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Research Questions: Sandia
National

Laboratories

1. How does heat treatment affect AM Ti-5553 fatigue properties?
= Bvsaf
2. Are AM Ti-6Al-4V fatigue lives size-dependent?

3. How do properties compare to literature?
= More flaws in AM vs conventional processing

= Effects of surface roughness
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3 1 Ti-5553 vs Ti-6Al-4V

Ti-5553 near beta alloy

5% Al, 5% Mo, 5% V, 3% Cr, 0.5% Fe
Yield Strength = 900 MPa
Ultimate Strength = 1000 MPa

Some commercial use. Being
explored as an AM alloy.

Why use Ti-5553 for additive manufacturing?

Lower elastic modulus in the beta (as-printed) condition.

Can resist hot cracking more than Ti-6Al-4V.

= Ti-6Al-4V alpha-beta alloy

6% Al, 4% V
Yield Strength = 900 MPa
Ultimate Strength = 925 MPa

Widespread commercial use and most
common AM Ti alloy.

Can be heat treated to alpha-beta condition, high strength and good ductility



4+ 1 TI-5553 Heat Treatment

= Elastic modulus can change by factor of 2

depending on a/B mixture!

Carlton et al., Sci. Technol. Weld. Join. 24 (2019) 465-473

Heat-treatment
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o = HCP (red)

AM Ti-5553 Microstructure B =BCC (blue)

w = Hexagonal (detrlmental not detected)
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As-printed has columnar microstructure, pure BCC with [100] in the build
direction.

Heat treated has 33% Beta and 67% alpha in laths at several size scales:
~7 x1 pm and ~300 x 50 nm.




a = HCP (red)

6 ‘ AM Ti-5553 Microstructure B =BCC (blue)

w = Hexagonal (detrimental, not detected)
= Heat treated Ti-5553 has 33% B and 67% a in laths at several size scales:

" Finealaths~7x1um
= Coarse a laths ~300 x 50 nm.

200 nm

EHT=20.00 kv  WD= 5.0mm Signal A = BED

Width = 5.000 pm




7 ‘ This AM Ti-5553 is inline with published values

Strengths are in-line with published values, -

but ductilities are lower.
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8 ‘ AM Ti-5553 Stress Life Fatigue Curves

Max Stress (Mpa)
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Steep drop-off in fatigue strengths with no clear threshold.
Similar behavior in high cycle fatigue regime (>10,000 cycles).
Heat-treated experiences more microplasticity in the LCF regime leading to shorter lifetimes.




o I This AM Ti-5553 has fatigue lives far below published
values for wrought and cast Ti-5553.

Ti-5553 Load Control Fatigue (R =0.1)
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o I AM Ti-5553 fatigue nucleates at near-surface voids

TP

® Fracture surfaces show failure dominated by surface defects.

= Machining specimens could remove near-surface voids and
lead to artificially high fatigue strengths.




11 ‘ Lower fatigue strength of AM Ti-5553

o = HCP (red)
B = BCC (blue)

Possible causes:

= Coarse alpha from excessive heat
treatment.

= Flaws from AM.

= Surface roughness and aspect ratio of
sample.
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i3 1 AM Ti-6Al-4V Tensile/fatigue samples

= Annealing heat treatment at 704°C for 2 hrs in vacuum <107 torr. Cooling rates of 5°Cmin.
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14 ‘ AM Ti-6Al-4V Tensile Results
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AM Ti-6Al-4V fatigue lives appears to be size-

15 "
independent E
Ti-6Al-4V Fatigue Lives Tensile Bars
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=  Machined specimens outperform AM surfaces.
=  Specimens with AM surfaces are much more predictable.
*= No measurable size effects between as-printed R2, R4, R6 samples



AM Ti-6Al-4V size independence may be related to voids
at the contour-fill interface

16

= Machined specimens
significantly outperform as-
printed specimens, but with
more noise.

= Enough voids in as-printed
to make lives deterministic?

= Voids near surfaces due to
interface between contour
pass and fill hatch.

200 pm

(I EHT =10.00kV WD =152 mm Signal A=SE2  Width = 3.000 mm



7 I Conclusions

= Some of the first measurements of fatigue of AM Ti-5553.

= Pure beta vs 75% alpha 25% beta alloys exhibited equivalent fatigue lives in high cycle
fatigue.
= |n low cycle fatigue, alpha/beta appears to outperform pure beta.
= Ti-6Al-4V fatigue lives were independent of specimen size

= Increasing void probability with increasing size balances with increased surface crust with
decreasing size.



specific defects?
Heat treated AlSi10Mg, tension
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v’ C.M. Laursen, P.J. Noell, J.D. Carroll, “Ex-situ Correlation of Fracture Location to
Internal Defects in AM AlSi10Mg via micro Computed Tomography”, In Preparation



Failure of specimen HF26-01 was largely determined by M Sandia
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‘ High resolution images

200 nm . X
— EHT=2000kY WD = 5.0mm Signal A = BSD Width = §.000 pm | EHT =2000kv WD = 49 mm Signal A = BSD

of alpha laths in AM Ti-5553

Width = 25.00 pm




voids to fracture?

Heat treated AlSi10Mg, tension




National
Laboratories I

Research Questions: @ Sandia |

AlSi10Mg

1. What is the effect of heat treatment on mechanical properties?
2. What is the effect of porosity on mechanical properties?

3. Can we attribute failure location to specific defects?
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Verify pores mapped to fracture surface match fracture Sandia
dtiona

surface Laboreories

Fracture surface is not planar. Top Fracture Surface

Pores are considered on the fracture
surface if within £50 pm.

Visually verified alignment.
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Surface flaws and internal pores are primary two features of

\ Sandia
iInterest. National

Laboratories
= 10 tensile bars

= Internal pores

Sample: HF26-01
= Surface flaws Slice: 1620 .~
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28

Rank flaws on several metrics.

Dominant parameters will have many high-
ranked features on the fracture surface.

Parameters

Largest pore volume on fracture surface
Largest cross-sectional area of internal pores
Deepest surface Void

Sharpest surface void (height-to-depth ratio)

Lowest regional density (200um thick slices,
~100 per specimen)

20t largest

Identify dominant parameters leading to fracture by ranking. @

Sandia I
National
Laboratories I
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Failure of specimen HF26-01 was largely determined by M Sandia

29 | surface void depth. National _
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Failure of specimen HB05-06 was largely determined by local 7 Sandia

- National
30 I density and several large pores. O ries
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Failure of specimen HF26-04 was caused by many factors: a Sandia
31 1 large surface flaw, several large internal voids, and low local i National _
density. . . . . .
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2 | Future and ongoing work

1. Hierarchical finite element model to better understand
interactions between pores.

2. Machine learning on large, rich datasets to gain predictive
capabilities. (See Kyle Johnson, 3:45 Session VIil, 207A).

3. Apply lessons learned to component qualification.
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