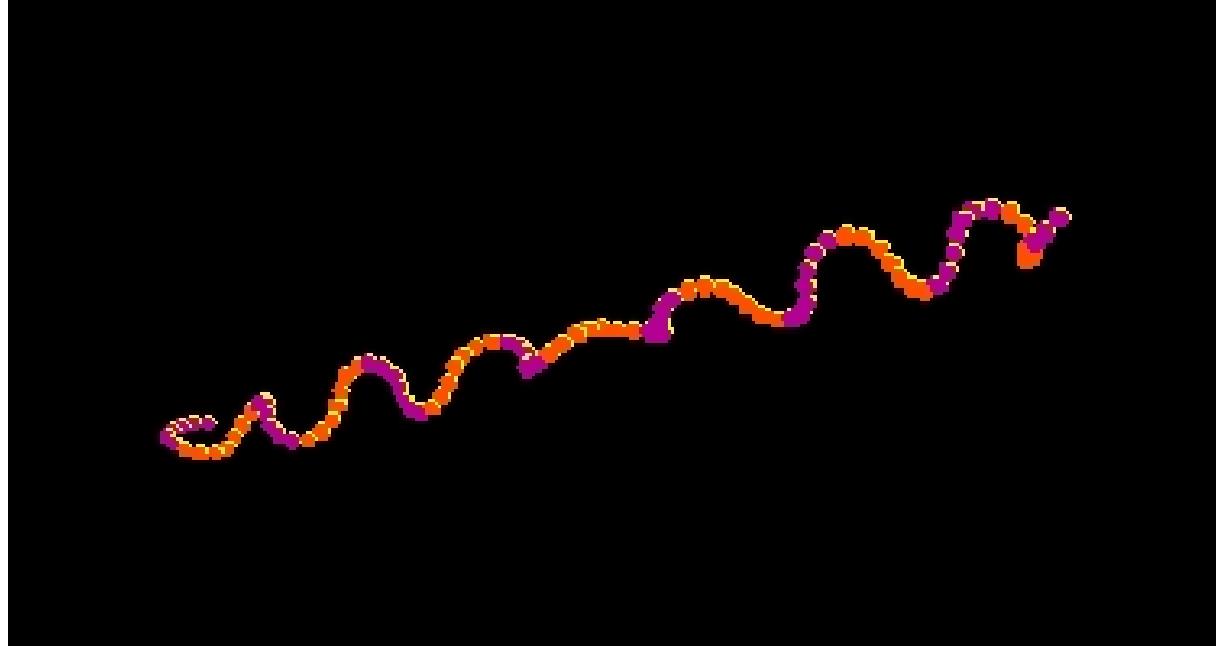
Colors show strain
(red = 0.01)



Initial

Final

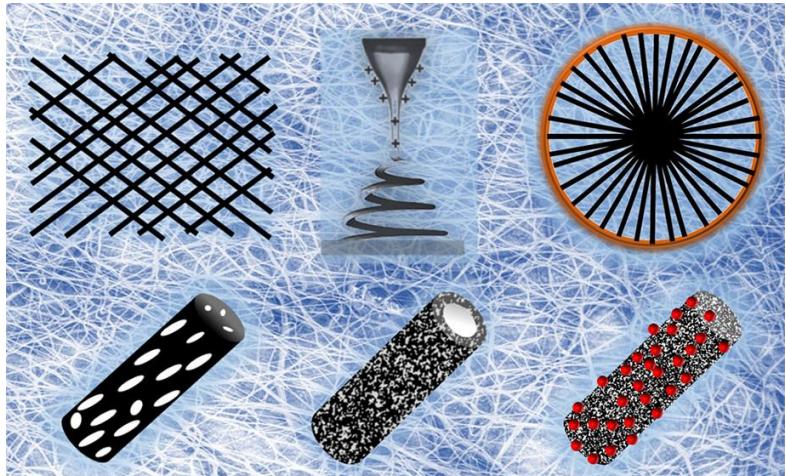
More complex internal loading leads to more complex shapes



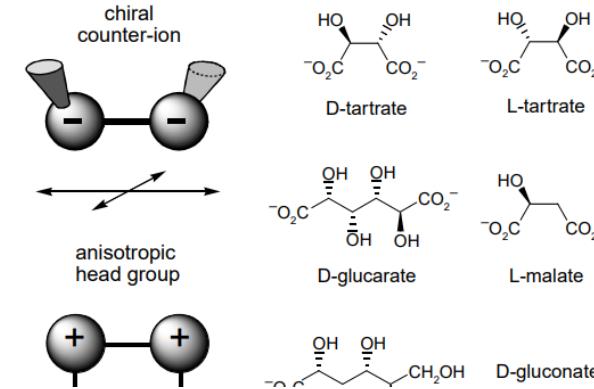
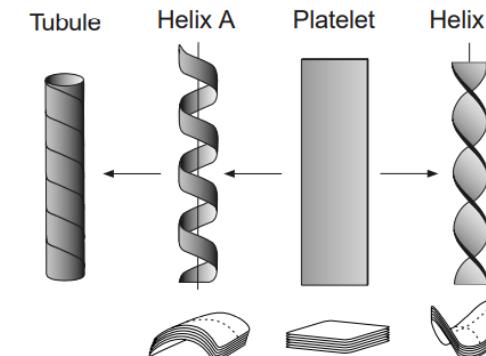
- Purple and red attract.
- Purple repels purple.
- Red repels red.

Possible uses

- There is a lot of interest in self-assembly of nanomaterials.
- Extending the model to an Eulerian description would be the next step.***



Concepts for structures built up by manipulating charge and composition in electrospun nanofibers*



*J. Xue et al., *Acc. Chem. Res.* (2017)

** R. Oda et al., *Nature* (1999)

*** SS et al., *Int. J. Impact. Engin.* (2017)

Chemical composition of a ribbon induces internal forces**

Conclusions

- Peridynamics allows long-range forces that can change the shape of a structure.
- The internal forces compete with the elastic bond response in determining the stability of the system.
- In simple cases, the equilibrium curvature can be computed explicitly.

This work:

SS, Self-Induced Curvature in an Internally Loaded Peridynamic Fiber, SAND2022-5539 (2022).