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Part 1 Interface structure description
• Interface structure descriptions key to model 

electronic phenomena – transport scattering, Schottky 
barriers, all sorts of quantum effects…

• Interface 3D atomic structure notoriously difficult to 
measure/visualize – need for tools to clearly resolve 
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Part 1 Interface structure description
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Part 2 model: atomistic multivalley 
effective mass theory utilizing structure
• Predict structure-properties variability for 

Si/SiGe quantum dot qubit exemplar
• STM indicates roughness à orbital state level 

variability over dot ensembles
• HAADF indicates Intermixing à conduction band 

valley splitting (VS) variability in dot ensembles

Structure 
description

Quantum dot
qubit spectra
forecasting
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Part 1: Interface atomic structure measurement
Wafer +  epitaxial layers (cross section)

Dominant atomic-to-nano resolution interface resolving techniques

X-rays or neutrons
scattering or absorption
smaller volume (~10 nm) 
hard x-ray nanoprobes

Electron
microscopy

Atom probe
Tomography 
(APT)
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[Wuetz, et al. arXiv:2112.09606 (2021)][Dyck, et al. Adv. Mat. Interfaces 4, 1700622 (2017)]

3D atomic structure measurement Si/SiGe interface
• Post growth interface data using APT and HAADF STEM
• Si/SiGe for quantum dot app - commercial CVD material

Si

Ge
0.
3

Ge0.3

SiAPT

HAADF

APT

• Si-Ge intermixing dominates broadened interface ~ sigmoidal, width 0.7-1.0 nm (5-9 layers)

• APT and HAADF capture intermixing (miscibility) but we want longer-range structure too 
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10-1 m

10-5 m

10-7 m

10-10 m

10-8 m

10-9 m

10-6 mSpin qubit devices

qubit electron in dot

intermixing

5 nm

Dot qubit 300mm 
wafer (Intel)

Challenge of scale and 
complexity

App future goal : make & 
understand/control many similar 
qubits covering distances up here

Qubits & atomistic materials 
measurement/description/
models are down here

Various sorts of materials 
complexity & variability over 
entire scale influence each qubit:
Roughness, intermixing 
(miscibility), Dstrain

1m
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Analogy relating size of various things
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• Probe volume limitations à additional data 

sources would be a good idea

• Compare/contrast/combine various 2D/3D 

data at various scales
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Overview of our approach to interface 
measurement/description spanning atomic-to-micron

(1) Track growth surface atomic resolution STM à surface roughness (2) What survives burial? Post growth 
HAADF STEM à local intermixing

900 nm nm

(3) Analysis: compare/contrast STM+HAADF à final structure description 
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Process:
Add

Layer
MBE

Image
surface

STM

• Replicate qubit-relevant stack
• Typical conditions (T, thickness,…)

Small MBE     Scanning tunneling microscope (STM)   postdoc

[G. G. Jernigan & P. E. Thompson, Surface Science 516 (2002) 207–215]

*Earlier look SiGe alloy MBE with STM - reveals general trends, considerably different 
compositions/scales 

Track growth surface evolution 
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What 
survives
burial?

11

Si well

HAADF

HAADF
~20:1 stretch

900 nm

200 nm

SiGe
regrowth

• Nanosized undulation 
survives growth

• But what about atomic 
individual atomic steps? 

STM
Line traces
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No atomic steps apparent in interface anywhere, 
rather intermixing at several-layer (~1 nm) scale:
Dx~120 nm
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• HAADF intensity proportional to element (Si, Ge) composition  I ~ Z1.8

• Interface width estimate: <4t> = 1.0±0.4 nm (all HAADF data)

Si-SiGe interface transition

• Sigmoid fits: I(z,t) = [1+exp((z-zo)/t)]-1

• 4t measures 0.12-0.88 distance
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• STM surface roughness does not entirely account for HAADF interface width
• Intermixing is more likely scenario, supported by other recent reports from APT work (Dyck, Wuetz)

Resolve roughness vs intermixing width contribution
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Our interface atomic structure model
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1. Roughness: Interface mean position = STM height (zo)

2. Intermixing: Lattice site occupants across transition Si1.0 to 
Si0.7Ge0.3 follow sigmoid PDF width t (4t from HAADF or APT) 
along growth axis (z) across interface

3. Sigmoid center location = zo

Example Ge fraction histogram

z (nm
)

Sigmoid intermixing distribution 
[Dyck, et al. (2017)]:

z

x1
x2

160 nm
zo

I(z,t) ~ 1/[1+exp((z-zo)/t)]

zo

Example Ge distribution/final structure
Roughness
STM topo

Intermixing
Sigmoid PDF
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Part 2 : theory/model: predict quantum 
electronic structure-properties variability

• App: spectra predictions for Si/SiGe dot e- spin qubits 
• Good qubits & high-quality logic gates
• Scalable Si foundry processing, e.g. Intel
• Rapid maturation: steadily increasing number of 

working & interacting qubits on-die

18

Two spin qubit device
Petta Group Princeton/UCLA

[Mills et al., Sci. Adv.8, eabn5130 (2022)] 

Si

SiGe

Si



19

Part 2 : theory/model: predict quantum 
electronic structure-properties variability

• App: spectra predictions for Si/SiGe dot e- spin qubits 
• Good qubits & high-quality logic gates
• Scalable Si foundry processing, e.g. Intel
• Rapid maturation: steadily increasing number of 

working & interacting qubits on-die

19

Two spin qubit device
Petta Group Princeton/UCLA

[Mills et al., Sci. Adv.8, eabn5130 (2022)] 

Si

SiGe

Si

Materials structure-properties interaction is salient hurdle: 
• Complex dot e- interaction with Si-SiGe interfaces causes dot 

spectral variability

Next, we describe how:
• Roughness à energy bias variability across dot-ensembles
• Intermixing à valley state splitting (VS) variability across ensembles
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Brief intro to app: Si/SiGe quantum dot e- spin qubit

[Mills, Sci. Adv. 8, eabn5130 (2022)] 

• Gate-defined quantum dots 
in Si well

• Metal gate layer on Strained-Si/ 
Si0.7Ge0.3

• Si QW conduction band offset 
(Type II) – gates pull e- in Si well
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“Given many measured realizations of dot interface 
structure & disorder, what can we expect of dot qubit 
spectra variability?”
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Roughness (Dwell thickness) à orbital level variability

22

• Estimate growth-axis confinement energy via 1D Schrödinger solve 
• Confinement energy variance is considerable for thinner wells needed for larger 

valley splitting, i.e. mean ~ standard deviation (note x-logscale)

• Impact: GS 1e-dot formation, gate operations, & e- manipulation e.g. shuttling –
• Variability à each dot is uniquely tuned
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Intermixing à valley splitting variability

• Variability of valley states energy ~0.01-0.2 meV (mean~spread)

• Impact: qubits with varying spectra and spin/valley/orbit interaction, difficult to engineer

°20 °15 °10 °5 0 5 10 15 20
y[1̄10] (nm)

°6
°4
°2

0
2

z [
0
0
1
]
(n

m
)

Int
erf

ace
widt

h,
4ø

(nm
)

0.0

0.5

1.0Valley splitting (µeV)

0 200 400 600 800 1000 1200 1400

0.000

0.005

0.010

0.015

0.020

0.025

0 1
Interface width, 4ø (nm)

0

500

1000

V
al

le
y

sp
lit

ti
ng

(µ
eV

)

m=0

m=1

m=2

realizations of atomic coordinates realizations of valley splitting

• Calculation: Atomistic multi-valley effective mass theory 
(Toby Jacobson, Sandia)

• Dot e- states: conduction band valley Bloch functions, 2 ~degenerate CB valleys on z[001]

• Abrupt interface potential à asymmetry that lifts valley state degeneracy - energy gap-protected qubit states
• Intermixing softens interface potential à significant valley splitting variability 

m= # of atomic steps in well



24

Summary & commentary
• Atomistic structure description to micron scale including 

roughness & intermixing during growth (using STM&HAADF )

• Utilize atomistic structure description to calculate spectral 
variability of e- states in dot qubits

• Orbital state variability ~ 1 meV scale (potentially challenging 
tune-up/control issue)

• Atomistic effective mass theory: Valley splitting measured in 
numerous experiments: 0.01-0.3 meV, our results cover similar 
range (0.01-0.2 meV)

• Owing to larger volume/area description, we will look to longer-
range issues, e.g. simulation of dot couplings via tunneling for 
shuttling electron along interfaces
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