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Elliptic nonlocal operators

Let δ ∈ (0,∞] be the horizon, Ω ⊂ Rd a bounded open domain, define the

interaction domain

ΩI := {~y ∈ Rd \ Ω : |~x −~y| ≤ δ, for ~x ∈ Ω}.

We want to numerically solve equations involving the nonlocal operator

Lu(~x) = p.v.

∫
Ω∪ΩI

(u(~y)− u(~x))γ(~x,~y)d~y, ~x ∈ Ω,

with

γ(~x,~y) = φ(~x,~y) |~x −~y|−β(~x,~y) X|~x−~y|≤δ, ~x,~y ∈ Ω ∪ ΩI,

φ(~x,~y) > 0.

Examples:

Integral fractional Laplacian: φ ∼ const, β = d+ 2s, s ∈ (0, 1), δ = ∞
Tempered fractional Laplacian: φ(~x,~y) ∼ exp(−λ|~x −~y|)
Truncated fractional Laplacian: δ finite
Variable order fractional Laplacians with varying coefficient: β(~x,~y) = d+ 2s(~x,~y),
φ(~x,~y) > 0
Integrable kernels: constant kernel (β = 0), “peridynamic” kernel (β = 1)

Assumptions:

γ is symmetric.
Interaction domain is defined wrt `2-norm.
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After FEM discretization:

A~x = ~b, A ∈ Rn×n

Depending on δ and h:

Straightforward discretization can lead to a fully dense matrix.

Assembly and solve would have at leastO(n2) complexity and memory
requirement.

Better approach

Panel clustering / Fast Multipole Method / hierarchical matrix approximation

Operator targeted for this talk:

(−∆)s u (~x) = p. v.

∫
Rd

d~y (u(~x)− u(~y)) γ(~x,~y), ~x ∈ Ω ⊂ Rd

with kernel γ(~x,~y) ∼ 1/ |~x −~y|d+2s
, δ = ∞ and homogeneous Dirichlet boundary

conditions.
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Hierarchical matrices: Admissible sub-blocks

1. Flag sub-blocks for compression

2. Construct low-rank approximations

Build tree of clusters of DoFs.

root contains all unknowns

subdivision based on coordinates

distributed computations: first level given by MPI distribution of unknowns

Criterion:

Cluster pairs (P,Q) that are sufficiently separated compared to their sizes are
admissible for compression.

Matrix entries that are not part of any admissible blocks are assembled directly

into a sparse near-field matrix Anear.
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Hierarchical matrices: low-rank approximation

Splitting of operator into sub-blocks based on admissibility

A = Anear + Afar = Anear +
∑

blocks(P,Q)

AP,Q

H-matrix approximation

AP,Q ≈ UPΓP,QU
T
Q (low-rank approximation)

H2-matrices

Using hierarchical nestedness of clusters, can express

UP =
∑

Q child of P

UQTQ,P
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Matrix-vector product with anH2-matrix

A = +

Steps:

Matvec with sparse near-field matrix

Upward recursion

Cluster-cluster interaction

Downward recursion

H2-matrix approximation

Matrix-vector product (and FE assembly) inO
(
n log2d n

)
operations & memory

when Ω ⊂ Rd.
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Representation via sparse matrices

Recast hierarchical matrices in terms of sparse matrices

No special purpose code

Leverage well-optimized distributed sparse linear algebra

Reindexing of far-field leads to

A ≈ Anear + B
[
(I+ TK)

T · · · (I+ T0)
T
]
Γ [(I+ T0) · · · (I+ TK)] B

T ,

Anear and Γ involve MPI communication, all other matrices are block diagonal
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Solvers

Dense direct solvers

O(n3) complexity,O(n2)memory

Hierarchical direct solversO(n log n) scaling, but often very large constant and
nontrivial implementation

Iterative solvers

O(n log n) for single matvec
need preconditioners to achieve small number of iterations
Scalable options for elliptic PDEs:

Domain decomposition

Multigrid
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Geometric multigrid

P2→1R1→2

P1→0R0→1

Spost
1

Spost
0

Spre
1

Spre
0

S2

A0

A1

A2

User specifies:

Operators A`, assembled on hierarchy of nested meshes

Transfer operators: prolongations P`+1→`, restrictions R`→`+1 = PT`+1→`,

Smoothers Spre/post
` (e.g. Jacobi)

Coarse solver SL
How does multigrid work?

On each level: smoother reduces high frequency error, low frequency error is

transferred to coarser levels

High/low frequency splitting depends on mesh

Drawbacks:

Need hierarchy of nested meshes, complications for locally refined meshes

Assembly on every level, tight coupling between assembly and solve
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Smoothed Aggregation Algebraic multigrid (SA-AMG)

User specifies:

A0, DoF coordinates~c, near-nullspace (constant, rigid body modes, etc)

AMG setup

“aggregation”: construction of transfer operators P`+1→` using only algebraic

information (e.g. matrix graph, strength of connection)

Galerkin projection A`+1 = PT`+1→`A`P`+1→`

Issues for nonlocal problems:

Usual graph algorithms used for AMG construction cannot be applied directly

toH-matrices
Inefficient for operators that are too dense

Hierarchical information contain inH-matrix does not translate well into a
multigrid hierarchy.
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Auxiliary operator multigrid

Idea

Construct multigrid transfer operators P`+1,` wrt an auxiliary matrix Ã0.

Then construct preconditioner via Galerkin projections

A`+1 = PT`+1→`A`P`+1→`.

Requirements for auxiliary operator:

sparse

contains sufficient information about nonlocal problem

Possible auxiliary operators:

PDE Laplacian on the same mesh

distance Laplacian on graph G of filtered near-field matrix

Lij =

{
−1/ |~ci −~cj| if (i, j) ∈ G, i 6= j,

−
∑

k 6=i Lik if i = j,

lumped and re-scaled near-field matrix
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Additional operations onH2-matrices

Galerkin projection:

If

A ≈ Anear + B
[
(I+ TK)

T · · · (I+ T0)
T
]
Γ [(I+ T0) · · · (I+ TK)] B

T ,

then

P
T
AP ≈ P

T
AnearP︸ ︷︷ ︸

multiplied out

+ (PTB)︸ ︷︷ ︸
multiplied out

[
(I+ TK)

T · · · (I+ T0)
T
]
Γ [(I+ T0) · · · (I+ TK)] (P

T
B)T .

This is reusing the same compression of the off-rank matrix blocks.

Low-rank representation of small sub-blocks might not be efficient anymore.

Recompression:

Drop one (or more) levels of the cluster tree:

A ≈Anear + B(I+ TK)
TΓ(I+ TK)B

T

+ B
[
(I+ TK−1)

T · · · (I+ T0)
T
]
Γ [(I+ T0) · · · (I+ TK−1)] B

T

Conversion to dense format: multiply it all out

⇒ All operations required for AMG setup use sparse matrix-matrix products.

12 / 18



Implementation details

Components:

PyNucleus for assembly of nonlocal operators

Trilinos/Tpetra for distributed sparse linear algebra

Trilinos/Belos for Krylov solvers

Trilinos/MueLu for Algebraic Multigrid

Kokkos programming model for performance portability

Features:

Reader for hierarchical operators,H- andH2-matrices

Krylov solvers, AMG preconditioner

MPI distributed

Compute architectures supported by Kokkos:

CPU (Serial, OpenMP), GPU (Cuda, HIP, …), …
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Numerical results - CPU

Solo, SNL, Broadwell CPUs

Quasi-uniform mesh, P1 elements

2 Jacobi sweeps of pre-/post-smoothing

LAPACK coarse solve

memory (finest level) iterations (time)

DoFs ranks dense H2 PDE∆ distance∆

12,173 4 1.1 GB 0.1 GB 8 (0.15s) 8 (0.14s)

49,139 18 18 GB 0.55 GB 8 (0.47s) 9 (0.54s)

197,565 72 291 GB 3 GB 9 (0.73s) 10 (0.84s)

792,548 288 4,680 GB 19.7 GB 9 (1.43s) 10 (1.56s)

n n n2 n log4 n constant (log4 n)

Table: 2D fractional Poisson problem on unit disk, s = 0.75, δ = ∞

Dense matrices only for comparison.

Only the first two dense problems would actually fit in memory.
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Numerical results - Comparison with unpreconditioned CG
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Both solvers use aH2-matrix.

15 / 18



Numerical results - graded meshes

Motivation: resolution of low regularity near

domain boundary improves convergence of

discretization error

Weak scaling of solve time needs work (load

balancing).

memory (finest level) iterations (time)

DoFs hmax/hmin ranks dense H2 CG+SA-AMG

15,852 105 4 1.87 GB 0.33 GB 7 (0.37s)

78,674 218 18 46.1 GB 2.4 GB 7 (1.74s)

363,472 439 72 984.3 GB 16.6 GB 8 (3.73s)

Table: 2D fractional Poisson problem on graded unit disk, s = 0.75, δ = ∞
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Numerical results - GPU

Lassen, LLNL, V100 GPUs

memory (finest level) iterations (time)

DoFs ranks dense H2 CG+SA-AMG

49,139 4 18 GB 0.6 GB 9 (0.12s)

197,565 16 291 GB 2.9 GB 11 (0.29s)

792,548 64 4,680 GB 14.7 GB 12 (0.62s)

3,175,042 256 75,109 GB 61.9 GB 12 (1.79s)

Table: 2D fractional Poisson problem on unit disk, s = 0.75, δ = ∞

Weak scaling behavior can be improved

(no AMG parameter tuning for GPU so far)
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Conclusion:

Algebraic multigrid is also useful for nonlocal elliptic equations.

Sparse matrix representation of hierarchical matrices allows to leverage a lot of

existing code.

Outlook:

Varying coefficients

Application to nonlocal operators in sparse format (δ ∼ h)

Application to boundary integral equations

Thank you for your attention!
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