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Introduction

The friction between bare, metal-on-metal contacts is traditionally under-
stood to be high, with friction coefficients near or exceeding pu = 1.0, accom-
panied by significant galling and wear. Despite this, metals remain the only
feasible materials for numerous essential engineering applications and compo-
nent designs due to their favorable mechanical and structural properties. How- |
ever, particular investigations of metal-on-metal friction have reported that it is 7
possible to achieve remarkably low-friction behavior (x < 0.5) on bare surfaces. | '
For pure, bare metals sliding in inert environments, it defies convention that the
friction behavior should be anywhere below values commensurate with strong
and rapid interfacial bonding. This unusual low-friction regime appears to be
associated with the formation and persistence of a stable nanocrystalline surface
film, with grain sizes well below 100 nm.
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