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RRO6
» . The Peat Fire Problem

Peat < 3% of land, but contains 25% of terrestrial
carbon

Peat plentiful in the Arctic and tropical regions

LS

Fires increase with climate change

Peat becomes a carbon source

Peat fires release substantial CO, and other
greenhouse gases

Difficulty estimating mass of peat consumed creates
large uncertainties in predictions of emissions
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3 | Research Approach

Motivation: more accurate predictions of greenhouse gas emissions in earth system
models

Approach: Address uncertainties in peat fire dynamics and smouldering through an
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Bench top experiments Physics-based modeling

» Describe pyrolysis and » Elucidate physical phenomena
oxidation processes ﬁ « Explore experimental
« Validate model parameter space over greater
range of conditions
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+ | Experimental Methods 50 mm

T
= N
igniter
Cuboidal peat samples with different cross sectional areas
Vertical and horizontal orientations
Open boundaries constructed by using stainless-steel mesh sample holders >
&Erﬂ
. . 5 g Ul
Commercial sphagnum moss peat dried 48 hr at 80°C s Ly
., : . : ; £ = i
Ignition: 50 W for 5 min using nichrome wire S 3 Q91
z Mm:
Measurements: :
Burning rate: Real time mass s
. : 5 M
Pyrolysis front: Centerline temperature (0.25 mm K-type TC) 2 2
Propagation rate: Time-lapse images E;%
Vertical Configuration zZ >
e ) e 2
E Ahel \, 5 e
b o e % ,: ~ I '
" Burned .\ Unburned b
Smoulder Front ;e:\?@:&%
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5

Experimental Mass Loss Results

Duration of smouldering increases for larger

samples

Propagation direction changes smouldering

dynamics

Vertical: period of high mass loss rate (MLR)

followed by period of lower MLR
Horizontal: quasi-steady MLR
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s | Experimental Moisture Content Results

0% MC
== =10% MC
20% MC
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Mass loss rate is highest for dry peat

Negligible differences between 10% and 20% MC
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RRO6

Computational Methods 100 kw/m? for 300 s

U

Smoldering front

r

1-D smouldering model

Implement Huang and Rein’s 1D model in Sierra
Thermal/Fluids: Aria

Including reaction mechanism, reaction parameters, and
material properties

LS

Drying front

R

Solves conservation of mass, species, and energy
equations in condensed and gas phases

Uses Darcy's law for flow through porous media to calculate
gas phase velocity

Wet peat NS &
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Radiative cooling

Solves quasi-static conservation of momentum (to account
for collapse)
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s « Computational Sensitivity Study of Heat Transfer

Considered peat material properties Effects of changing initial material
Bulk density properties on peat temperature
Bulk conductivity At discrete locations
Molecular weight Over time

Solid permeability
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o |« Optimal Moisture Content and Bulk Density

Proctor compaction test
ASTM D1557

Remove air from peat

w
o
U

HRVES
I
ISH

W
o
o

Optimal moisture content:

Highest dry density of peat (i.e.
most air removed)
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10 . Conclusions and Future Work

Experiments and modeling identified key characteristics of peat smouldering problem
Bulk density is critical in model
Cross sectional area and sample orientation impact smouldering dynamics, including MLR
Optimal MC of 10-20% provides highest dry soil density
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Future work:
Validate model with experimental data

AT TEMOLLY WAL U
x

Consider sensitivity of smouldering soil
Investigate relationships between parameters in sensitivity study
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2 | Ranges for sensitivity study

Property Lower Limit | Upper Limit
Bulk conductivity (W/mK)

Bulk density (kg/m?3)

Molecular weight (kg/mol)
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3 | Sensitivity of other material properties att =600 s
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1+ | Sensitivity of key material propertiesatt =100 s

Bulk conductivity Soil bulk density
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RRO6
s - Compaction diagram

Compaction
Increases the shear strength and
Reduces the settlement of soil by mechanical means
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