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Full-scale Flow Model and Solver Behavior
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Numerical simulation of non-isothermal multiphase porous flow combined with Cropped view of the
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The fully-refined 12 PWR model computational wall clock time with 144 cores. Newton solver was not
able to complete this simulation with 144 cores in 96 h because it could not resolve all the state changes
that occur near the peak temperature in the simulation. 40,000 non-physical solution time step cuts
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observed that many Newton-Raphson (NR) iterations failed to converge due to
oscillatory behavior. This problem is causing unacceptably large computational time

Newton Trust-Region Dogleg Cauchy

Newton Trust-Region Dogleg Cauchy (NTRDC) works in a way that first defines a region
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regional flow
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Nonlinear Iteration at Time Step Cuts for 12 PWR

30+

S,
I

Nonlinear Iteration at Time Step Cuts for 24 PWR

Nonlinear Iteration at Time Step Cuts for 37 PWR

W
o
|

S,
I

30

)]
I

57 . 733°
cuts .. Cuts cuts

1172

due to lack of growth in time step sizes in the simulator. Newton trust-region (NTR) PV TP PR —— 5: Backfill were recorded for Newton in 96 h of the incomplete simulation. (Park et al., 2022)
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around the current best solution in which a quadratic model can, to some extent,

approximate the original objective function (Park et al., 2021)
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The time history of nonlinear iterations after time step cuts, linear iterations and time step size for the
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z " o= Nome * Heat-forced dry-out and re- size after the time cuts, 4 [Y]. The bottom figures show the time history of time step cuts and the
f(w): 2-norm Y g 10" saturation by natural forces number of nonlinear iterations needed to complete the time step after one or more time step cuts for
_%;M‘ %m_ e Testing extreme nonlinearities the three different power levels of the radioactive wastes. The 37 PWR (highest power output) had the
We want to find a solution p that is within the step size of A that minimizes the ED :g on both ends of the capillary greatest number of cuts, but had the shortest overall computation time because the average number of
quadratic model m. ‘ 10 pressure .a'nd relative linear iterations required to complete the time step was the lowest. Resaturation of the repository area
0.0 permeability curve was easiest to resolve nonlinear constitutive relations for the 37 PWR case because it generated the
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largest pressure and saturation gradient among the three cases.
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