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Hydrogen degrades fracture toughness of Austenitic Stainless Steel
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Microvoid nucleation at planar deformation band intersections
with grain boundaries

Fracture processes in H-Charged 304L associated with void nucleation
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What are the deformation bands and how do they depend on hydrogen?




Focus for this talk:

e Structure of the planar
deformation bands

-Influence of hydrogen on
formation of e-martensite

* Relationship of the bands to
nucleation of o' martensite




Material: Forged 304L Austenitic Stainless Steel
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e Initial state: Forged, strain-
hardened condition

 H-Charged material:
-Increased YS and UTS

-Reduced ductility




Material: Forged 304L Austenitic Stainless Steel
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Material: Forged 304L Austenitic Stainless Steel
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e Initial state: Forged, strain-
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 H-Charged material:
-Increased YS and UTS

-Reduced ductility

e Microstructure analysis from
interrupted tensile tests




Initial As-forged microstructure
EBSD Measurements
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As-forged microstructure: dense dislocation network

Diffraction Contrast Scanning Transmission Electron Microscopy
(DC-STEM)

1 micron




Object-Based Dislocation Tomographic Reconstruction
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Influene of H EBSD - 20% Strain
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STEM: Insight to Development of Shear Bands

As-forged and H-charged 5% strain (140 ppm H) 20% strain(140 ppm H)

Dislogation cells and extended Parallel bands of deformation twins and Intersecting shear bands (twins, e-martensite)
stacking faults g-martensite (no o’-martensite observed) o' — martensite at intersections
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STEM: Insight to Development of Shear Bands

As-forged and H-charged 5% strain (140 ppm H) 20% strain(140 ppm H)

Dislocation cells and extended Parallel bands of deformation twins and Intersecting shear bands (twins, e-martensite)
stacking faults g-martensite (no o’-martensite observed) o' — martensite at intersections
[ Example
S_Cannlrlg from 5%
diffraction to strain .
determine sample Key techniques:
) -Diffraction-Contrast STEM
interphase -Scanning nano-beam diffraction
crystallography at -Atomic-resolution STEM
nanometer-scale
resolution
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Orientations and phases in shear-bands can be
distinguished through nanobeam diffraction

Austenite: Austenite &  Austenite &
matrix & twin  e-martensite  o'-martensite
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Hydrogen charging promotes
g-martensite formation in shear bands

Nanobeam diffraction line-scan analysis
Twinning in non-charged material
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HRSTEM: detail of deformation bands

5% strain

Non-Charged Hydrogn-Charged
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0% Strain: only very limited initiation of e-martensite

in non-charged material
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Promotion of e-martensite by hydrogen:
an open mechanistic question

Understanding relationship of H to stacking fault formation
and partial dislocation motion is critical

-Reduction in SFE is often invoked

| tion Heinfl FCC to HCP transformation by passage
as exp ana.lon. -intiuence on of series of (1/6)<112> dislocations
shear localization. FCC (v) HCP (c)

Existing experimental literature shows 1—C A L

small reductions in SFE with H. B 7 B

(e.g., Ferreira, Mat Sci Forum 1996,
Pontini, Scripta Mat 1997) -L-'C A .BA ....... TL. -
-Solute drag effects: 1— B A L
Preferential pinning of trailing partials by A B """"""""
hydrogen gives kinetic mechanism for fault
extension. (e.g., Sills et al., 2016) B A L
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-Does not explain how faults would
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Twinning and martensite nucleation kinetics:
sensitive to Stacking Fault Energy (SFE)
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Influence of Hydrogen on Strain-induced a’-martensite
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Influence of Hydrogen on Strain-induced a’-martensite
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o'-martensite at shear band intersections: importance of e-martensite

e- and o'-martensite at shear bands in
gg;STtEM,3O4L7 tensile-strained 304L stainless steel
% strain, .
140 ppm H (20% strain, 140 ppm H)
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Olsen & Cohen model: o'-martensite nucleation
at shearband intersections with e-martensite
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Colocation of € and a' in hydrogen-charged 304L specimens

20% tensile strain
Non-Charged ° Pre-charged (140 ppm H)

2101 001 [t

Transmission Kikuchi Diffraction (TKD) on electro-polished TEM specimens
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Colocation of € and a' in hydrogen-charged 304L specimens

20% tensile strain
Non-Charged . ° __Pre-charged (140 ppm H)
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Transmission Kikuchi Diffraction (TKD) on electro-polished TEM specimens
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Olsen & Cohen model: o'-martensite nucleation at shear band

intersections with e-martensite
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Atomistic calculations
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BCC Cohesive Energy, eV
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Before Relaxation

nucleation at intersections with s-martensite
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Increase of BCC a'-martensite with internal hydrogen may be a
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Ongoing work: defect
structures at the a'-nuclei

Geometric Phase Analysis (GPA)
from HAADF-STEM




Conclusions

 Complex, multiscale evolution of microstructure under tensile strain in
forged austenitic stainless steel.

* Microstructure affected by presence of internal hydrogen
-Strain localization into planar deformation bands
-Twinning in non-charged 304L
-Both twinning and martensite formation in H-charged 304L
& -martensite in shear-bands
a’-martensite at intersections of shear-bands

-¢ —martensite provides a favorable pathway to o'
-Likely that the initial increase in o' with H is a secondary
effect of hydrogen promoting &martensite formation,
aiding o' nucleation
* Open mechanistic questions:

-Promotion of s-martensite formation by H?
-Low T reduction of a' by presence of H?
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