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Chicago providing understanding to Power Flow on Z

Magnetized Plasma / Hall MHD

C. Thoma, Comp. Phys. Comm. 261,
107823 (2021).
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Electrode deformation,
multi-ion Hall MHD
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Power flow Validation Exp, Current loss mechanism
Bennett, Phys. Rev. Acc. and Beams 24, 060401 (2021).

Current loss scales linearly with mean plasma in Inner
MITL confirming Hall-like transport.
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Cross Benchmarking of Kinetic,

Fluid, Hybrid Techniques
Welch, Phys. Rev. AB 23, 110401 (2020).
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Current Loss Saturation with
Surface Water Inventory
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Figure 1. The cumrent lost betwre en the 10-cm radis bomdary and just upstream of the can is plotted got
severalwrater fwertories.




We need a more accurate description of
electrodes to understand power delivery and load
interactions.
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* Surfaces within 4 cm radius heatto 7 pinch
beyond melt within a Z pulse. Load 0.25
0.20
. . . ’E\ 0.15
* Power delivery and plasma interaction S
with the load can be a limiting factor N 0-10 ==
on performance. 0.05 2t
0.00 _
* Plasma drift in and pile up near load : R (cm 1.2
from larger radius. Melting (cm)
Surface
* Electrode material can mingle with
contaminant plasmas near the load. Simulation of region near the load requires:
* Inclusion of dynamic load inductance.
« More important as currents rise -> * Characterization of plasmas impinging on
Znext. the load (Mass Flux Source).
* Improvements in electrode modeling.




Several methods studied for including liner
dvnamics in “Power Flow” simulations.
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] . . When used as a circuit element or to
Snow plow model is used advance load circuit element || determine the liner’s effect on
or radial EOM for the Fluid Liner. Fast fluid model inductance
mainly used as a conductive medium to exclude B field. —




Test without plasma benchmarks verifies Circuit
and Fluid liner models; Fluid more
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Interaction with TL boundary adversely affects plasma flow via
heating. Fluid model is more accurate.

100

accurate.

Plasma drift past Circuit TL
opening samples non physical
field and is heated.
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Plasma with Fluid liner
remains cooler.



Power Flow p

implosion anc

asmas can impact the liner
its simulation in several ways.

* The hot material can conduct current.

* The plasmas can heat the liner due to energetic impacts.

* Characterization of the Mass Flux Source for fluid simulations of
the liner can improve the fluid simulation fidelity by replacing the
arbitrary density floors used in MHD codes.

* Chicago and the LLNL fluid code ARIES have been connected to
add MFS from Chicago into the fluid code and detailed fluid
motion and inductance evolution back to Chicago.



With a fluid liner, the Mass Flux Source and Current loss both scale

with vacuum pressure indicating benefits to improved vacuum on Z.
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The MFS can now be share with fluid code removing density floor.
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Electrode simulation improved with Substrate
Model using 3 coupled diffusion equations.

e 1D Diffusion model for magnetic field (B), temperature (T), and H number density (rho).
 Temperature dependent coefficients where available for Stainless Steel.
e Substrate attached to surface cell in simulation: energy in, mass out from desorption and metal ablation.

Magnetic Field B (G)
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o(s™) is electrical conductivity.

In general temperature dependent.
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(—Fluxout/Ax ): H flux from surface

Placeholder model for H flux
[k, T ]

o 1s the lattice constant so (pd) approximates

Fluxout = (p&)V exp[-E,
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a surface density (cm™)
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Explicit solution with subcycling fast and robust




1D Verification
compared with

Linear ramp (time 7)) in B at surface

Constant o

Analytic solution for B (Knoepfel, Magnetic fields)

Analytic solution
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o(s7) is electrical conductivity.

In general temperature dependent.
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Perfect agreement with Knoepfel* analytical
formula using constant coefficients.

*H. Knoepfel, Magnetic Fields (John Wiley
and Sons, New York, 2000).




Implementation in multiple dimensions

<« gt

e

| 8.8, | |B,B, I
q
H H H H g+
Vacuum BB, | ¢ B,,B, l
H<—J£ %
4o qHp vP

[ B.B, ||1ByB,
RaR
}céc S Condu

|ctor

Each Surface cell contains
a 1D substrate.
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Applied Bz = x [cm] * y[cm] (code units)

Output subl.dat Shows 8 surface cells, with correct

B field at surface center
H#TG Substrate Test: sub_test.chg - Mon Dec 14 17:20:38 2020

substratel ;genoni model

type 2

fromxyz

toxyz
atomic_weight 55.85
*density 1.0

*depth 1.0
resolution 800
initial_temperature 293.0
*medium 1

interval 1

species 2
*movie_tag 1
*movie_fraction 0.1

#CHG_20200401

# surface cell 0

Haxis=1

#dir=1

#ijk =220

# B field =3.125000e-02

# surface cell 1

Haxis=1

#dir=1

#ijk =320

# B field =9.375000e-02

# surface cell 2
H#Haxis=0

#dir=-1

#ijk =430

# B field = 1.875000e-01

# surface cell 3
Haxis=1

#dir=1

#ijk =430

# B field =3.125000e-01

# surface cell 4
#axis=1

#dir=1

#ijk =530

# B field =4.375000e-01

# surface cell 5
#axis=1

#dir=-1

#ijk =250

# B field = 9.375000e-02

# surface cell 6
#axis=0

#dir=1

#ijk =350

# B field =4.375000e-01

# surface cell 7
#axis=1

#dir=-1

#ijk =350

# B field =2.812500e-01



2D Inner MITL with Substrate electrode Fe ablation
using high current rise (Znext).

SS electrode Ablation
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Dense Fe spikes on anode surface, heating in gap by 30 ns.
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Given sufficient resolution, we can now simulation electrode desorption and ablation in realistic geometries.



Chicago improved for high current density
electrode simulation near load.

* Fluid liner coupled to a snowplow model provides fast, accurate time-
dependent inductance.

* We have characterized the MFS and can dynamically couple to the
ARIES fluid code.

* Implement a Substrate model with 3 Coupled diffusion equations:
Heat, magnetic field and mass to better calculated heating and mass
contaminant desorption/metal ablation from electrode.

* Will enable more realistic modeling of power flow plasma effects on
the liner performance.




