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Executive summary:  Novel opacity research advances HED physics and its astrophysical and 
laboratory applications

3

• Fe L-shell opacity is measured at solar interior conditions and 
revealed severe model-data discrepancy

 Is opacity theory wrong? Is experiment flawed?

• Refined analysis improved shot-to-shot reproducibility, 
demonstrating opacity experiment reliability

• Systematic measurement of Cr, Fe, and Ni opacities suggests 
model refinements

• Time-resolved measurements augment the capabilities of the 
Z opacity platform and allow novel test of time-dependent 
effects

• Oxygen opacity measurements near CZB conditions are under 
development with interesting initial observations

Data
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time

Mg lines
t1
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Fe absorption

Oxygen transmission
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Basu and Antia, Phys Reports (2008) 4

Solar models compute the internal structure of the Sun based on many interacting 
processes

• These models use the theory of stellar structure 
and evolution to model the Sun.

• Our proximity to the Sun allows much higher 
accuracy measurements compared with other stars.

• This places greater constraints on solar models 
than general stellar models.

• Required input include:

– Abundances

– Opacities

– Equation of state

– Nuclear reaction rates

– Etc.



Helioseismology provides a different approach to measure the Sun’s interior structure

• Helioseismology uses pulsations observed in the Sun to 
measure its properties.

• This allows for high accuracy measurements of the Sun’s 
internal structure.

• For some time, solar models and helioseismic measurements 
agreed reasonably.

Basu and Antia, Phys Reports (2008);    Serenelli, ApJ (2009);    Basu, J Phys Conf Series (2013) 5
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• Helioseismology uses pulsations observed in the Sun to 
measure its properties.

• This allows for high accuracy measurements of the Sun’s 
internal structure.

• For some time, solar models and helioseismic measurements 
agreed reasonably.

The Solar Problem:

• Revised measurements of abundances reduced the inferred 
solar metallicity.

• When used as input to solar models, it brings the models out 
of agreement with the helioseismic measurements.

• Affected quantities include:

– Sound speed

– Densities

– Location of the base of the convection zone

Convection 
Zone Base 

(CZB)

          Error in Density

Basu and Antia, Phys Reports (2008);    Serenelli, ApJ (2009);    Basu, J Phys Conf Series (2013) 6



The discrepancy could be resolved if opacities are higher than models predict

Solar mixture opacity at Convection Zone Base (CZB)
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Te ~ 180 eV

ne ~ 9×1022 e-/cc

Basu and Antia, Phys Reports (2008);    Serenelli, ApJ (2009);    Blancard, ApJ (2012);    Seaton, MNRAS (1994);    Bailey, Nature (2015) 7

Opacity:

• Quantifies radiation absorption
• kn(Te, ne):  Input for solar models
• Opacities affect the CZB location
• Opacity models are untested at CZB conditions

kn
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Opacity:

• Quantifies radiation absorption
• kn(Te, ne):  Input for solar models
• Opacities affect the CZB location
• Opacity models are untested at CZB conditions

kn

Fe is a likely suspect:
• 2nd largest contribution
• Most difficult to model 

Basu and Antia, Phys Reports (2008);    Serenelli, ApJ (2009);    Blancard, ApJ (2012);    Seaton, MNRAS (1994);    Bailey, Nature (2015) 8

CZB conditions:
Te ~ 180 eV

ne ~ 9×1022 e-/cc



The SNL Z machine uses 27 million Amperes to create x-rays

J

BJxB  

4 cm

Prad ~ 220TW (±10%),  Yrad ~ 1.6 MJ (±7%)

Sanford, PoP (2002);    Bailey et al., PoP (2006);    Slutz et al., PoP (2006);    Rochau et al., PPCF (2007) 9



Iron opacity at solar interior conditions is measured using bright radiation 
generated by Z-pinch

Inatten

Inunatt

• Uniform heating
• Mitigating self emission

Z experiment satisfies challenging requirements:

• Condition measurements
• Checking reproducibility
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Bailey et al., PoP (2009);    Nagayama et al., PoP (2014) 10



Tn= Inatten/Inunatt

Iron opacity at solar interior conditions is measured using bright radiation 
generated by Z-pinch

• Uniform heating
• Mitigating self emission

Z experiment satisfies challenging requirements:

• Condition measurements
• Checking reproducibility

Z-pinch 
radiation 
source

Half-moon
sample 

-9o

Slits

Aperture

+9o

KAP crystal
X-ray film

Z-axis

FeMg

Bailey et al., PoP (2009);    Nagayama et al., PoP (2014) 11



kn = - lnTn
(rL)RBS
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Calculated iron opacities are significantly lower than measurements as 
Te, ne approach solar interior values

15

• If true, it accounts for about ½ the 
opacity increase needed to resolve 
the solar problem

Bailey, Nagayama, Loisel, Rochau et al., Nature 2015

O
pa

ci
ty

 (1
04  c

m
2 /

g)

l [Å]

Te= 185 eV ;  ne= 3x1022 cm-3
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But what’s causing the discrepancy? 

• Inaccuracy of theory?

• Flaws in experiment?

Both theory and experiment are 
challenging in HED science;  
Neither should be ruled out.



Both refined analysis and more experiments helped to improve 
shot-to-shot agreement on Anchor-2 Fe
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2018 analysis method
Five iron experiments

2014 analysis method
Three iron experiments
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Solar mean opacity update: +7%  +5%



Systematic opacity measurements with Cr, Fe, and Ni identified three 
main opacity model-data discrepancies
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Discrepancy1: Narrower lines

How models and data disagree …

Discrepancy3: Lower opacity valleys from Fe, Cr

Discrepancy2: Lower quasi-continuum only from Fe

Inaccurate line-broadening? 
Missing satellite lines? 

What’s causing the discrepancies? Experiments? Analyses? Theories? 



Time-dependent effects are a potential source of systematic error on 
opacity measurements

Nagayama et al., PRE (2017);    Nagayama et al., RSI (2012);    H. Morris et al., PoP (2017) 18

Potential systematic errors1: 
- Error in Te and ne determination
- Sample areal density error
- Sample spatial gradients
- Sample self-emission
- Background determination

Time dependent effects:
Effect 1: Transient kinetics. Excluded from high density and agreement at anchor 1.
Effect 2: Integration of opacity over multiple plasma conditions (temporal gradients). 

…

 First approach: field ultra-fast detector to assess the Z opacity sample evolution



Time-resolved measurements can also augment the outcomes of the 
opacity research on Z

19

 Testbed for radiation-hydrodynamics simulations

 Evaluate proposed model refinements that address the model-data discrepancies
 line broadening
2-photon absorption
excited states distribution

 
 Better understanding of how opacity experiments work

better control of sample conditions
 reach higher Te�,�ne

 Increase efficiency of absolute opacity measurements
  multiple opacity measurements over different Te�,�ne� within a single experiment



UXI* detector successfully fielded in Z opacity spectrometers

*UXI=Ultra-fast X-ray Imager:     Claus et al., Proc. SPIE (2015);    Claus et al., Proc. SPIE (2017);    Looker et al., RSI (2020) 20

UXI 1 UXI 2

imaging slits

x-ray source

Fe/Mg opacity 
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Bragg 
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UXI

z3460 - Anchor 1 Fe

 Average of 8 frames per shot, with max of 13 frames on a single 
shot with 2 UXI cameras.

 March 2022: 39 images on 3 shots

time 

UXI 1 UXI 2



Our first goal is to measure the sample conditions evolution 
using Mg K-shell absorption space-resolved

1G. Rochau et al., PRL (2008) 21
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ne and Te are inferred from measured Mg K-shell line absorption spectrum 

Bailey, RSI (2008);    Nagayama, PoP (2014);    Nagayama, HEDP (2016);    Mancini, Comp Phys Com (1991);    Iglesias, PRA (1985) 22

Plasma Te and ne can be extracted by reproducing measured spectra with spectral models
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Conditions were obtained for both anchor 1 & 2

Nagayama et al., PoP (2014);    Bailey et al., RSI (2008);    MacFarlane et al., HEDP (2007) 23
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Simulations* predict Te , ne evolution for Anchor-2 Fe

*Nagayama et al., PRE, 93 (2016) 24
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Anchor 2 Fe conditions evolution trends disagree with simulation 
predictions - PRELIMINARY
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 Inclusion of multiple datasets helps assure reliability of novel measurements, allows for clearer trends
 Condition fitting algorithm being scrutinize (preliminary results)

Anchor 2 neAnchor 2 Te

Te ne

11 datasets
7  Z shots

BL peak BL peak



Anchor 2 Fe conditions evolution trends disagree with simulation 
predictions - PRELIMINARY
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 Sample evolution is consistent with past conditions inferred on film-based measurements

Anchor 2 neAnchor 2 Te

Te ne

11 datasets
7  Z shots
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Anchor 2 Fe conditions evolution trends disagree with simulation 
predictions - PRELIMINARY
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Anchor 2 neAnchor 2 Te

Te ne

11 datasets
7  Z shots
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FWHM
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Also: new platform researched to reach highest density to date ~ x2



The requirements are more stringent for measuring time-resolved 
opacity ku(t) than sample conditions ne(t), Te(t)

28

opacity ku(t) requirements 
• Typical requirements for opacity measurement:
Bailey et al., PoP, 16 (2009)
- uniformity
- freedom from self-emission, background
- multiple areal densities
- measured plasma conditions
- reproducibility demonstrated
- …

• Accurate absolute transmission measurements
 requires tamper-only statistics for accurate analysis

 Evaluate how many to repeat due to spatial-distribution 
temporal variation

ᵰ� ᵰ� ᵰ� ᵰ� ᵰ� ᵰ� ᵰ� ᵰ�
x

x
x
x
x
x

ne(t), Te(t) requirements 

• Accurate Mg line transmission measured
- high S/N absorption spectrum
- linear photon intensity
- avoiding line saturation
- reproducibility demonstrated

• Multiple time-steps to observe actual 
evolution

• Inference using fitting techniques to line 
transmission
 Measuring absolute opacity requires 

calibration shots (BL) at enough time-steps



We have started to measure data for time-dependent absolute opacity 
measurements

29

 First time-resolved Fe absorption spectra in 
9/2020

 Technical challenges had to be overcome 
(EMP, debris…)

 Dataset is being built to obtain absolute 
time-resolved opacity

time

Mg lines
t1
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photon wavelength

z3528t0 , Dt = 2 ns

Fe absorption

Fe absorption



Initial reproducibility has been observed and is encouraging
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z3530  

z3600 

No scaling

Fe absorption



Oxygen opacity measurements are essential to resolve the solar problem

Basu and Antia, Phys Reports (2008);    Serenelli, ApJ (2009);    Blancard, ApJ (2012);    Seaton, MNRAS (1994);    Bailey, Nature (2015) 31

• Oxygen is a dominant source of opacity near the convection zone base (CZB).

• The spectrum is much simpler than Fe.

– It could help understand sources of discrepancy in the more complex atoms.

• If measured O opacity is higher, it could further help resolve the solar problem.



Oxygen opacity spectra are challenging because they are strongly affected by 
approximations for plasma density effects

32

OP model;  Te = 192 eV;  ne = 1e23 e/cc
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• Bare atoms do not have bound-bound or bound-free absorption.
– Oxygen opacity is highly dependent on level of ionization.  Iron is less affected by small ionization changes.

• Density effects: Affected features:
Line broadening · · · · > Opacity windows
Ionization potential depression · · · · > Bound-free absorption
Occupation probability · · · · > Ionization balance



Stellar evolution and the age of the universe can be constrained using WD stars;
Accurate oxygen opacity is important for WD cooling models

1 Winget et al., ApJ (1987) 33

• White dwarfs (WDs) are “burned out” remnants of stars.

– 98% of all stars will become WDs, including the Sun.

– Cores are ~ 50:50 mixture of Carbon and Oxygen.

• WDs only cool with time, so surface temperature reveals their age.

– WD cooling models constrain the age of our galaxy1.

– Accurate opacities are required for WD cooling models.

• “DQ” class WDs have Carbon and often Oxygen in their atmospheres.

– These may be “failed Type Ia supernovae”.

– Studying them may help us understand how Type Ia supernovae are 
produced.

– DQ WD convection zone base (CZB) conditions have similar 
temperature and density as the solar CZB.

Stellar Interior Tracks in EOS plane



Oxygen and Silicon transmission have been successfully measured
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• Accurate opacity is only obtained for T ~ 0.15-0.85.
• Multiple experiments to test reproducibility.
• Spectrometer ranges have been extended to shorter λ (~ 5.1 Å) for Si and to longer λ (~ 19.5 Å) for O.

34
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Silicon line transmission is used to diagnose the plasma conditions (Te and ne)

He-αHe-βHe-γ

He-δ

He-ε
Ly-α

• To test opacity models, we need 3 things: –  Opacity measurement

–  Accurate Te and ne

• We rely on measurements of Te and ne to produce opacity model comparisons with experimental data.

• The plasma conditions must be well understood.

36
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• To test opacity models, we need 3 things: –  Opacity measurement

–  Accurate Te and ne

• We rely on measurements of Te and ne to produce opacity model comparisons with experimental data.

• The plasma conditions must be well understood.

ne Te

37
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Preliminary conditions inferred from Si lines:  Te ~ 160 eV, ne ~ 8e21 e/cc.

He-δ

He-ε

Li Li

He-βHe-γ

← Te is inferred 
from ratio of Li-
like to He-like 
lines.

← ne is constrained 
by line widths.
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Li Li
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Novel method to infer temperature from population ratios of Li-like satellites.

1s22p
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1s22s
1s22s
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Autoionizing 
levels1s�2ℓ�n’ℓ’

Li-like Si

Mancini et al., PRE (2020);    Loisel et al., PRL (2017) 39



He-δ

He-ε

Li Li

He-βHe-γ

Novel method to infer temperature from population ratios of Li-like satellites.

1s22p

1s22p

1s22s

1s22s
1s22s
1s22p

Autoionizing 
levels1s�2ℓ�n’ℓ’

Li-like Si

ΔE = 24.8 eV

Mancini et al., PRE (2020);    Loisel et al., PRL (2017) 40



He-δ
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He-βHe-γ

Novel method to infer temperature from population ratios of Li-like satellites.
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Preliminary analysis provides transmission from three oxygen opacity experiments 
at two different areal densities

44

• Multiple experiments test reproducibility
• Different areal densities help assess accuracy and expand dynamic range
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Preliminary oxygen opacity measurements are reproducible 
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Preliminary reproducibility better than +/- 10% over 9-15 Angstroms
Refined analysis in progress
There are 12 more spectra to include from these three shots



Preliminary Z measurements provide the first tests of oxygen opacity models at 
high energy density conditions
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Models appear to overpredict continuum lowering and ionization
However:
1) The experiment results are preliminary, not final
2) The plasma temperature and density determination is also preliminary
3) Plasma gradients required careful evaluation
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Preliminary Z measurements provide the first tests of oxygen opacity models at 
high energy density conditions
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Models appear to overpredict continuum lowering and ionization
However:
1) The experiment results are preliminary, not final
2) The plasma temperature and density determination is also preliminary
3) Plasma gradients required careful evaluation
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Results from two recent tests look promising:
1) Reaching higher Te and Ne conditions, 2) New stripe-style samples.

• The first oxygen opacity measurements made were at lower Te and Ne than CZB.

– It’s important for the solar problem to reach higher Te and Ne.

• Stripe-style sample can help to constrain transmission measurement better.

Wider line indicates higher density.

z3625

z3653

Lower density:  ne~8e21 e/cc

Higher density:  ne~30e21 e/cc
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Oxygen opacity experiments relevant to stellar interiors are being done at both Z and NIF

Z Opacity Platform NIF Opacity Platform
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Self-emission and background

Unattenuated backlighter spectrum

Sample absorption spectrum

Si He
-a

Oxygen continuum 
absorption

Mg 
He-a

Mg He
-b

Sample:    MgO + SiO2 layers tamped with plastic

~1000 
eV

~2000 
eV

At NIF, the spectrometer records absorption, backlight, and emission simultaneously
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Sample:    MgO + SiO2 layers tamped with plastic

Si He
-a

Oxygen continuum 
absorption

Mg 
He-a

Mg He
-b

Transmission  =
Absorption  –  Emission

Backlighter  –  Emission

~1000 
eV

~2000 
eV

Some penumbral corrections are also applied. 

At NIF, the spectrometer records absorption, backlight, and emission simultaneously
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Plasma conditions are inferred through a combination of experimental 
measurements and simulations.

• Estimated plasma conditions:

– Te ~ 125 eV and ne ~ 2x1022 e/cc.

– Electron temperature inferred from Dante instrument 
data coupled with a simulation.

– Electron density inferred from simulation results.  
(GXD data was obscured by tamper material.)
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Preliminary analysis of experimental data shows possible disagreement with theory

** CAUTION! **

• The oxygen bound-free opacity is very 
sensitive to plasma conditions

• Potential sources of uncertainty:

– How well do we know the plasma 
conditions?

– Have we correctly accounted for all 
background and self-emission?

– How uniform is the plasma?

– How large are temporal gradients?

O  BF

O  BF
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The opacity research has many future exciting opportunities
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Fe opacity
• Update statistical analysis techniques and report
• Include additional ~20 datasets
Time-resolved opacity
• Finalize condition analysis using latest algorithm, publication
• Finalize dataset collection for first absolute opacity measurements time-resolved
• Evaluate importance of time-dependent effects on previously reported data 
• Request support for shorter duration measurements (~1ns)
Oxygen opacity
• Finalize oxygen measurements for accurate O opacity
• Finalize oxygen platform condition analysis
• Comparison with models, publication
High-density opacity
• Test preheat suppression idea to reach highest density ever ~1023 e-/cc (CZB) – most 

anticipated stress on models
Cross-comparison effort with NIF opacity
• Fe opacity, define comparison technique
• Study the effect of changing density for a given Te.
• Oxygen opacity – Do we see the same model-data comparison trend


