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Executive summary: Novel opacity research advances HED physics and its astrophysical and
laboratory applications
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* Systematic measurement of Cr, Fe, and Ni opacities suggests |
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* Oxygen opacity measurements near CZB conditions are under
development with interesting initial observations
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Solar models compute the internal structure of the Sun based on many interacting
processes

* These models use the theory of stellar structure
and evolution to model the Sun.

e Our proximity to the Sun allows much higher
accuracy measurements compared with other stars.

* This places greater constraints on solar models
than general stellar models.

* Required input include:
— Abundances
— Opacities
— Equation of state

— Nuclear reaction rates

— Etc.

Basu and Antia, Phys Reports (2008) 4



Helioseismology provides a different approach to measure the Sun’s interior structure

* Helioseismology uses pulsations observed in the Sun to
measure its properties.

* This allows for high accuracy measurements of the Sun’s
internal structure.

* For some time, solar models and helioseismic measurements
agreed reasonably.

Basu and Antia, Phys Reports (2008); Serenelli, ApJ (2009); Basu, J Phys Conf Series (2013)



Helioseismology provides a different approach to measure the Sun’s interior structure

* Helioseismology uses pulsations observed in the Sun to
measure its properties.
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* This allows for high accuracy measurements of the Sun’s
internal structure.

* For some time, solar models and helioseismic measurements
agreed reasonably.
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Basu and Antia, Phys Reports (2008); Serenelli, ApJ (2009); Basu, J Phys Conf Series (2013)



The discrepancy could be resolved if opacities are higher than models predict

Solar mixture opacity at Convection Zone Base (CZB)
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_ « Wavelength [A] CZB conditions:
Opacity: A T,~ 180 eV
n,~ 9x10%2 e’/cc

* Quantifies radiation absorption

* x,(T, n,): Input for solar models
* Opacities affect the CZB location

* Opacity models are untested at CZB conditions

Basu and Antia, Phys Reports (2008); Serenelli, ApJ (2009); Blancard, ApJ(2012); Seaton, MNRAS (1994); Bailey, Nature (2015)



The discrepancy could be resolved if opacities are higher than models predict

Solar mixture opacity at Convection Zone Base (CZB)
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* Quantifies radiation absorption
* x,(T, n,): Input for solar models
* Opacities affect the CZB location

* Opacity models are untested at CZB conditions

T.~180 eV
n,~ 9x10%2 e’/cc

(Fe is a likely suspect:

« 2nd|argest contribution

_° Most difficult to modelj

Basu and Antia, Phys Reports (2008); Serenelli, ApJ (2009); Blancard, ApJ(2012); Seaton, MNRAS (1994); Bailey, Nature (2015)



The SNL Z machine uses 27 million Amperes to create x-rays >

e =T i

ke Sl e

P_,~220TW (+10%), Y., ~ 1.6 MJ (+7%)

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)



Iron opacity at solar interior conditions is measured using bright radiation =z,
generated by Z-pinch

KAP crystal Z-axis
X-ray film '

Slits

Intensity [J/str/A]

Aperture

Wavelength [A]

Half-moon =~
sample N

Z experiment satisfies challenging requirements:

* Uniform heating * Condition measurements
Z-pinch . . . s
radiation Mitigating self emission Checking reproducibility
source

Bailey et al., PoP (2009); Nagayama et al., PoP (2014) 10
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Iron opacity at solar interior conditions is measured using bright radiation =z,
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Iron opacity at solar interior conditions is measured using bright radiation =z,
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Calculated iron opacities are significantly lower than measurements as

P 4
T., n, approach solar interior values
Bailey, Nagayama, Loisel, Rochau et al., Nature 2015
Anchor3 :
T,=198 eV; n = 4x102 cm’ * If true, it accounts for about /; the

opacity increase needed to resolve
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Both refined analysis and more experiments helped to improve
shot-to-shot agreement on Anchor-2 Fe
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Systematic opacity measurements with Cr, Fe, and Ni identified three =z
main opacity model-data discrepancies

[ Anchor2: T, ~ 180 eV, n, ~ 30 x 102! cm=3 ] How models and data disagree ...
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Time-dependent effects are a potential source of systematic error on =z,
opacity measurements

Potential systematic errors?:
- Errorin T, and n, determination
- Sample areal density error

- Sample spatial gradients

- Sample self-emission

- Background determination

Time dependent effects:
Effect 1: Transient kinetics. Excluded from high density and agreement at anchor 1.
Effect 2: Integration of opacity over multiple plasma conditions (temporal gradients).

—> First approach: field ultra-fast detector to assess the Z opacity sample evolution

Nagayama et al., PRE (2017); Nagayama et al., RS/ (2012); H. Morris et al., PoP (2017)



Time-resolved measurements can also augment the outcomes of the =z
opacity research on Z

Testbed for radiation-hydrodynamics simulations

= Evaluate proposed model refinements that address the model-data discrepancies
- line broadening
— 2-photon absorption
—> excited states distribution

= Better understanding of how opacity experiments work

— better control of sample conditions
- reach higher Tezﬂne

Increase efficiency of absolute opacity measurements
- multiple opacity measurements over different Tez,ﬂneﬂwithin a single experiment



UXI* detector successfully fielded in Z opacity spectrometers ey

23460 - Anchor 1 Fe
UXl1 UXil 2

' crystal

imaging slits
L Fe/Mg opacity
sample y » Average of 8 frames per shot, with max of 13 frames on a single
spectrometers b . shot with 2 UXI cameras.
@ v ar to > March 2022: 39 images on 3 shots
',* X-ray source »’« X-ray source &

Claus et al., Proc. SPIE (2015); Claus et al., Proc. SPIE (2017); Looker et al., RS/ (2020)



Our first goal is to measure the sample conditions evolution —

ey
using Mg K-shell absorption space-resolved
. Y [mm]
Mg lines A
At=1.86 ns N
T0
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radiating shock half-moon
t=-1.44 sample

O
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Space
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Space resolution = slits
Space integration limits =
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Photon energy

Tl e T L IRel0l > The reproducible (320 km/s + 8%) radiating shock is used to cross-time datasets*




n,and T, are inferred from measured Mg K-shell line absorption spectrum <~

> Line Shape: sensitive to electron > Line ratio: sensitive to electron
density, n, temperature, T,
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Plasma 7, and n,can be extracted by reproducing measured spectra with spectral models

Bailey, RS/ (2008); Nagayama, PoP (2014); Nagayama, HEDP (2016); Mancini, Comp Phys Com (1991); Iglesias, PRA (1985)



Conditions were obtained for both anchor 1 & 2 =
Te~170[|eV UXI data & best fits ne~30UxU1021Ucm'3ﬂ
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» High-n He-like (y, d) lines are
broader with higher n,

Nagayama et al., PoP (2014);

Bailey et al., RS/ (2008);

Photon Energy (eV)

> H-like to He-like line ratios
increase with 7, at fixed n,

MacFarlane et al., HEDP (2007)



Simulations* predict T,, n, evolution for Anchor-2 Fe 2

Anchor 2 T, Anchor 2 n,
2 2 0 ,;'_ T T I,-'r\i L L |_';: 7 g U B A | qul 1 .| 1
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*Nagayama et al., PRE, 93 (2016) 24




Anchor 2 Fe conditions evolution trends disagree with simulation zy
predictions - PRELIMINARY

Anchor 2 T, 11 datasets Anchor 2 n,
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» Inclusion of multiple datasets helps assure reliability of novel measurements, allows for clearer trends
» Condition fitting algorithm being scrutinize (preliminary results)




Anchor 2 Fe conditions evolution trends disagree with simulation zy
predictions - PRELIMINARY

11 datasets
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» Sample evolution is consistent with past conditions inferred on film-based measurements




Anchor 2 Fe conditions evolution trends disagree with simulation —
predictions - PRELIMINARY
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Also: new platform researched to reach highest density to date ~ x2




The requirements are more stringent for measuring time-resolved =z
opacity x (t) than sample conditions n_(t), T (t)

n,(t), T,(t) requirements opacity x,(t) requirements

* Typical requirements for opacity measurement:

: - Bailey et al., PoP, 16 (2009
* Accurate Mg line transmission measured | %Y W FOF (2009)

- high S/N absorption spectrum - freedom from self-emission, background
- linear photon intensity - Mmultiple areal densities
o ] . - measured plasma conditions
- avoiding line saturation reproducibility demonstrated
- reproducibility demonstrated

* Accurate absolute transmission measurements
o Multiple time-ste ps to observe actual —> requires tamper-only statistics for accurate analysis

evolution

* Inference using fitting techniques to line
transmission

— Measuring absolute opacity requires
calibration shots (BL) at enough time-steps

— Evaluate how many to repeat due to spatial-distribution
temporal variation




We have started to measure data for time-dependent absolute opacity y
measurements

> First time-resolved Fe absorption spectra in
9/2020

» Technical challenges had to be overcome
(EMP, debris...)

> Dataset is being built to obtain absolute
time-resolved opacity

photon wavelength time



Initial reproducibility has been observed and is encouraging ey
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Oxygen opacity measurements are essential to resolve the solar problem

3, CEA
_ 1000 < opas Fe
NE Solar mixture - G20
) o 5 N
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g = % |
Q
o 10 > 10
‘o
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1 el -“_ | 8
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Wavelength (A) atomic number

* Oxygen is a dominant source of opacity near the convection zone base (CZB).
* The spectrum is much simpler than Fe.
— It could help understand sources of discrepancy in the more complex atoms.

* If measured O opacity is higher, it could further help resolve the solar problem.

Basu and Antia, Phys Reports (2008); Serenelli, ApJ (2009); Blancard, ApJ(2012); Seaton, MNRAS (1994); Bailey, Nature (2015)



Oxygen opacity spectra are challenging because they are strongly affected by

approximations for plasma density effects
OP model; T,=192eV; n_ =1e23 e/cc

Oxygen near solar CZB Ly a 105k lron near solar CZB 4
0-2 bound electrons F 8-10 bound electrons 3

1°E ~ 90 lines He o L~ 1 billion lines

"op
~
§104§ Ly B
Y,

Bound-Free

103
: Y J—
windows
102...I...I...I...I...I.‘.I..
12 14 16 18 20 22 24 6 8 10 12 . 14
A [A] A [A]

* Bare atoms do not have bound-bound or bound-free absorption.

— Oxygen opacity is highly dependent on level of ionization. Iron is less affected by small ionization changes.

* Density effects: Affected features:
Line broadening cee e > Opacity windows
lonization potential depression s> Bound-free absorption
Occupation probability s> lonization balance



Stellar evolution and the age of the universe can be constrained using WD stars;
Accurate oxygen opacity is important for WD cooling models

. " ” WDs are the endpoint of stellar evolution
* White dwarfs (WDs) are “burned out” remnants of stars. - P

— 98% of all stars will become WDs, including the Sun. @ @ @ .
— Cores are ~ 50:50 mixture of Carbon and Oxygen. o0 o
SU.pEI'IlOVB.

Main sequence Red Giant Horizontal Branch Asymptotic Giant _ neytron star

- black hole
Today’s sun
11 Gyr

* WDs only cool with time, so surface temperature reveals their age. 5 Gyr 10 Gyr 10.5 Gyr ,

1 1 1 ]
Age

Stellar Interior Tracks in EQOS plane
— Accurate opacities are required for WD cooling models. [ — 4 solar model

== ) white dwarf

I

— WD cooling models constrain the age of our galaxy?.

il convective

* “DQ” class WDs have Carbon and often Oxygen in their atmospheres.

o .
. Z 6F
— These may be “failed Type la supernovae”. = /‘.'
{=11] ’
o ,!
— Studying them may help us understand how Type la supernovae are sk o
produced. —
— DQ WD convection zone base (CZB) conditions have similar i e
temperature and density as the solar CZB. 125 150 175 200 225 250 275 300
log ne (cm™?)

1 Winget et al., ApJ (1987) 33
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Oxygen and Silicon transmission have been successfully measured

—
KAP spectrometer
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* Accurate opacity is only obtained for T~ 0.15-0.85.

* Multiple experiments to test reproducibility.

* Spectrometer ranges have been extended to shorter A (~ 5.1 A) for Si and to longer A (~ 19.5 A) for O.
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Oxygen and Silicon transmission have been successfully measured

~ /a KAP spectrometer
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* Accurate opacity is only obtained for T~ 0.15-0.85.
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* Multiple experiments to test reproducibility.

* Spectrometer ranges have been extended to shorter A (~ 5.1 A) for Si and to longer A (~ 19.5 A) for O.




Silicon line transmission is used to diagnose the plasma conditions (T, and n,) e

23402 ccpl0a
23533 ccpOa
23533 ccploa

Si Line Transmission

Line Transmission

0.0

55 | | 6.0 | | 65 | | 7.0

Wavel.ength [A]
* To test opacity models, we need 3 things: — Opacity measurement

— Accurate T, and n,
* We rely on measurements of T, and n, to produce opacity model comparisons with experimental data.

* The plasma conditions must be well understood.



Silicon line transmission is used to diagnose the plasma conditions (T, and n,) e
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Si Line Transmission 23533 ccpOa
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Line Transmission
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* To test opacity models, we need 3 things: — Opacity measurement

— Accurate T, and n,

* We rely on measurements of T, and n, to produce opacity model comparisons with experimental data.

* The plasma conditions must be well understood.



Preliminary conditions inferred from Si lines: T,~ 160 eV, n, ~ 8e21 e/cc. ey
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Novel method to infer temperature from population ratios of Li-like satellites.
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Novel method to infer temperature from population ratios of Li-like satellites. oy
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Novel method to infer temperature from population ratios of Li-like satellites. R
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Novel method to infer temperature from population ratios of Li-like satellites. R
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Novel method to infer temperature from population ratios of Li-like satellites. oy
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Preliminary analysis provides transmission from three oxygen opacity experiments z
at two different areal densities
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* Multiple experiments test reproducibility
* Different areal densities help assess accuracy and expand dynamic range




Preliminary oxygen opacity measurements are reproducible “
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Preliminary reproducibility better than +/- 10% over 9-15 Angstroms
Refined analysis in progress

There are 12 more spectra to include from these three shots




Preliminary Z measurements provide the first tests of oxygen opacity models at —
high energy density conditions

Models appear to overpredict continuum lowering and ionization
However:

1) The experiment results are preliminary, not final

2) The plasma temperature and density determination is also preliminary
3) Plasma gradients required careful evaluation

[y
o

mean opacity from
three Z experiments

Experiment equivalent opacity k¥ [103 cm?2/g]
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Preliminary Z measurements provide the first tests of oxygen opacity models at —
high energy density conditions

10

Models appear to overpredict continuum lowering and ionization
However:

1) The experiment results are preliminary, not final

2) The plasma temperature and density determination is also preliminary
3) Plasma gradients required careful evaluation
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Results from two recent tests look promising: z
1) Reaching higher T, and N, conditions, 2) New stripe-style samples.

* The first oxygen opacity measurements made were at lower T_and N, than CZB.
— It’s important for the solar problem to reach higher T, and N..

* Stripe-style sample can help to constrain transmission measurement better.
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Results from two recent tests look promising: y &
1) Reaching higher T, and N, conditions, 2) New stripe-style samples.

* The first oxygen opacity measurements made were at lower T_and N, than CZB.
— It’s important for the solar problem to reach higher T, and N..

* Stripe-style sample can help to constrain transmission measurement better.
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Oxygen opacity experiments relevant to stellar interiors are being done at both Z and NIF
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At NIF, the spectrometer records absorption, backlight, and emission simultaneously NIF

Sample:

MgO + SiO, layers tamped with plastic
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At NIF, the spectrometer records absorption, backlight, and emission simultaneously NIF

Sample: MgO + SiO, layers tamped with plastic

Transmission (prelim.)
—— Absorption
Backlighter

Emission

o
~1000 ~2000 | . . ”ﬂ]|
eV eV
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He-a -B -

o Absorption — Emission
Transmission =

Oxygen continuum

Backlighter — Emission
absorption

Some penumbral corrections are also applied.




Plasma conditions are inferred through a combination of experimental NIF

measurements and simulations.

* Estimated plasma conditions:
— T,~125eVand n_ ~ 2x10%% e/cc.

— Electron temperature inferred from Dante instrument
data coupled with a simulation.

— Electron density inferred from simulation results.
(GXD data was obscured by tamper material.)
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Preliminary analysis of experimental data shows possible disagreement with theory NIF
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Preliminary analysis of experimental data shows possible disagreement with theory NIF

Mg-He-

*¥* CAUTION! ** Si+O+Mg transmission
. . ]. I I I I T T T T
* The oxygen bound-free opacity is very S de' 1
L. L. — ATOMIC (N, = 20107 ex™) E/dE =200
sensitive to plasma conditions 0.9 KTOMIC 0 - 3010 o) 7
085 | srocs o n
* Potential sources of uncertainty: kb -

<
o

— How well do we know the plasma
conditions?

transmission
]
Ln

— Have we correctly accounted for all

background and self-emission? 031

. . 02—

— How uniform is the plasma? i
01—

— How large are temporal gradients? 0 | | !
1100 1200 1300 1400 1500 1600 1700 1800 1900

photon energy (eV)




) 4

The opacity research has many future exciting opportunities “

Fe opacity

* Update statistical analysis techniques and report

* Include additional ~20 datasets

Time-resolved opacity

* Finalize condition analysis using latest algorithm, publication

* Finalize dataset collection for first absolute opacity measurements time-resolved

* Evaluate importance of time-dependent effects on previously reported data

* Request support for shorter duration measurements (~1ns)

Oxygen opacity

* Finalize oxygen measurements for accurate O opacity

* Finalize oxygen platform condition analysis

* Comparison with models, publication

High-density opacity

*  Test preheat suppression idea to reach highest density ever ~10?3 e*/cc (CZB) — most
anticipated stress on models

Cross-comparison effort with NIF opacity

. Fe opacity, define comparison technique

. Study the effect of changing density for a given Te.

*  Oxygen opacity — Do we see the same model-data comparison trend




