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Introduction

Traditional discrete fracture models implementing matrix diffusion can be computationally expensive and
only applicable to simplified transport problems. Upscaling to a continuum model can reduce
computational burden, but models based on only a primary continuum neglect fracture-matrix interaction.
PFLOTRAN, a subsurface flow and reactive transport code, simulates a secondary continuum (matrix)
coupled to the primary continuum (fracture) modeled as a disconnected one-dimensional domain using a
method known as the Dual Continuum Disconnected Matrix (DCDM) model. This work presents several
benchmarks to compare PFLOTRAN’s DCDM model to analytical solutions and a large-scale test problem in
a one cubic km fractured domain modeling a conservative tracer with diffusion into the rock matrix. The
tracer is compared using two different methods: first, with a Discrete Fracture Network (DFN)
representation, and second, using the DCDM in PFLOTRAN where fractures were upscaled to an Equivalent
Continuum Porous Medium (ECPM). We find that the DCDM representation of the upscaled fracture
network produces results comparable to the DFN and analytical solutions where available, verifying this
method. We then extend the DCDM model to be used in a fractured domain considering radionuclide
isotope sorption, partitioning, decay, and ingrowth and find that radionuclide retardation is enhanced
when considering these additional mechanismes.

Modeling Approach

DCDM Representation in PFLOTRAN
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The primary continuum in the DCDM model in PFLOTRAN is solved via,
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€¢ is the fracture volume fraction, @ is porosity, ¥, is the total component concentration (includes aqueous
complexes) of species j, {2/ is total solute flux in the fracture, 2/™ is total solute flux between the fracture
and matrix, Ag, is the fracture-matrix interfacial area, v is the stoichiometric coefficient, I" is the mineral
reaction, and S is the sorption isotherm. The secondary continuum is modeled as a one-dimensional
domain where diffusive fluxes occur perpendicular to the fracture wall,
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where the gradient operator V, refers to the effective one-dimensional secondary continuum geometry.
The equations for the primary and secondary continuum are solved separately and coupled together by
the mass exchange flux assuming symmetry along the axis dividing them,
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where x is a point in the fracture, t is time, and ¢, is the outer boundary of the matrix. Fractures were
created and simulated as:

Multiple Continuum Approach to Modeling Radionuclide Transport in

Fractured Networks

Benchmarks
Single Fracture Analytical Solution — Tang et al., 1981
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Four-Fracture DFN

Transport of a conservative tracer is simulated through four Parameter Value
deterministic fractures in a one km cubic domain with
diffusion into the rock matrix. Constant pressure boundary
conditions were applied on the west and east faces. An initial
pulse of tracer was inserted uniformly along the fractures on
the west face. The tracer exits the domain through the
fractures on the east face. All other faces were assigned no
flow boundary conditions. Diffusion into the matrix occurs
along the fractures.
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Four-Fracture DFN Plus Stochastic Fractures

The four-fracture benchmark case was expanded on by adding stochastic fractures in the domain. Pressure
and effective diffusion coefficient were altered to reduce breakthrough time.
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Used Fuel Disposition Decay Model

The Used Fuel Disposition (UFD) Decay Model in PFLOTRAN models radionuclide isotope decay, ingrowth,
and phase partitioning and was created as part of the Geologic Disposal Safety Assessment (GDSA)
Framework. The total mass of each isotope decays according to the Bateman Equations. The UFD decay
model was applied to the single fracture problem considering the isotope ***Am decaying to 23’Np versus
a non-decaying tracer with diffusion into the rock matrix via the DCDM model.
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An increase in radionuclide retardation is seen when considering decay. The problem was then applied
to the 4-fractures with an inlet pulse of 2*1Am decaying to 23’Np.
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Conclusions
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