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Ion Beam Modification versus Ion Implantation3
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FIB Modification

FIB Implantation

Vastly different dose regimes
- Single atom devices
- (almost) No beam curernt

5x1015 - 1017 ions/cm210 µm

3x1012 ions/cm2
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High energy 
focused 
micobeams 
1 mm

Low energy 
focused 
nanobeams 
<1 to 20 nm

(1) 6 MV Tandem Accelerator

(2) 3 MV Pelletron Accelerator

(4) 350 kV HVEE Implanter

(5) 100 kV ExB FIB nanoImplanter

(6) 35 kV ExB FIB Raith Velion

(7) 35 kV Zeiss HeIM

(3) 1 MV Tandem Accelerator

Operational

Installing
(8) 35 kV Plasma FIB

Sandia’s Ion Beam Laboratory (IBL)
7 Operational Accelerators and >25 end-stations

(including in-situ DLTS, PL, TEM, SEM, 1200C heating, etc…)
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- 6 MV Tandem microbeam 
(microONE)

- 3 MV Pelletron microbeam 
(Light Ion Microbeam)

- 350 kV HVEE microbeam 
(NanoBeamLine)

- Spot size <1 mm
- Energy 0.8 – 70 MeV
- H to Au

- High resolution laser stage
- Spot size <600 nm (H)
- Energy 0.25 – 3 MeV
- H, He, N, Ar, Xe, …

- High resolution laser stage

- Spot size <1 mm
- Energy 20 – 350 keV
- H to Au

- Piezo stage

IBIC on 
PIN diode

Si

C

Si/C

Si/C
A. Lozovoi et al., Nat. Electron., 4, 717 (2021)

20 µm

High Energy Focused Microbeams ~ 1 µm Spot Size
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- 100 kV A&D FIB100NI 
(nanoImplanter)

- 35 kV Raith Velion 
(Velion)

- 35 kV Zeiss Orion Plus 
(HeIM)

- Spot size <10 nm (Ga)
- Energy 10 – 200 keV
- 1/3 periodic table

- High resolution laser stage
- Spot size <6 nm (Ga)
- Energy 1 – 70 keV
- 1/3 periodic table

- High resolution laser stage
- Spot size <1 nm
- Energy 10 – 35 keV
- He

- Piezo stage

All equipped with Lithography Software for Patterning

Low Energy Focused Nanobeams < 1 nm – 20 nm Spot Size



Liquid Metal Alloy Ion Sources – Available Ions7

Adapted from L. Bischoff et al., 
Appl. Phys. Rev., 3 (2016)

Added 8 new elements over past 3 years

E / B Field Scan



Energy Ranges for Focused Ion Beam Implantation

- High Energy (> 1 MeV)
- Specialized high energy ion accelerators
- Best achievable spot sizes ~ 1µm 

- Medium Energy (10 – 200 keV)
- Where FIB systems like to run
- SED imaging / Single ion counting possible
- Best achievable spot sizes ~ 10 nm

- Low Energy (< 10 keV)
- Using FIB in non-standard energy regime
- Targeting single (few) atomic layers
- Targeting resolution ?
- How to get there
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Example of High Energy Ion Implantation – NV Quantum Sensing9

Deep Implantation to shield the implanted ion from surface noise
 NV sensing its crystal environment

- 20 MeV N ions

- Microbeam on 6 MV Tandem



Example of Medium Energy Implantation – Single Ion Counting10

Deterministic placement of single ions
- +4/-1 % error bar on ion #
- < 40 nm targeting resolution

- 200 keV Si++

- 100 kV A&D nanoImplanter

Pathway to creating 
scalable single 
photon emitters



FIB Enabled Quantum Optics11

T. Schroder et al., Nat. Communs., 8, 15376 (2017) 

< 50 nm Targeting Resolution

N. Wan et al., Nature, 583, 226 (2020)

Scalable Implantation

M. Titze et al., Nano Lett. (2022)

Forming Single Photon Emitters



Low Energy Implantation - Motivation

- 2D materials are attractive material class for CMOS-integrable quantum optics

- Deterministic placement of impurity-type emitters is challenging
- Stopping in single atomic layer
- Minimize damage to surrounding lattice
- Introduce non-native atom
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N. Mendelson et al., Adv. Mater., 34, 2106046 (2022)

M. Titze et al., Nano Lett. (2022)



Ion Implantation into 2D Materials

- Formation of vacancies depends on ion energy

- Incorporation of impurities requires ultra-low energy

- Deterministic Placement by Focused Ion Beam 
Implantation

 Theory predicts a range of energies for incorporation
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M. N. Bui et al., NPJ 2D Mater. Appl., 6, 42 (2022)

S. Kretschmer et al., J. Phys. Chem. Lett., 13, 2, 514 (2022)



Challenges with FIB-Based Ultra-Low Energy Ion Implantation

- Spot Size increase due to chromatic abberations

- Range Prediction vs Experiment

- How to reduce Energy to stop in atomic monolayer
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Caveats of Low Energy Focused Ion Beam Implantation

- Chromatic aberrations become more 
prominent for lower energy ions
 Increased spot size

- LMAIS have ~15 eV energy spread
 Landing energy >> 15 eV

- Imaging becomes more difficult with 
low energy ions, since fewer e-h 
pairs
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Si Spot Size of AuSiX LMAIS

- Spot Size

- Range Prediction vs Experiment

- How to reduce Energy to stop in atomic 
monolayer



Binary Collision Approximation and Experiment - Range Comparison 

- Three characterization techniques of ion range
- Secondary Ion Mass Spectrometry (SIMS)
- Rutherford Backscattering Spectrometry (RBS)
- Atom Probe Tomography (APT)
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- Spot Size

- Range Prediction vs Experiment

- How to reduce Energy to stop in atomic 
monolayer

Technique Sample Requirements Depth Resolution Sensitivity Probe Technique
SIMS Best for Si 2 nm 1 ppm Sequential (sputtering)
RBS Any planar sample 2 nm 1 monolayer Full depth (~50 um)
APT Sharp tip geometry 2 A 1 monolayer Sequential (field 

extraction)



Implant Depth Determination - SIMS17



Implant Depth Determination - RBS18

2 MeV 1024 ch. He RBS  Need high resolution data to achieve 2 nm depth resolution



Sample Preparation for Ultra-Low Energy Ion Implantation

- Start out with APT tip

- Pre-dull tip with APT

- Implant with low-energy Au
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Implant Plan

Tip # Energy
2 25 keV
4 10 keV
5 5 keV
12 3 keV
18 2 keV
36 1 keV

APT Measurements done by 
Jonathan Poplawsky at ORNL



Atom-Probe Tomography on Ultra-Low Energy Implanted Sample

- APT needs to be run in Voltage-
mode

- SRIM overestimates range by 6X

- Indicates that 100s of eV will be 
sufficient to target single atomic 
layers

- Can do (at cost of spot size) with 
~15 eV energy spread
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Expanding the Energy Range Further

- 1 keV Au stops within 4 atomic 
layers of SiO2

- To target atomic layers of 2D 
materials

- Stopping in a single layer
- Lower mass ions interesting 

for their optical properties

 Need even lower energy

- Biased sample holder to 
decelerate ions
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- Spot Size

- Range Prediction vs Experiment

- How to reduce Energy to stop in atomic 
monolayer



Ion Source Energy Spread Disallows Focusing

- SIMION Simulations show the ion deceleration leads to increased spot size

- When landing energy ~ energy spread ions get reflected + spot size increases
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Ions at
500 +/- 1 V

Singlet Lens
420 V

Grounded 
0 V

HV Plate
490 V

Ions at
500 +/- 15 V

Singlet Lens
420 V

Grounded 
0 V

HV Plate
490 V



Conclusion

- FIB implantation can likely be performed 
into single atomic layers

- Source energy spread main contributor 
to spot size

- SRIM is off 6X at 1 keV (vs. 30 % error at 
10 keV)
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24 Interaction with CINT Users – Design to Manuscript

Tm for LiNbO3 
Photonics

M. Hosseini @ Purdue

Discussion of design feasibility

Fabricating Device

Ion Implantation

Post-Processing 
+ Measurement

Dongmin Pak, …, M. Titze et al. (in review)



How can YOU access these capabilities? CINT User Proposal25

https://cint.lanl.gov/

The Center for Integrated 
Nanotechnologies (CINT)

https://cint.lanl.gov/

