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Surrogate construction is an essential component for all non-deterministic analyses in
science and engineering. The efficient construction of easy and cheaper-to-run alternatives
to a computationally expensive code paves the way for outer loop workflows for forward and
inverse uncertainty quantification and optimization. Unfortunately, the accurate construction
of a surrogate still remains a task that often requires a prohibitive number of computations,
making the approach unattainable for large-scale and high-fidelity applications. Multifidelity
approaches offer the possibility to lower the computational expense requirement on the high-
fidelity code by fusing data from additional sources. In this context, we have demonstrated
that multifidelity Bayesian Networks (MFNets) can efficiently fuse information derived from
models with an underlying complex dependency structure. In this contribution, we expand
on our previous work by adopting a basis adaptation procedure for the selection of the linear
model representing each data source. Our numerical results demonstrate that this procedure
is computationally advantageous because it can maximize the use of limited data to learn
and exploit the important structures shared among models. Two examples are considered to
demonstrate the benefits of the proposed approach: an analytical problem and a nuclear fuel
finite element assembly. From these two applications, a lower dependency of MFnets on the
model graph has been also observed.

I. Introduction
Accurate uncertainty quantification (UQ) analysis of complex engineering systems is challenging due to the large

amount of data, i.e., high-fidelity (HF) numerical simulations, being required. For complex applications, the cost of a
single numerical evaluation is such that single fidelity studies cannot be performed to a satisfying accuracy. Multifidelity
approaches have been introduced to alleviate this computational burden by fusing data/information from several sources.
For instance, in the context of the solution of partial differential equations (PDEs), it is not unusual to define resolution
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levels associated to, either or both, varying spatial and temporal discretizations. Several MF strategies have been
proposed in the UQ literature, based on sampling [1–5], surrogates [6–11], or hybrid approaches [12].

In this work, we focus on the so-called Multi Fidelity Bayesian Networks (MFNets) approach that has been recently
proposed in [13, 14]. MFNets is a strategy that relies on latent variables to link models with an arbitrary complex
dependency graph (as long as it can be represented by a Direct Acyclic Graph (DAG)). In [13], we have demonstrated
how MFNets can significantly increase the quality of predictions, whenever the HF data are limited. However, in
this work, we want to propose a strategy to improve its computational efficiency by combining MFNets with a model
reduction strategy, namely the Basis Adaptation (BA) [15, 16]. BA provides a rigorous mechanism to limit and adapt a
model representation to its important directions/variables. Our proposed approach consists in adopting the important
directions/variables, discovered by BA, as the latent variables of the MFNets approach. This approach, by reducing the
computational requirements due to a more compact models representation, is expected to improve the method accuracy.

The remainder of this manuscript is organized as it follows. In Section II, we briefly summarize the MFNets
approach (originally presented in [13]) that serves as basis for our multifidelity data fusion. In Section III, we introduce
the BA algorithm that allows for the identification of the reduced set of latent variables to be used in the multifidelity
network. Numerical results are discussed in Section V, while conclusions end the manuscript in Section VI.

II. Multifidelity Bayesian Networks
In this section we briefly summarize the framework introduced in [13]. The reader should refer to the above reference

for additional details. Let us consider a 3-dimensional random variable vector - : Ω→ R3 , where the triplet (Ω, F , P)
denote a complete probability space. We consider " models, denoted via ℎ8 : X8 → Y8 and a scalar quantity of interest
(QoI). The input of the models are a random variable -8 ∈ X8 ⊂ R38 , where we do not assume a constant 38 for each
model∗.

The goal of the approach is to construct, in an efficient manner, a surrogate for

.8 = ℎ8 (-8), 8 = 1, . . . , ", (1)

from which additional statistics can be evaluated, e.g., the expected value. This problem is particularly challenging in
the presence of HF simulations, for which the number of available realizations is very limited. If we indicate the HF
model with ." , the goal of our approach is to fuse realizations, coming from the remaining low-fidelity (LF) models
(8 = 1, . . . , " − 1), to limited data from ." .

As described in [13], we can represent each model, i.e., the generic input-output map, with a linear expansion in
term of latent variables \8 ∈ RP8

.8 = ℎ̂8 (-8 , \8) . (2)
In this scenario, the surrogate construction problem corresponds to inferring the variables \8 from available data
D8 =

(
G
( 9)
8
, H
( 9)
8

)<8

9=1
. In any multifidelity approach, it is possible to benefit from the presence of multiple data sources,

if the data are correlated; however, in this approach, each model is solely defined by \8 and, therefore, the correlation
between models is controlled by that. More formally, we can assume a joint distribution P\ (\1, . . . , \" ) among these
variables to reflect the relationship among information sources. In the Bayesian context, the distribution P\ (\1, . . . , \" )
can be interpreted as a prior, while the goal is to obtain a posterior distribution P\ (\1, . . . , \" |D1, . . . ,D" ).

The BNs are DAGs whose nodes represent random variables and whose edges represent conditional probability
distributions [17]. Thanks to this feature, BNs allow to factorize P\ as a product of conditional probability distributions

P\ (\1, . . . \" ) =
"∏
8=1
P(\8 |\pa(8) ), (3)

where \pa(8) represents the set of parents of the random variable \8 . Several multi-fidelity structures can be naturally
encoded in this framework, i.e., hierarchical and peer representations. For all of them, we can resort to a linear-Gaussian
formulation for the inference on the BN. Given a set of " functions (features) q = {q1, . . . , q" : q8 : X8 → RP8 }, we
seek approximations of each model ℎ8 of the form

.8 = ℎ̂8 (-8 , \8) = q)8 (-8)\8 ≡
P8∑
:=1

q8: (-8)\8: (4)

∗By doing so, one could potentially consider models with dissimilar parametrization
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Latent variables are usually modeled as Gaussian variables

\ = (\1, \2, . . . , \" ) ∼ N (-,�) - =


-1
...

-"

 and � =


�11 · · · �1"
...

. . .
...

�"1 · · · �""

 , (5)

where the means of each parameter are -8 ∈ RP8 and covariances between parameters are �8 9 ∈ RP8×P 9 . As done in
[13], an additional constraint can be added to make the inference tractable: the mean of the conditional distribution of a
parameter \8 can be obtained as a linear combination of its parents values plus an offset

\8 |\pa(8) ∼ N
(
G8 |pa(8)\pa(8) + b8 |pa(8) ,ΓΓΓ8 |pa(8)

)
, (6)

where G8 |pa(8) ∈ RP8×
∑

9∈pa(8) P 9 , b8 |pa(8) ∈ RP8 , and ΓΓΓ8 |pa(8) ∈ RP8×P8 .
The last step, before an inference can be performed, is to assume a statistical model from the latent variables to the

model output
y8 = �8\8 + b, b ∼ N(0, f2

8 �<8
), for 8 = 1, . . . , ", (7)

where �8 ∈ R<8×P8 are Vandermonde-like matrices. The marginal likelihood of the output, given the inputs, is (under
the assumption of independent data sources)

y1, . . . , y" |x1, . . . , x" ∼ N(m,I)

where

m =


�1-1
...

�" -"

 I =


�1�11�)

1 + f
2
1 O<1 · · · �1�1"�)

"
...

. . .
...

�"�"1�)
1 · · · �"�""�)

"
+ f2

"
O<"

 . (8)

If block diagonal matrices are built from the Vandermonde and covariance matrices as

� = block-diag [�1 · · · �" ] and Σ" = block-diag
[
f2

1 �<1 · · · f2
" �<"

]
,

then I = ���) + Σ" , and the joint density of the latent variables \ and the data y is a Gaussian random variable with
mean and covariance

\, y ∼ N
([

-

m

]
,

[
� ��)

�� I

])
. (9)

Finally, the posterior conditional distributions, given the observations \ | y ∼ N( -̄, �̄), can be obtained as

�̄ =

(
�−1 +�) Σ−1

= �
)−1

(10)

-̄ = �̄�) Σ−1
= y + �̄�−1- . (11)

One of the difficulties to face in this approach is the scalability issue related to the number of latent variables for
each model, and the consequent need to acquire enough data to reduce the uncertainty on these variables. BNs helps in
reducing the data requirement by enforcing a structure to the conditional probability, however, in this work, we explore
the possibility to further reduce the number of latent variables by adopting the important directions used in the Basis
Adaptation (BA) method. The introduction of latent variables, obtained from BA, has the potential to drastically reduce
the data requirement by making the inference computationally more efficient. BA is introduced in the next section.

III. Basis Adaptation
Basis adaptation is in the framework of polynomial chaos expansions (PCE). For any model in the previous section,

the probability space (Ω, F , P) is considered. Let the random input variables, -8 , be independent standard Gaussian
variables on 
. Let H be a Hilbert space generated by the span of -8 and F (H) be the f-algebra generated by H .
Then, .8 ∈ !2 (Ω, F (H), P) can be approximated by the following truncated PCE of order up to ?8 [18]

.8 (-8) =
P8−1∑
:=0

\8:k8: (-8) , (12)
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where {k8: }P8−1
:=0 are Hermite polynomial basis functions that are orthonormal under probability measure of -8 and \8:

are the associated PCE coefficients (to be computed). The truncated PCE converges to the physical model of .8 in a
mean-squared sense as the maximum PCE order ?8 →∞. The PCE coefficients \8: can be found, e.g., by projecting
.8 (-8) to the space spanned by {k8: }P8−1

:=0 as

.8: =
〈.8 , k8:〉
〈k2

8:
〉

= 〈.8 , k8:〉, : = 0, . . . ,P8 − 1 , (13)

where 〈0, 1〉 indicates the !2 inner product between 0 and 1 and 〈k2
8:
〉 = 1, by construction. For a total order expansion,

the number of PCE terms is
P8 =

(
38 + ?8
?8

)
=
(38 + ?8)!
38!?8!

, (14)

which grows factorially with 38 and ?8 . Eq (13) involves the calculation of a 3-dimensional integrals, however
PCE coefficients can be also obtained with other strategies, e.g., via ordinary least squares (OLS). For stable and
accurate estimation, the number of required samples for OLS is in the order of # ∼ O(P8 lnP8) and, in some cases,
# ∼ O(P2

8
lnP8) [19]. When the dimension is high, the computation becomes prohibited. The curse-of-dimensionality

remains, even with sparse quadrature rules where the model is evaluated on selecting pre-selected quadrature points.
Basis adaptation is a dimension reduction technique that intends to discover a low-dimensional manifold to represent

the quantity of interest (QoI), .8 . The basic idea is to employ a rotation matrix to transform the Gaussian input variables
such that the QoI has concentrated information on the first several rotated variables. The polynomial span of these
rotated variables is the low-dimensional space the method seeks. Assume '8 ∈ R38×38 is a rotation matrix such that
'8'

)
8
= O, then, the rotated variables can be obtained as

(8 = (8 (-8) = '8-8 . (15)

It follows that .8 can be equivalently expanded with respect to (8 as

.
'8

8
((8) =

P8−1∑
:=0

\
'8

8:
k8: ((8) . (16)

Since the goal of basis adaptation is to find a low-dimensional manifold to represent .8 , the construction of the rotation
matrix is crucial.

In a classical Gaussian adaptation†, the first row of the rotation matrix is constructed such that

[81 =

3∑
:=1

\8:-8: , (17)

where {\8: }3:=1 is the set of first-order or Gaussian coefficients. The first rotated variable by Eq (17) captures the
complete Gaussian components of the QoI, thus the name “Gaussian adaptation”. The second to last rows of the
rotation matrix is defined based on the sensitivity of -8 , quantified by the absolute value of the Gaussian coefficients.
Specifically, the second row is defined such that [82 is the most sensitive variable of -8; the third row is defined such
that [83 is the second most sensitive variable of -8; and so on. Since the Gaussian components are typically the most
critical in many applications, the first rotated variable [81 has the key information of the QoI. In addition, the other
rotated variables also have descending order of importance by construction. Therefore, Gaussian adaptation motivates
seeking a reduced representation of the QoI in a low-dimensional space.

Suppose the first A8 rotated variables are adequate to represent .8 , we can partition (8 as

(8 =

[
'8A -8

'8¬A -8

]
=

[
(8A
(8¬A

]
. (18)

Where '8A is the sub-matrix of the first A8 rows of '8 . Afterward, we can approximate the model .8 with a PCE on (8A

.
'8A

8
((8A ) =

PA
8∑

:=1
\
'8A

8:
k8: ((8A ) , (19)

†Higher-order strategies are also available, see [15].
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with its coefficients found by
\
'8A

8:
=

〈
.
'8A

8
, k8:

〉
, : = 1, . . . ,PA

8 . (20)

Eq (20), similarly to Eq (13), requires the evaluation of a multidimensional integral, however the former only requires
to evaluate an A-dimensional integral, where A8 is in general smaller than 38 . Thanks to this reduction in dimension,
BA has been demonstrated to be efficient in significantly reducing the number of evaluations required for the accurate
construction of a surrogate [15, 16, 20–22]. The scope of this manuscript is to demonstrate that this dimension reduction
can be effective in the context of MFNets, as illustrated in the next section. In the following, the super script on PCE
coefficients \'8A

8:
can be removed without ambiguity.

IV. Embedded Basis Adaptation for MFNets
As illustrated in Section II, MFNets requires a computational effort that scales with the expansion dimension of each

model. Here, BA is integrated into MFNets to obtain two possible advantages. First, a more compact representation for
each model that only needs to use A variables is going to reduce the dimension of the inference problem presented in
Eqs. (9), (10) and (11). Second, as demonstrated in previous work [23–28], the use of shared space among models has
the potential of significantly increasing the correlation among models, which, in the MFNets context, roughly speaking
corresponds to maximizing the information provided by the LF models for the HF model construction.

In this paper, as done in [13], we are concerned with the construction of the models from an assigned set of data D8 ,
for each model 8 = 1, . . . , " , while the allocation of resources, i.e., evaluations, among models is not considered. In
Section II, we have considered, for each model .8 , a linear expansion over features q8 (see Eq (4)), whereas here we
adopt the Hermite polynomials k8 as basis‡ and, for each model expansion (we assume a potentially different polynomial
order ?8 for each model), the number of terms P8 is given by Eq (14). In this work, we assume that the user is able to
determine the number of important variables A8 after the construction of the rotation matrix, but determining them in
an automated way is also possible by constructing bias measures, as suggested in [26–28]. As evident, the use of the
adapted variable A8 , instead of 38 , enable us to represent each model with only

PA
8 =
(A8 + ?8)!
A8! ?8!

(21)

variables, where PA
8
<< P8 .

An additional, and equally important, benefit of using BA within MFNets, is that the correlation among models can
be enhanced when the models are represented on their important variables (8A . We have demonstrated this in a series of
contributions, see [23–28], so this aspect is not further described here.

From an algorithmic perspective, embedding BA within MFNets requires few modifications to an existing MFNets
algorithm. The construction of the surrogates via MFNets and PCE follows Algorithm 1. With the posterior mean -̄
and covariance �̄ obtained, the HF prediction, indexed by " , can be obtained. For any .̄" associated with samples -̄" ,
its mean can be estimated as

`.̄"
= �" ( -̄" ) -̄" (22)

and its variance can be estimated as

Var(.̄" ) = diag
(
�" ( -̄" )�̄""�" ( -̄" ))

)
. (23)

Algorithm 1 contains the cases with and without basis adaptation. When basis adaptation is used, the rotation matrix
is constructed for each model independently and, from it, the number of adapted variables A8 is determined. Then, the
original samples are mapped to reduced spaces, on which the subsequent model evaluations are carried out.

V. Numerical results
This section illustrates the benefits of embedding BA in MFNets through two numerical examples. We first introduce

an analytical test problem in Section V.B, which we developed to verify the algorithm and gain additional intuition about
the method. In Section V.C, we consider a more challenging computational problem in which a finite element model
of a nuclear fuel rod assembly is used. For all the numerical examples provided in this section we directly employed

‡In the case of non-Gaussian input distributions, we can map the physical variable to standard Gaussian variables and retain this exact setup.
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Algorithm 1: Surrogate modeling by MFNets and PCE
Input: <8 , f8 , ?8 , adaptation (using basis adaptation if True)

1 Generate desired number dataset D8 =

(
G
( 9)
8
, H
( 9)
8

)<8

9=1
, for 8 = 1, . . . , ";

2 Map the input samples to standard normal samples by, for example, inverse transformation;
3 if adaptation=True then
4 for i=1,. . ., M do
5 Construct first-order PCEs (12) with ?8 = 1 through regression;
6 Compute the rotation matrix '8;
7 Estimate/Assign the required adapted variables A8;
8 Map -8 to (8 by (8 = '8A8 -8;
9 Evaluate the Hermite polynomial basis on (8 and construct the Vandermonde-like matrices �8;

10 else
11 Evaluate the Hermite polynomial basis on -8 and construct the Vandermonde-like matrices �8 , for

8 = 1, . . . , ";
12 Let the prior mean of \, -, be zeros;
13 Compute the prior covariance matrix � based on the graph structures (details in the next section);
14 Construct the covariance matrix of the noise, Σ" , by standard deviation of the noises f8 , for 8 = 1, . . . , ";
15 Compute the posterior mean -̄ and covariance �̄ by Eq (11).

Output: -̄, �̄.

the Sandia National Laboratories open source UQ software PyApprox [29], which already implements the MFNets
approach. Three fidelity models are considered for both numerical test problems, i.e., one HF model and two LF models.
Moreover, two graphs are studied: a peer and a hierarchical structure. These graphs are illustrated in Figure 1.

(a) (b)

Fig. 1 Graph structure with three nodes with (a) a peer and (b) a hierarchical structure. The HF model is
.3 and is described by variable \3, while the two low-fidelity models are .2 and .1, with variables \2 and \1,
respectively.

As explained in Section II, once the graph is assigned, a model for the conditional probability of the model coefficients
needs to be assumed. Also, additional assumptions need to be provided for the statistics of the coefficients, e.g., to
model the covariance among coefficients. For all the results reported in this manuscript, we did not use hyperparameter
tuning. The graph-dependent hyperparameters used in each example are discussed in Section V.A, while other problem
dependent choices (e.g. specification of priors) are discussed in the corresponding test case section. In this paper, we
simply explored few allowable choices of the parameters that we use to compare MFNets with and without BA. The
choices of the admissible parameters are discussed in the following section.

A. Graph modeling and additional assumptions
Since we consider both cases with and without basis adaptation, we use \8 to represent the sets of the PCE coefficients

that can serve both expansions. In this section we directly follow the presentation of the tutorials released within
PyApprox [29].

Peer graph Let’s start by considering the peer graph illustrated in Figure 1(a), namely with Y = {\1 → \3, \2 → \3}.
This graph is useful whenever, at least nominally, the LF sources could provide the same level of information to the HF
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model.
From the model in Equation (6) and assuming that the PCE coefficients of an information source are linearly related

to the PCE coefficients of other information sources, we can obtain the following expression for the HF model

\3 = �31\1 + �32\2 + E3 , (24)

where E3 is a Gaussian noise with mean zero and covariance ΣE3 . Furthermore, by assuming Cov[\U, E3] = 0 ∀U and
Cov[\1, \2] = 0, we can compute the prior covariance of the PCE coefficients as [29]

Cov[\1, \3] = E
[
\1\

)
3
]
= E

[
\1 (�31\1 + �32\2 + E3))

]
= Cov[\1, \1] �)31

Cov[\2, \3] = E
[
\2\

)
3
]
= E

[
\2 (�31\1 + �32\2 + E3))

]
= Cov[\2, \2] �)32 .

For simplicity, and to obtain a parametrization of reasonable size, we assume �31 = 031�, �32 = 032�, �11 = B11�,
�22 = B22�, �33 = B33�, and ΣE3 = �33 − 02

31�11 − 02
32�22, where the last assumption is to let the prior covariance of

each information source be the same. Finally, the prior covariance matrix of the PCE coefficients can be written as

� =


B11� 0 031B11�

0 B22� 032B22�

031B11� 032B22� B33�

 , (25)

whereas the prior means of the PCE coefficients are assumed to be zeros. Given all the previous assumptions, the prior
model is parameterized by the following scalar coefficients (B11, B22, B33, 031, 032). For this graph, we consider two sets
of admissible parameters values with common parameters B11 = B22 = B33 = B = 1.0. In the first case, we consider no
correlations between coefficients among the models, i.e., 031 = 032 = 0, which is useful to represent cases in which
the correlation among the HF and LF model is low, or nonexistent. In the second case, we consider the correlation
among models coefficients to be 031 = 032 ≈ d, where d is the estimated correlation of the information sources (not the
correlation of the PCE coefficients). If d > 0.7, then let 031 = 032 = 0.7 as 0.7 is determined as the upper bound of the
allowable space with B = 1.0.

Hierarchical graph The second graph considered in this work is the hierarchical structure illustrated Figure 1(b)
with Y = {\1 → \2 → \3}. This arrangement of models is useful if it is possible to determine a sequence with
accuracy/predictive capability increasing in a one-dimensional sequence.

By linear dependency assumption of the PCE coefficients, we have

\2 = �21\1 + E2

\3 = �32\2 + E3 ,
(26)

where E2 is a Gaussian noise with mean zero and covariance ΣE2 . Furthermore, we assume Cov[\U, E2] = 0 and
Cov[\U, E3] = 0 ∀U. The prior covariance can be computed as [29]

Cov[\1, \2] = E
[
\1\

)
2
]
= E

[
\1 (�21\1 + E2))

]
= Cov[\1, \1] �)21

Cov[\2, \3] = E
[
\2\

)
3
]
= E

[
\2 (�32\2 + E3))

]
= Cov[\2, \2] �)32

Cov[\1, \3] = E
[
\1\

)
3
]
= E

[
\1 (�32\2 + E3))

]
= Cov[\1, \2] �)32 = Cov[\1, \1] �)21�

)
32 .

Again, even in this case, in order to obtain a manageable parametrization we define �21 = 021�, �32 = 032�,
ΣE2 = �22 − 02

21�11, and ΣE3 = �33 − 02
32�22, such that the prior covariance matrix of the coefficients can be derived as

� =


B11� 021B11� 021032B11�

021B22� B22� 032B22�

021032B33� 032B33� B33�

 , (27)

while the prior means of the PCE coefficients are assumed to be zeros. The prior model in this graph is parameterized
by the following scalar coefficients (B11, B22, B33, 021, 032). For this graph, we will consider one case, where B11 = B22 =
B33 = B = 1.0 and 021 = 032 ≈ d, with d the estimated correlation among the information sources.
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B. Analytical test problem
As the first numerical demonstration, we consider a simple test example with three information sources described by

51 (x) = exp (G1 + 0.05G2) + exp 0.8G3 + exp (0.8G4 + 0.05G5 + 0.05G6) ,
52 (x) = log (0.75G1 + 0.05G2 + 1) + log (G3 + 0.05G5 + 1) + log (0.5G4 + 0.05G6 + 1) ,
53 (x) = exp (0.1G1 + 1.2G2) + exp 0.05G3 + exp (0.05G4 + G5 + G6)

+ log(0.05G1 + 0.8G2 + 1) + log(0.75G5 + G6 + 1) ,

(28)

with 51 and 52 the LF models and 53 the HF model. We see that the dimensions of these three models are all 3 = 6.
Suppose each information source is approximated by a third-order (? = 3) PCE. Then the total number of PCE

terms for each information source is P =
(3+?

?

)
=

(9
3
)
= 84. Let \1, \2, and \3 be the sets of PCE coefficients associated

with these three models. Suppose we want to use MFNets to fuse the information sources and propose estimations of
the HF model by a fixed number of samples. We consider a peer structure in the MFNets for this application.

In the following, we report the results for the posterior prediction of the HF model in the original and adapted space.
In all the cases, we assume B11 = B22 = B33 = B = 1.0. Section V.B.1 considers no correlation between coefficients
among the models, i.e., 031 = 032 = 0, and Section V.B.2 considers correlations in coefficients with 031 = 032 = 0.7
which is the upper bound of the allowable parameters.

1. Surrogate construction with peer graph (031 = 032 = 0)
In this first case, the choice of the parameters, 031 = 032 = 0, reflects the absence of correlations between coefficients

among the models. The parameter choice is reasonable in the original space, as correlations between the HF and LF
models are almost zero by construction. Thus, the correlations between coefficients among the models can also be
assumed to be zeros. As a comparison, the same choice of parameters are applied in the adapted space.

For the construction of the surrogate the original variables, i.e. without embedding BA, we let the number of samples
be <1 = <2 = 100 and <3 = 20. Further letting the PCE orders be ?1 = ?2 = ?3 = 3, the standard deviations of the
models be f1 = f2 = f3 = 0.01, and adaptation=False. Then we can obtain the posterior mean and covariance of
the coefficients by following Algorithm 1 with the prior covariance matrix in step 13 being computed via Eq (25).

Similarly, we can use Algorithm 1 with adaptation=True to obtain the posterior mean and covariance of the
coefficients in the case based on BA. During the process, the rotation matrices for these three models are computed
independently based on first-order PCEs from the available samples. The first rows of the rotation matrices are the
normalized first-order PCE coefficients, which typically quantify the sensitivity of the QoI with respect to the parameters
and determine the rotations uniquely. The absolute values of the normalized first-order PCE coefficients are reported
in Figure 2. We can see from Figure 2 that the low-fidelity models depend on variables 1, 3, and 4, while for the
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(a) Low-fidelity ( 51)
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(b) Low-fidelity ( 52)
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(c) High-fidelity ( 53)

Fig. 2 Normalized first-order PCE coefficients in the original space. All the models are represented: low-
fidelity 51 (a), low-fidelity 52 (b), and high-fidelity 53 (c). We observe that variables 1, 3, and 4 are important
for the low-fidelity models, whereas variables 2, 5, and 6 are very important for the high-fidelity model. The
important variables identified here are the only ones used for the construction of the surrogate when embedding
BA.

high-fidelity model the most important variables are 2, 5, and 6. Based on this information, we can estimate the required
reduced dimensions for accurate representation as A1 = A2 = A3 = A = 3. Then the total number of PCE terms for each
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model in the adapted spaces are P1 = P2 = P3 =
(A+?

?

)
=

(6
3
)
= 20, which is much smaller than the number of terms for

the same expansion in the original space.
We test the surrogate model for the HF model on 200 test points that were not included in the training data. The

predicted responses can be obtained by evaluating Eqs (22) and (23). Several metrics are defined to quantitatively assess
the quality of the MFNets surrogate. We consider the mean-squared bias (MSB) of the test set, which is the average
squared bias of all the test data. Next, we define the mean-variance (MVAR) of the posterior over the test set, which is
the average variance of all the test data. Finally, we define the average mean-squared error (MMSE) of the test set,
where the mean-squared error of each test data equals the sum of its variance and squared bias. Note that MMSE =
MSB + MVAR.

The MFNets surrogate performance, for the case built with the original variables, i.e. without BA, is shown in Figure
3. In Figure 3a, we plot all 200 test data, where the orange dots denote the posterior mean, and the green bars show
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(a) Posterior predictions and test data
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Fig. 3 Comparison between the posterior model (built in the original space with peer graph and B = 1.0,
031 = 032 = 0) and 200 reference HF test data. The green bars show the posterior mean plus and minus two
standard deviations. In Figure a, both datasets, predictions and test data, are reported. In Figure b, the
predictions are plotted against the corresponding test data (parity plot). In this case, the solid line (slope 1)
indicates a perfect prediction.

the posterior mean plus and minus two standard deviations of the posterior HF model. The predictions are compared
directly against the test data (black dots). In Figure 3b, we report the parity plot, where the prediction of the posterior
HF model are reported against the actual test data. Dots laying on the reference line, i.e., slope 1, indicate a perfect
prediction. We observe a noticeable bias of the posterior mean with MSB = 33.179. Also, the prediction variance is
significant, leading to an MMSE = 100.145.

The performance for the MFNets surrogate of the HF model, based on the embedding of the BA method, is shown in
Figure 4. Compared with Figure 3, the MSB of the posterior mean is reduced from 33.179 to 0.942, and the prediction
variances are reduced significantly. The MMSE decreased from 100.145 to 1.596, which reflect almost two order of
magnitude improvement with respect to the construction without BA. The biases and variances are reduced solely due to
the reduced number of coefficients, while the number of datapoint we used for the training is the same. This example
illustrates that the reduction of coefficients can increase the accuracy of the posterior estimation of the coefficients, and
thus increase the accuracy of the posterior model.

2. Surrogate construction with peer graph (031 = 032 = 0.7)
As discussed in the previous section, the correlation among models can be enhanced by representing the QoI in the

adapted coordinates, rather than in their original models coordinates. This suggests that the increased correlation can be
leveraged to further improve the accuracy of MFNets, by reducing the variance of the posterior model. For this case, we
also assume the parameters f1 = f2 = f3 = 0.01.

The correlations between models 3 and 1 and 3 and 2 can be estimated by the adapted PCEs and they are 0.848 and
0.825, respectively . Although the correlations on the models are not necessarily the same as the correlation on the
coefficients, we assume that they are related; based on this, we use the correlations on the models QoIs as the values of
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(a) Posterior predictions and test data
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(b) Parity plot

Fig. 4 Comparison between the posterior model (built in the adapted space with peer graph and B = 1.0,
031 = 032 = 0) and 200 reference HF test data. The green bars show the posterior mean plus and minus two
standard deviations. In Figure a, both datasets, predictions and test data, are reported. In Figure b, the
predictions are plotted against the corresponding test data (parity plot). In this case, the solid line (slope 1)
indicates a perfect prediction. These results show a significant improvement with respect to the same data
reported in Figure 3b, which were obtained by constructing the surrogate without BA.

031 and 032. However, these values are greater than 0.7, which represents the upper bound of allowable parameters with
B = 1, so we use 031 = 032 = 0.7. As done in the previous section, we discuss the accuracy of MFNets with and without
the use of BA, by using the same 200 test data of the previous case.

For the MFNets training in the original space, the comparison between the reference and the posterior model of
the HF model with 031 = 032 = 0.7 is shown in Figure 5. Compared to Figure 3, in which the surrogate was trained
assuming no correlation among the coefficients, i.e., 031 = 032 = 0, the prediction here shows a smaller MSB = 7.662
and a smaller MMSE = 9.006. Similarly, the prediction variance is also much smaller, which is reflected by the shorter
green bars in the figure.

Despite the improvement in the surrogate construction that we obtained by assuming a non-zero correlation among
the coefficients, the quality of the surrogate can be further improved by embedding BA in its construction. The
performance of the surrogate constructed by embedding BA, with 031 = 032 = 0.7, is shown in Figure 6. Compared to
Figure 4, we note that the posterior variance is much smaller and the MSB has decreased from 0.942 to 0.515, while
MMSE decreased from 1.596 to 0.553.

3. Impact of the number of samples on the MFNets construction
As a final test case, we fixed the ratio of the LF samples to the HF samples to be 5 and explored the performance

of the MFNets surrogate construction for an increasing number of HF samples. We considered the construction of
the surrogate with the two sets of assumptions, namely 031 = 032 = 0 and 031 = 032 = 0.7, and with and without
embedding BA. The results of these tests are summarized in Figure 7, where the MMSE is reported for each model.
From Figure 7, we observe several interesting behaviors. First, the MMSE decreases more rapidly for the case with
correlation among PCE coefficients. Second, we observe that the surrogate construction with BA is always more efficient
than its counterpart, up to the point in which no distinction between the two methods can be observed. This behavior
occurs when the surrogate construction without BA can already rely on enough data and the use of BA cannot further
improve the accuracy of the model. As expected, the use of BA cannot arbitrarily improve the model accuracy, but
rather train a model with reduced data requirements. For more complex applications, the threshold corresponding to the
availability of enough data is expected to be significantly larger, therefore we expect the embedding of BA to become
more effective with the increase in the problem dimensionality (both number of variables and total polynomial order).
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Fig. 5 Comparison between the posterior model (built in the original space with peer graph and B = 1.0,
031 = 032 = 0.7) and 200 reference HF test data. The green bars show the posterior mean plus and minus
two standard deviations. In Figure a, both datasets, predictions and test data, are reported. In Figure a, the
predictions are plotted against the corresponding test data (parity plot). In this case, the solid line (slope 1)
indicates a perfect prediction. These results show a significant improvement with respect to the same data
reported in Figure 3b, which were obtained by assuming 031 = 032 = 0.
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(a) Posterior predictions and test data
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Fig. 6 Comparison between the posterior model (built in the adapted space with peer graph and B = 1.0,
031 = 032 = 0.7) and 200 reference HF test data. The green bars show the posterior mean plus and minus
two standard deviations. In Figure a, both datasets, predictions and test data, are reported. In Figure a, the
predictions are plotted against the corresponding test data (parity plot). In this case, the solid line (slope 1)
indicates a perfect prediction. These results show a significant improvement with respect to the same data
reported in Figure 5, which were obtained by constructing the surrogate without BA.
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Fig. 7 MMSE for different surrogate constructions with MFNets with and without BA. For both cases we
consider the set of assumptions 031 = 032 = 0 and 031 = 032 = 0.7, which correspond to the cases of zero and
non-zero correlation among the PCE coefficients. The number of LF samples is fixed at 5 times the number of
HF samples. For all methods, theMMSE decreases with increasing data, whereas the use of BA always improves
the results, when compared to its counterpart without BA. When enough data are available, the difference
among the surrogate construction with and without BA decreases to the point of being negligible. In this regime
the number of data is sufficient for the training of the model and the remaining error is only driven by the
availability of additional HF evaluations.
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C. Fuel assembly
A more challenging numerical example is offered by a finite element (FE) model of a spent nuclear fuel assembly

(FA), which we consider in this section. This model is based on a General Electric GE14 design used in boiling water
reactors [30]. In more detail, the FA is a slender structure that holds 92 fuel rods and two water rods. The rods are then
held in place by eight spacer grids along the long side. The water rods serve as guide tubes welded to the spacer grids,
an upper handle, and a lower tie place. Finally, the spacer grids and rods are wrapped by a squared channel structure
that is also welded to the upper handle and lower tie plate. The FE model is presented in Figure 8a. The model has three
structural levels, the fuel rods, the spacer grids, and the skeleton, including the channel, upper handle, and lower tie
plate.

(a) Detailed fuel assembly (HF) (b) First simplified fuel assembly (LF2) (c) Second simplified fuel assembly (LF1).

Fig. 8 Finite element model of the fuel assembly models. Two simplified approximations are employed (b-c),
in addition to the HF model (a).

The FE model has # = 1, 912, 506 degrees-of-freedom (DOFs), and we are interested in the vibration analysis in the
frequency band B = 2c×]0, 1000] rad/s. The boundary conditions are specified as it follows. The tip node of the lower
tie plate is constrained, and two nodes on each of the four faces of the channel, at a height close to the handle structure,
are constrained. Excitation is applied on a node of the lower tie plate (the red region in Figure 8a). As quantity of
interest for the system, we considered the frequency response function (FRF) of a node on the adjacent face of the
excitation node. The excitation and observation are both normal to the channel faces. Finally, the dynamic responses
are computed with a model reduction method proposed in [31, 32], which could complete a computation by 50 nodes
(16-core Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz) in about 5 minutes.

The connections of different structural levels, rod-to-grid, and grid-channel, are considered critical for the accurate
evaluation of the system response; to account for their uncertainty, these connections are modeled as random variables
with Beta distributions. Their mean values are 0.15 kN/mm, and 1.5 kN/mm, respectively, and the coefficients of
variations for both is 20%. The random dimension of the system is 3 = 8, since there are 8 spacer grids. By choosing
the parameters to be their mean values and solving the dynamic problem, we can obtain the FRF of acceleration, shown
in Figure 9a. For the construction of the surrogate, we are interested in the average maximum acceleration experienced
by the structure. We consider, as its proxy, the largest eight peaks along the frequency range, which are marked with
blue circles in Figure 9. Two LF models are constructed. The first LF model (LF2) has an array of 10 × 10 fuel rods
held by eight spacer grids, one upper-tie plate, and one low-tie plate; see the FE model in Figure 8b. Compared to
the detailed model, the complex handle structure and the lower tie plate are simplified as two single plates; also, no
channel or water rods are included in the LF model. Due to the simplification, the model has # = 368, 892 DOFs. The
upper and lower tie plates are constrained and the excitation is located at the first spacer grid from the bottom, which
differs from the HF, where the excitation is introduced at the lower tie plate. The observation is also placed in a different
location, with respect to the HF model: at the first space grid, but on the adjacent side of the excitation. Although the
computational cost of the LF2 model is already significantly reduced by the mode superposition method, we further
reduce its computational cost by applying the global reduce-order model (ROM) proposed in [33]. By applying this
method, the cost to obtain the FRF is about 3 minutes, by using a single computer node. In this configuration, the cost
ratio between HF and LF2 is about 80.
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(a) FRF (detailed model - HF)

0 200 400 600 800

Frequency (Hz)

-70

-60

-50

-40

-30

-20

-10

0

A
c
c
e
le

ra
ti
o
n
 (

d
B

)

(b) FRF (first LF model - LF2)
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(c) FRF (second LF model - LF1)

Fig. 9 Frequency response function (FRF) for the different approximations of the fuel assembly model. This
response is associated to the mean values of the random variables describing the 8 structural connections.

We use an even coarser mesh for the second LF model, named LF1, which leads to # = 64, 392 DOFs. All other
specifications for the second LF model are the same as the first LF model. The FE model and nominal FRF of the
second LF are shown in Figure 8c and Figure 9c, respectively.

Due to the aggressive simplification of the LF models, their correlations to the HF model are small. For example,
when estimated with 150 MC samples, the correlations of the first and second LF to the HF are about 0.09 and 0.015,
respectively. Therefore, the two LF models are expected to only marginally help in increasing the accuracy of the HF
prediction. We consider two cases with peer graph and B11 = B22 = B33 = B = 1.0. In the first case, we consider no
correlations between coefficients among the models, i.e., 031 = 032 = 0. In the second case, we consider the coefficients
correlation (among the models) to be 031 = 032 = 0.5, which is approximately the correlations among the models in the
adapted coordinates.

1. Surrogate construction with peer graph (031 = 032 = 0)
Let consider a dataset of<1 = <2 = 1000,<3 = 150, a polynomial degree ?1 = ?2 = ?3 = 3, andf1 = f2 = f3 = 0.1.

For this application, we generated 100 test data to evaluate the performance of different surrogates construction.
When adaptation=True, the rotation matrices for these three models are computed independently based on

first-order PCEs. The absolute values of the normalized first-order PCE coefficients are presented in Figure 10.
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(a) LF1
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(b) LF2
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(c) HF

Fig. 10 Normalized first-order PCE coefficients in the original space of the FA. The figures from left to right
correspond to models 1, 2, and 3.Normalized first-order PCE coefficients in the original space. All the models
are represented: high-fidelity (c), low-fidelity LF2 (b), and the low-fidelity LF1 (a). We observe that variables 1
to 5 are important for LF1, variables 1 to 3 are important for LF2 and variables 1, 2, 3, 6 and 7 are important
for the high-fidelity model. The important variables identified here are the only ones used for the construction
of the surrogate when embedding BA.

The comparison between the reference data and the posterior models for the HF surrogate built with MFNets without
BA is shown in Figure 11. Figure 11a presents 100 test data and the posterior predictions. Figure 11b shows the parity
plot. For this case, we observe a noticeable bias of the posterior mean with MSB = 29.494. Also, the prediction
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(a) Posterior predictions and test data
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(b) Parity plot

Fig. 11 Comparison between the posterior model (built in the original space with peer graph and B = 1.0,
031 = 032 = 0) and 100 reference HF test data for the fuel assembly finite element model. The green bars show
the posterior mean plus and minus two standard deviations. In Figure a, both datasets, predictions and test
data, are reported. In Figure b, the predictions are plotted against the corresponding test data (parity plot). In
this case, the solid line (slope 1) indicates a perfect prediction.

variance is quite high, leading to MMSE = 45.974.
Similarly to the analytical test case, the prediction results for the construction of the surrogate with BA are shown in

Figure 12. By comparing Figure 12 with Figure 11, we observe that the MSB of the posterior mean is reduced from
29.494 to 0.031, and the prediction variances are also significantly reduced. The MMSE decreased from 45.974 to
0.047.

2. Surrogate construction with peer structure (031 = 032 = 0.5)
In this section, we still consider the construction of the surrogate based on a peer structure, but we assume a non-zero

correlation between \3-\1 and \3-\2. Also, we assume f1 = f2 = f3 = 0.1. For these coefficients correlation, we use
the same correlation estimated for the PCEs expansions in the reduced coordinates, i.e., 031 = 032 = 0.5. Figure 13
reports the posterior of the HF surrogate constructed without BA. By comparing Figure 11 with Figure 13, we note that
the surrogate construction with non-zero correlation among the PCE coefficient is more accurate, as expected. Both
MSB = 2.939 and MMSE = 11.531 are significantly decreased. The prediction variance is also much smaller.

The posterior of the surrogate constructed by using MFNets with BA is shown in Figure 14. Interestingly, for this
case, when training the surrogate with MFNets and embedded BA, there is little to no difference in using the correlation
among the PCE coefficients. See Figure 14 compared to Figure 12; however, the use of BA is still beneficial (refer to
Figures 14 and 12 compared with Figure 13).

3. Surrogate construction with hierarchical structure (021 = 032 = 0.5)
For the case with correlation among the PCE coefficients, in this section we consider the use of a hierarchical graph,

see Figure 1. Since the graph is changed, the prior covariance of the coefficients in step 13 of Algorithm 1 will use
Eq (27). For comparison, we use the same parameters as in Section V.C.2, but with 021 = 032 = 0.5.

Figure 15 shows the posterior for the surrogate built with MFNets and BA on the hierarchical graph. By comparing
Figure 14 with Figure 15, we note that the graph has no influence on the accuracy of the surrogate, since the results
are almost identical. This result is somewhat expected following the observations made by comparing Figure 12 and
Figure 14; since these figures are almost identical, we can infer that the effect of the covariance matrix of the PCE
coefficient is negligible and, as a consequence, the graph, which only affects it, is expected to has a similar negligigle
effect on the surrogate accuracy.

From the analytical problem, the convergence curves in Figure 7 indicate that incorporating the basis adaptation
has much more profound effects, on the accuracy of the posterior model, than considering correlations in the PCE
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(b) Parity plot

Fig. 12 Comparison between the posterior model (built in the adapted space with peer graph and B = 1.0,
031 = 032 = 0) and 100 reference HF test data for the fuel assembly finite element model. The green bars show
the posterior mean plus and minus two standard deviations. In Figure a, both datasets, predictions and test
data, are reported. In Figure b, the predictions are plotted against the corresponding test data (parity plot).
In this case, the solid line (slope 1) indicates a perfect prediction. A significant improvement in the surrogate
accuracy is observed with respect to the surrogate constructed without BA, which is reported in Figure 11.

coefficients. if the number of HF samples is not significantly small, the basis adaptation can already take into account
the correlation enhancement among the models. Considering the correlations in the PCE coefficients cannot further
improve the accuracy. The FA application is an example where 150 MC samples of the HF model is large enough for
the basis adaptation to introduce the correlation enhancement; see Figure 14. In such cases, the network structure has
little to no effect on the accuracy of the posterior model, since its effect is to alter the conditional probability among
coefficients. This could potentially provide a way to alleviate the computational cost associated with discovering the
optimal models graph, however these results are only preliminary and should be confirmed with additional numerical
experiments.
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Fig. 13 Comparison between the posterior model (built in the original space with peer graph and B = 1.0,
031 = 032 = 0.5) and 100 reference HF test data for the fuel assembly finite element model. The green bars show
the posterior mean plus and minus two standard deviations. In Figure a, both datasets, predictions and test
data, are reported. In Figure b, the predictions are plotted against the corresponding test data (parity plot). In
this case, the solid line (slope 1) indicates a perfect prediction. A higher accuracy for the surrogate is obtained
in this case, when compared to the case with zero correlation among the PCE coefficients, reported in Figure 11.
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Fig. 14 Comparison between the posterior model (built in the adapted space with peer graph and B = 1.0,
031 = 032 = 0.5) and 100 reference HF test data for the fuel assembly finite element model. The green bars show
the posterior mean plus and minus two standard deviations. In Figure a, both datasets, predictions and test
data, are reported. In Figure b, the predictions are plotted against the corresponding test data (parity plot). In
this case, the solid line (slope 1) indicates a perfect prediction. A higher accuracy for this surrogate is obtained,
when compared to the same surrogate constructed with MFNets without BA, which is reported in Figure 13.
However, the difference between this surrogate and the one constructed assuming zero correlation among the
expansion coefficients, reported in Figure 12, is negligible.
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Fig. 15 Comparison between the posterior model (built in the adapted space with B = 1.0, 031 = 032 = 0.5) and
100 reference HF test data on the hierarchical graph for the fuel assembly finite element model. The green bars
show the posterior mean plus and minus two standard deviations. In Figure a, both datasets, predictions and
test data, are reported. In Figure b, the predictions are plotted against the corresponding test data (parity plot).
In this case, the solid line (slope 1) indicates a perfect prediction. The difference between this surrogate built on
the hierarchical graph and the one obtained on the peer graph, reported in Figure 14, are almost identical.
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VI. Conclusions
In this contribution, we explored the adoption of the Basis Adaptation (BA) dimension reduction strategy, within

the multi-fidelity Bayesian Network strategy (MFNets), for enhancing the computational efficiency of the surrogate
construction. By resorting to a more compact set of variables, discovered by the BA method, the inference problem of
MFNets can be solved more efficiently, i.e., relying on a smaller dataset for the high-fidelity model. We demonstrated
that the use of BA within MFNets has two benefits. First, it allows to make the model representation more compact,
thus reducing the latent variables to considr in the MFNets method. Second, it enhances the correlation among model,
thus allowing for a more efficient use of lower-fidelity data sources. We demonstrated the idea and the efficiency of
the proposed algorithm on a set of two problems: a simple analytical test problem, for verification, and a nuclear fuel
assembly model. Although the adoption of BA within MFNets seems promising and can lead to orders of magnitude
improvements, it is important to note here that, in our numerical experiments, MFNets has been used without an
optimization of the hyperparameters. It is reasonable to assume that the performance of MFNets can be significantly
improved by optimally selecting the hyperparameters first. Therefore, the numerical results presented in this manuscript
should be considered as preliminary and should be extended before reaching a definitive assessment on the quantitative
benefit that BA has when embedded within MFNets. Moreover, for the nuclear fuel assembly model, we observed
that the use of BA within MFNets reduces its reliance of the graph structure linking the models. This observation is
important because indicates that the computational effort needed to discover the graph could be potentially eliminated,
although, even in this case, additional investigations are needed to corroborate this observation.
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