
P R E S E N T E D  B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National 
Technology & Engineering Solutions of Sandia, 
LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of 

Energy’s National Nuclear Security 
Administration under contract DE-NA0003525.

Off-Hugoniot shock compression of Zr 
probed at the microstructural and 
nanosecond scales with in situ XRD

Patricia  K al i ta ,  Just in  Brown,  Paul  Specht ,  and Seth Root

Melanie  White ,  Andrew Cornel ius  and Jesse  S.  Smith

SAND2022-5055CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Outline2

1. Zirconium structures and phase diagram

2. Shock and static compression at APS – ANL

3. Dynamic vs static XRD: gun vs. diamond anvil cell

4. Kinetics of formation of β-Zirconium
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Shock-driven phase transition at atomic and 
nanosecond scales3
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[1] P. W. Bridgman, PNAAS 81, 165 (1952).
[2] H. Xia, S. J. Duclos, A. L. Ruoff, and Y. K. Vohra, PRL 
64, 204 (1990).

this work: 

o quantify the kinetics of formation of the β-
Zr phase under shock compression
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phase diagram after: C. W. Greeff, Modelling and 
Simulation in Materials Science and Engineering 
13, 1015 (2005).

1. Zirconium structures and phase diagram
2. shock and static compression at APS – ANL
3. dynamic vs static XRD
4. kinetics of formation of β-Zirconium

o Bridgman discovered the ω phase in 1952 [1]

o a lot of studies on α (hcp)  ω (hexagonal)

o ω (hexagonal)  β (cubic) transition discovered 
in 1990 [2]

o β phase is less studied



Advanced Photon Source, ANL4

Advanced Photon Source Image Bank (aps.anl.gov)

• 3rd generation synchrotron 
source

• 1,104m = 3,622 ft.
• X-rays ON 24h/day
• 6 days/week

Sector 35
DCS

Sector 16
HPCAT

X-rays 154 ns
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Dynamic XRD setup: a shock experiment 
with an extended steady-state5

Dynamic XRD setup at DCS, APS, ANL
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DAC compression diagram6
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Static Compression XRD in DAC at high T7
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Shock compression: 
dynamic XRD at 
nanosecond scale

8

1. Zirconium structures and phase diagram
2. shock and static compression at APS – ANL
3. dynamic vs static XRD
4. kinetics of formation of β-Zirconium
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Kinetics of β-Zr under shock9

KJMA Model of kinetics

1. Zirconium structures and phase diagram
2. shock and static compression at APS – ANL
3. dynamic vs static XRD
4. kinetics of formation of β-Zirconium

Avrami 
parameter

• short incubation time τ~0 ns and ~250 ns needed to 
complete the transition are consistent with a first-order 
martensitic kinetics pathway 

• atomic displacement during transition requires tens of ns 
to complete the process

• N < 1: heterogeneous nucleation and simultaneous 
diffusion-controlled crystallization

• our N = 0.415: heterogeneous distribution of nucleation 
sites and a distribution of grain sizes, where 
transformation begins on the surface of grains 
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Summary - takeaway10

• dynamic compression of Zr: first-order, martensitic 
phase transition to β, skipping the ω phase

• static compression of Zr: path to the same 
thermodynamic end-state, but the α + ω + β phase 
sequence is a direct reflection of the thermodynamic 
pathway

• the shocked end state β -Zr is not aware of the 
existence of any intermediate ω-Zr state nor does it 
need to pass through ω-Zr before transitioning to the 
β -Zr phase. 

• first experimental evidence that, at tens of 
nanoseconds, intermediate states are irrelevant in 
shock compression: the Hugoniot truly is a locus of 
end states, which only depend on the initial state 
and the shock strength
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