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Talk outline

• What is magnetic reconnection?

• What is radiatively cooled magnetic reconnection?

• How do we study it in the laboratory?

• Results from simulations for experimental design

• Results from the first MARZ shot on Z

• Outlook for future MARZ shots
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Prediction: 1000 yrs. Reality: 10 minutes!
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sheet



Plasmoids Lead to Fast Reconnection and Anomalous Heating
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Strongly 
sheared 
flows

Multiple 
current 
sheets

Overview of recent theory:
Loureiro, N. F., & Uzdensky, D. 

A.(2015). 
PPCF, 58, 014021 
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Reconnection in Extreme Astrophysical Environments

8

Artist’s impression of a black hole M87 (EHT) Crab Pulsar (Hubble/Chandra)

See: Uzdenksy in “Magnetic reconnection: Concepts and applications” arXiv:1510.05397 (2016)
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Radiative Cooling Instabilities in Reconnection
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• Layer ohmically heated
• Radiation/compression 

loop: runaway process
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Studying Radiatively Cooled Reconnection in the Lab
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High-energy-density experiments:
Lasers and pulsed-power



Pulsed-power-driven Magnetic Reconnection
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Magnetic Reconnection from Double Exploding Wire Arrays
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GORGON MHD simulations
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GORGON (J. Chittenden, Imperial) : 3D Eulerian resistive MHD code 
with radiation loss and separate ion and electron energy equations



Plasmoids and Collapse
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Collapsed
Layer

• Flows collide at mid-plane

• Inflow density rises with current

• Radiative cooling rises with density

• Thermal pressure removed:
layer collapses

280 ns 400 ns

Plasmoids

280 ns250 ns

Collapse



Plasmoids and Collapse
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Collapse

Collapsed
Layer

280 ns 400 ns
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Pressure balance in the layer
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MA=1

MS=1



Pressure balance in the layer
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MA=1

MS=1

Post-collapse: fast reconnection removes 
flux pile-up



Plasmoids in the Reconnection Layer
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Plasmoids:
• Carry a lot of current



Plasmoids in the Reconnection Layer
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Plasmoids in the Reconnection Layer
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Plasmoids in the Reconnection Layer
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XP2: X-ray Post-Processor by Aidan Crilly & Jerry Chittenden

Al K-shell 
disappears 
after 
collapse

XP2:predictive 
capability for X-
ray diagnostics

jdhare@mit.edu, MIT NNSA CoE Review June 2022 24



We used XP2 to help design XIDAR, a new diagnostic for Z
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Based on linear AXUV Si diode array for MAGPIE by Jack Halliday

On Z, UPAC (Q. Looker): self-contained, 32-pixel linear diode array 
with 0.25 mm resolution. 

Outflow resolved

Inflow resolved

Slit

Diode
Array
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Diagnostics for First MARZ Shot
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Diagnostics 
on MARZ
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Load Hardware for first MARZ shot
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Thank you to Carlos Aragon, Roger Harmon, Josh Gonzalez, and Leo Molina!



Load Hardware for first MARZ shot
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Thank you to Kraig Leonard, Tommy Mulville, Chris De La O, and many more!



Load Hardware for first MARZ shot
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Thank you to Kraig Leonard, Tommy Mulville, Chris De La O, and many more!



Load Hardware installation
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B-dot probe array

Wire Arrays

Current probesWire weights

Weeks to build, a microsecond to destroy!



Load Hardware Post Shot

Minimal debris, good for future diagnostics!
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MARZ1 delivered 10 MA to each wire array
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PDV: Return on 14/16 channels.

VISAR: Return on 13/24 channels.

500 m/s velocities are consistent with pre-shot modeling for 10 MA.



MARZ1 delivered 10 MA to each wire array
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Azimuthal asymmetry in current 
on arrays:
indicative of current flowing in 
reconnection layer?



Magnetic Probe Measurements: Plasma Flow
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Two probes vertically stacked 
(1 cm separation)

Thank you to Gabe Shipley and Derek Lamppa!
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Magnetic Probe Measurements: Plasma Flow

36

Thank you to Gabe Shipley and Derek Lamppa!



Bow shock around B-dot probe: Plasma Flow
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T-probe 
(14 mm

 from wires)



Bow shock around B-dot probe: Plasma Flow
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T-probe 
(14 mm

 from wires)



Streaked Visible Spectroscopy
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• Four fibers: 6 mm spot size at inductive 
probe radial locations 

Thank you to Sonal Patel and Dan Scoglietti!



Streaked Visible Spectroscopy
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Pre-shot SEGOI 
image of SVS 2

• Long time record, spatially 
localized, broadband 
spectroscopy 

• Al II & Al III lines to measure ne 
and Te

Thank you to Sonal Patel and Dan Scoglietti!



Time Integrated X-ray Spectrum: Hot Plasma
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1.6 keV X-rays: 
plasma likely > 100 eV

Thank you to Eric 
Harding, Andy Maurer, 
and Stephanie Hansen!



X-ray Spectra are a Rich Source of information
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Split ~1.8 eV
Lots of information on temperature, 
density (and velocity?) in spectral lines



Filtered Diode Signals: Layer Formation, Collapse
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Experiment Simulation

• Radiated power rises after current start, drops before current peak
• X-ray spectra appears softer than simulated: more shots in later this year



What didn’t work well

• Most X-ray cameras (gated, time integrated) and 
diodes (XIDAR, filtered) returned no signal

• Most diagnostics functioned nominally, so red 
indicates lack of data

• Conclusion: 
Layer less bright predicted by simulations
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Diagnostic Data return
IDTLs 4/4 channels

PDV 14/16 channels

VISAR 13/24 channels

Inductive probes 13/15 channels

SVS 3/4 systems

SEGOI Bow shock observed

LOS 170 diodes ~1/6 diodes

MLM

XRS3 Al K-shell observed

TREX

TADPoles (2x)

FOA diodes

FOA PHC (UXI, 2x)

FOA PHC (IP)

FOA XIDAR (UPAC) Image on IP?

UPAC Sensor Location

Faint image?

Image Plate analysed by Will Lewis

Our only image of 
the layer
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Future work on MARZ

Two more MARZ shots later this year:
1. Improve diagnostics of the reconnection layer
2. Diagnose the outflows from the reconnection 

layer
Form a complete picture for publication
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FIZ 2 x SVS

2 x T-bar probe



Future work on MARZ

Two more MARZ shots later this year:
1. Improve diagnostics of the reconnection layer
2. Diagnose the outflows from the reconnection 

layer
Form a complete picture for publication

MARZ renewal for CY23-24:
1. New load designs to boost density, magnetic 

field
2. Change wire material to alter cooling rate
3. Investigate effect of pulse rise-time
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FIZ 2 x SVS

2 x T-bar probe

Al

Fe



Future work on MARZ

New simulation tools:
• Radiation transport in GORGON (Jerry Chittenden)
• Advanced X-ray post-processing such as Doppler shift (Aidan Crilly)

New diagnostics:
• Laser imaging (David Yager-Elorriaga)
• Thomson scattering (Jacob Banasek)
• X-pinch backlighting (Matt Gomez)
• Fe L-shell spectroscopy (Patricia Cho)
• UV spectroscopy, fiber coupled (Mark Johnston)
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Conclusions

• Strong radiative cooling important in extreme astrophysical environments: 

• Key signature of reconnection; modifies energy partition; leads to collapse

• High-energy-density pulsed-power experiments can reach strong radiative cooling regime

• 2D MHD simulations show rich physics: plasmoid formation, layer collapse

• Preliminary experimental results from the Z machine show viability of platform for 
radiatively cooled reconnection studies: more shots later this year!
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Spectral lineouts averaged over ∆z = 10 mm.  Approximate locations
shown by the boxes overlaid on the image below.

What is this?
Sharp edge is strange

Al He-alpha and satellites
Heavily source broadened

Most likely Al He-beta

Al He-alpha resonance line (1598 eV)

Signal here could be due to imperfect 
background subtraction.  More work needed.

51

Survey of axially resolved XRS3 
Focusing crystal and proximity to target make this our most sensitive X-ray diagnostic

K-shell emission from top of target  could interfere with top-down imaging unless it’s late-time 



Processed data.  Zoomed-in on Al He-alpha

Notes:  Lines appear to split at z = -6 mm position.  This could be due to the imaging in the dispersion plane where XRS3 sees two sources 
separated in the horizontal plane, or Doppler shifts.
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Lineout of He-alpha region from z = -12.81 mm (∆z = 6 mm)
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Overlay of experiment from z = -12.81 mm 
(red) with optically thick, unshifted SCRAM 
spectrum with rough best-fit conditions (black; t 
~ 15)

Sat/IC ratio  temperature
res/IC ratio  t ~ DYLOS x density

Experimental spectrum has signatures of 
opacity broadening (Hea resonance broader 
than and less intense than Hea IC)



Lineout of He-alpha region from z = 4.27mm (∆z = 10 mm)
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Split ~1.8 eV
 Dv ~ 3e5 m/s, 

Probably a little 
cooler and less 
optically thick than 
previous spectrum

 



XY Lineouts from Simulations
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Dv ~ 3e5 
m/s

Tmax ~ 130 eV (peaks align with rmax)

rmax ~ 0.3 kg/m3 
 ni ~ 6e18 Al/cc

ni ~ 1018 
Al/cc

T ~ 200 
eV

Density, temperature, and 
velocities are in pretty good 
agreement with rough 
first-cut analysis:
~1mm @ ni ~ 1e18 Al/cc 
T <~ 200 eV, 
DvY ~ 3e5 m/s



Select X column with peak intensities ~ ni2 e-1.6keV/T
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Model plasma as three 1 cm x 0.6 mm 
columns of 5e18 Al/cc plasma (t ~ 60) 
with ~ 20 mm low-level background

Peaks: 130 eV with Doppler shifts from 
vY
1. -0.17 eV
2. +0.26 eV
3. +0.31 eV
Background: 90 eV, 2e18 Al/cc (thin)

 



Post-processed simulation
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(3) 1 cm x 0.6 mm 
columns of 130 eV, 
 5e18 Al/cc plasma 
(t ~ 60) :

Temperature seems a bit 
too low (satellites) 

Optical depth (density?) 
seems a bit too high

Doppler shift (net 0.5 eV) 
seems a bit too small 
(broadens but doesn’t 
split lines)

Background contributes 
negligible emission


