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/ Property-Performance Relationships in Energetic Materials
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Direct numerical simulations of energetic material microstructures predict the materials response

Cole D. Yarrington, Ryan R. Wixom, and David L. Damm, "Shock interactions with heterogeneous energetic materials", Journal
of Applied Physics 123, 105901 (2018)



/ Microstructure Characterization

Argon ion cross-section
polishing
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High resolution SEM image (10 nm/pixel) [Credit: Rob Knepper, SNL]

Wixom et al. J. Mater. Res. 25 1362 (2010).
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* Reaction products EOS uses a SESAME table
which includes states off the (] adiabat
(accessed during hotspot formation)

/ Model Description - EOS, Strength, and Reactive Burn Model

o Plastic deformation of the solid crystal at voids
and defects generates heat and increases the
local temperature (hot spots)

o Reaction rate depends on local temperature in
the solid

k= A exp(-E/RT)

o We use the activation energy, E, based on
thermal decomposition data

o Frequency factor, A, is adjusted (calibrated) so
that flyer impact simulations match experimental
data

Constitutive models for strength and plasticity
determine the amount of heat generated by
viscous heating and ejecta impact during pore
collapse

—>These models are a major source of
uncertainty in hydrocode simulations

Problem.: Strength and plasticity of energetic molecular crystals at high strain rates & sub-micron length scales

“



Coupling Continuum Hydrocode and MD Simulations

Continuum
Hydrocode

Atomistic Properties

Continuum Properties Propagated Up:

Propagated Down:

* Global reaction kinetics

» Strength model
parameters

« Effects of anisotropy in
strength, EOS

« Validate ‘sensitive’
microstructures

‘Critical’ local microstructlire
features

 Evaluate measures of
sensitivity

Molecular
Dynamics

Quantum Methods

M Wood et al. Phys Rev B. 97 014109 (2018). ‘
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et Lo J Brown, M Wood, M Sakano, J Hartig; “Multiscale Development of Predictive
Constitutive Models to Resolve the Shock to Detonation Transition,” APS SCCM 2022
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/ Automated Continuum Strength Model Calibration
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Steinberg Guinan Lund! strength model|
Yield Strength: Y ={Yr(&,,T) + Yaf (&p)} {Parameter sets}
Shear Modulus: G(P,T) = Go Bolded inputs

were trained -
Thermal Activation: : 20 (. Y7\ ! Yr<V, )} D A K D I A
¥y

?f,eﬁnﬁgwig? T ) T = Toexp{2a(1 — 1/n)}y?Ye=a=1/3)
- = ‘m

_ {1, f2vk(,_ [

(Implicit Equation) = {‘7' e (1o77) | + YT}
CTH an MD ad
dt dt

* [teratively runs CTH calculations for
each parameter set in real time
« DAKOTA workflow is automated

Grlneisen parameter: Y =vo/(1+ p) argmin

* Assume a constant shear modulus
* Neglect work hardening
« Assume linear variation of the Gruneisen parameter
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Optimization Delivered a Strength Model Calibrated to MD

Calibrated Results Pore Collapse is size-dependent
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Continuum hyarocode (CTH) strength models were trained using results from MD

J Brown, M Wood, M Sakano, J Hartig; “Multiscale Development of Predictive
Constitutive Models to Resolve the Shock to Detonation Transition,” APS SCCM 2022




Hydrocode Simulations - Hotspot Formation

Microstructure @ t =0 Pressure @ t=6 ns Temperature @ t =6 ns
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Inert simulation (no reaction) of hotspots, with pressure and temperature fields at
time = 6 ns after impact.
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Effects of strength model

No strength; Elastic-Plastic Model :
- SGL (strain-rate dependent) Model
Temperature @ t =6 ns Temperature @ t=6ns Temperaturep@ t=6ns
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Inert simulation (no reaction) of hotspots due to void collapse and viscous heating;

(Impact pressure ~12 GPa) ﬂ




Hotspot Temperature (with Reactions)

Elastic-Plastic Model SGL (strain-rate dependent) Model
Initial Microstructure Temperature @ t=6.5ns Temperature @ t = 6.5 ns
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Simulations including reactions show the effects of strength model on the number, size,

and shape of hotspots. ‘




Effects of strength on hotspot reaction

Elastic-Plastic Model SGL (strain-rate dependent) Model
Initial Microstructure Reactions @ t=6.5 ns Reactions @ t = 6.5 ns
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“Extent of reaction” variable (varies between 0-1), illustrates the location of burning
hotspots relative to the location of defects in the initial microstructure. ‘
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/ Elastic-Plastic Model
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Full-scale, Direct Numerical Simulations of Detonation

Pressure Profiles (3 km/s)
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P’ Concluding Remarks
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Multi-scale modeling of energetic materials is rapidly advancing and enabling predictions
of microstructure-performance relationships

*  SNL has active research programs in Atomistic / Molecular Dynamics and Mesoscale
Modeling of HE

« Qur objective is to develop predictive models of energetic material response (Models
that are right, for the right reasons)

Material strength and plasticity play a crucial role in the formation of hotspots
« Models are difficult to validate experimentally at < yum length scales
« Astrain-rate dependent strength model (SGL) was trained using MD results

* The new model significantly influences the details of hotspot formation and run-to-
detonation (vs. naive approaches such as no strength or elastic-plastic)

 This multi-scale approach has added credibility to mesoscale simulations of shock
initiation
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