Thislpaperldescribesfobiectiveltechnicallresultsfandlanalysis JAnvisubiectivelviewslorfopinionsithatimightibelexpressedjin| SAND2022-5055C
helpaperfdojnotinecessarilyirepresentlthefviews|ofltheJU.S JDepartmentjoflEnergyforithejUnitedjStatesjGovernment.
Sandia

National
Laboratories

= = Hugoniot
= DAC compression
% shock...

Off-Hugoniot shock compression of Zr n ':..

steady state
~270 ns

probed at the microstructural and i N

P 'shock

nanosecond scales with in situ XRD g

Argonneé

NATIONAL LABORATORY

Patricia Kalita, Justin Brown, Paul Specht, and Seth Root
- —_ (zENERGY NS4

Melanie White, Andrew Cornelius and Jesse S. Smith " S
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
SandialNationalfLaboratoriesfislalmultimissionllaboratorvimanagedlandjoperatedibylNationalfTechnologvi&IEngineerinalSolutionsiofiSandia ILLC
subsidiaryjoff[Honeywelljinternationalfinc. JforftheJU.S JDepartmentfoflEnergy'siNationalNuclearlSecuritylJAdministrationfundericontractDE-N

Administration under contract DE-NA0003525.



2 I QOutline

1. Zirconium structures and phase diagram
Shock and static compression at APS - ANL _.-D

Dynamic vs static XRD: gun vs. diamond anvil cell
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Kinetics of formation of B-Zirconium
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Shock-driven phase transition at atomic and

nanosecond scales

o Bridgman discovered the w phase in 1952 [1]
o a lot of studies on « (hcp) 2 ® (hexagonal)

o  (hexagonal) = B (cubic) transition discovered
in 1990 [2]

o B phase is less studied

this work:

o quantify the kinetics of formation of the 3-
Zr phase under shock compression

[11P. W. Bridgman, PNAAS 81, 165 (1952).
[21H, Xia, S. J. Duclos, A. L. Ruoff, and Y. K. Vohra, PRL
64, 204 (1990).
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4 I Advanced Photon Source, ANL

« 3rd generation synchrotron
source
 1,104m = 3,622 ft.

« X-rays ON 24h/day
« 6 days/week w "

X-rays 154 ns

Zirconium structures and phase diagram
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kinetics of formation of B-Zirconium
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Zirconium structures and phase diagram

1

2.

3. dynamic vs static XRD

4 kinetics of formation of B-Zirconium

6 I DAC compression diagram

Area Detector: Diamond Anvil Cell

CD PilatUS deteCtOI' Synchrotron X-ray beam
/e micro-focusing optics

o beam stop

! ] = monochromatic
] : S——— synchrotron

y / x-ray beam

1f

DIAMONDS
. [
AR Rietveld structural i
205 6Pl | ~ refinements resistive heating o i
5 i | [ o 5wt% v |8
i [ AU 1wi% % B
S, U - background c [
o] | ; difference 0O [$
-
N (=

) T o e -:
i best: =0, N=0.415, k=0.026] 1

S S —— (d.)i. / Time (ns)



! ‘ Static Compression XRD in D

[ Zr phase - = = Hugoniot 1
1200 diaZram 0 » = DAC compression —
[ 'n * shock... 1
F e () ¥r ..steady state
— [ steady state
X ~270 ns
o 900 |- release 7]
—_ - F
= [ w ¥ s ~10 ns ‘_\f ]
Y L ]
o 750 " -
g' [ » Shock ]
[0} ~1ns 1
= 600 ]
450 [ ]
300 f .
45

Pressure (GPa)

\angle 20 (deg.)

L O
0 5 10 15 20 25 30 35 40

. DAC 094 wt.%
866 K | Ja:5wt%

19.0 GPa

93 96 99 10.2

AC

at high T

———— : . -
([ pac | measured |}
Ezfgoe'éa modelled |}
F— T o 94 wt%H
2 [ Jo 5wt%]
3 AU 1 wt%);
S background |
3 difference |
|| N e— —

I ! ! I T
[ hkl o I | |
| E hkl Au | | |
A ! , ,

1\3' |

ngle 20 (deg.)

DAC o 84wt%
: B 9wt % -
1 O701K | o 6wt%

205 GPa

/.//////.///‘//////V/.//

7
3

9.3

96 99 10.2

N W N -

Zirconium structures and phase diagram

shock and static compression at APS - ANL

kinetics of formation of B-Zirconium
E DAC || e measured E
:'229?),13; —— modelled 4
— 2 difference |]
a 2B 73wWt% ]
L : 25 wt% /]
Z [ Jo A
’/ o 1 wt% ;

background/
. |
7

G, 147

A G

LR TLT T T 77 7 R AT 77 T 777 7 R 7 A7 7 77 7 77 7R 747 7 d A 7R Z AL

12 14 16
angle 20 (deg.)

B 73 Wt.%
L o 25wt%

j a: 1 wt.%
’////
|

%
.

77777777777 //%
93 96 99 102

A

7

’

/-

/
f
1
1
!
!
1
S

SN\

NN\
N

“\\\‘\“\\\\

S




Shock compression:

8 ¥ dynamic XRD at
nanosecond scale
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Zirconium structures and phase diagram
shock and static compression at APS - ANL

1
2.
9 Kinetics Of S-Zr’ under ShOCI( i dynamic vs static XRD

2: steady P & T state - slow 8 growth

i l = * short incubation time 1~0 ns and ~250 ns needed to

11— 'If: I% I ] complete the transition are consistent with a first-order
martensitic kinetics pathway

atomic displacement during transition requires tens of ns
to complete the process
* N < 1: heterogeneous nucleation and simultaneous
%H ] diffusion-controlled crystallization
| « our N =0.415: heterogeneous distribution of nucleation
] sites and a distribution of grain sizes, where
transformation begins on the surface of grains
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10 I Summary - takeaway

dynamic compression of Zr: first-order, martensitic
phase transition to 3, skipping the w phase

static compression of Zr: path to the same
thermodynamic end-state, but the « + » + g phase
sequence is a direct reflection of the thermodynamic
pathway

the shocked end state 8 -Zr is not aware of the
existence of any intermediate w-Zr state nor does it
need to pass through w-Zr before transitioning to the
B -Zr phase.

first experimental evidence that, at tens of
nanoseconds, intermediate states are irrelevant in
shock compression: the Hugoniot truly is a locus of
end states, which only depend on the initial state
and the shock strength
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