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2 I Our Motivation: High Temperature Materials Test Environments |

Free-Piston Reflected Shock Tunnel
Sandia

National
Laboratories
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Inductively Coupled Plasma Torch |



r/Nz CARS Thermometry in IC Plasma Torch at UT-Austin
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Inductively Coupled Plasma Torch
Source for testing of hypersonic TPS materials

“Chemically clean” — electrodes isolated from
flow

Realistic temperatures (T > 6000 K)
Low flow rate — cannot match flight conditions

Collaboration with DOE/PSAAP Center at UT




Coherent anti-Stokes Raman scattering (CARS) ® |
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Coherent anti-Stokes Raman scattering (CARS)
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Coherent anti-Stokes Raman scattering (CARS) @
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“Conventional” CARS Instrument

F4

 ~10-ns laser pulses at 10-Hz
 Broadband dye laser for Stokes source

Key technical challenges
* Very high background luminosity

« Extreme temperatures, some of the highest
ever measured with this technique
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Plasma Torch N, Thermometry
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Single-laser-shot
detection @ 10 Hz!

[ Mean = 5930 K

[ RMS =173 K, 2.9% K on par With
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/CO/Temperature Measurements in
~ High-T Reaction Layer
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/CO/Temperature Measurements in
~ High-T Reaction Layer
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Temperature (K)

Sandia Free-Piston-Driven High-Temperature Shock Tube (HST)

gy Very High T,P Conditions

Driven Section ©

T; = 4013 K,
P. = 10 bar

32eJINg 10e3U0)

Test time = 1 ms or less!




11 | Picosecond Pulse-Burst CARS at 100 kHz for HST Application ® |
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* While powerful, these systems are not . el

wavelength tunable—this prohibits fixed wavelength!

application of chemically specific imagi Broadband Source is Key
and spectroscopic tools : : : S Frequency Lgsér

P 2 Technical Barrier for High- ~Gomversion . Réiation

Speed CARS Measurements = ——

BM-pumped,
tunable
sources

Broadband Picosecond Optical Parametric Generator/Amplifier (OPG/OPA)

signal idler

Pump
pump
kpump - kszgnal kzdler 3 N SN - ly 0O
@, = QO + ., . : o Wil : ) ‘
pump - “signal = idler Picosecond OPG = Enabling Technology! \/‘ '\
K =274, w=1/4

OPA section OPG crystal



100-kHz Pulse-Burst CARS in the Sandia Free-Piston Shock Tube

Single-Laser-Shot State Averaged State 5: Four-Shot Average
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13 | Picosecond CARS comes with a single-shot noise penalty

Picosecond CARS lies

between cw and impulsive R G
limits
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Frviad SIGMNAL (arb. units)
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Dominant source of CARS noise is the quality of the
broadband pulse

Time-Bandwidth Product - Fourier-Transform Limit
At{ps] Aw[cm_l} > 14.67

>>1

fs (impulsive)
CARS ns (cw) CARS

Transform limited

(low noise)

* At ~ 50-100 ps ~ 1/T" - very little averaging in
the Raman process

*To achieve sufficient bandwidth for CARS, pulse
must exhibit ~150-fs features - inherently noisy!




Nanosecond Burst-Mode CARS via Noncolinear Optical Parametric
14 | QOscillator -

Most OPOs are co-linear to satisfy
phase-matching constraint
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Nanosecond Burst-Mode CARS via Noncolinear Optical Parametric

15 | Oscillator

Conversion of low-intensity nanosecond pulses requires laser-cavity gain

Most OPQOs are co-linear to satisfy
phase-matching constraint
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OPO Bandwidth is enhanced by matching
group velocities of signal and idler waves
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Hypersonic Shock Tunnel (HST) Provides the Reentry Flight
Environment

Lynch et al. 2022
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Multimode: can run as shock tube or shock tu

= First experiments at Mach 8 flight enthalpy
= Pressure altitude of 42 km (136 kft).
= Stagnation temperature = 3700 K

Nozzle and Test Section |

= Research applications:
— Aerothermodynamics including nonequilibrium
— Thermal protection system (TPS) materials

First shot of tunnel in August 2021!



Temperature (K)

17 I Improv

Output Coupler

Signal Beam

/

Mean = 1863.97 K
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2X reduction in uncertainty!

CARS spectra can reveal noneguilibrium
conditions in N, and O,

ed high-speed thermometry: 100-kHz nanosecond CARS

Short picosecond laser pulses
enable high speed but result in
noisy data

We developed longer,
nanosecond sources for high-
speed CARS thermometry
Demonstrated in flames
Applied under nonequilibrium

0 ;j ok conditions in Sandia shock tunnel
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Some Comments re: CARS Spectral Modeling
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19 I Picosecond CARS calculation
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20 I Summary and Conclusions

* CARS thermometry of the N, molecule appears
to be effective at T as high as ~6000 K

 We have rigorously developed a new method
for treating picosecond CARS spectra
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