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Neural Networks and Analog Accelerators

Neural
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Select Device Necessary for Write Operation

Many devices “half-selected”
during write operation

Draws current ruining power
efficiency

Select devices are a solution

1T1R memory arrays solve this
better than 1S1R arrays do

However, 1T1R is less compact
and may be incompatible with
back-end-of-line integration of
dense memory arrays
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Effective Conductance of 1S1R

 Some voltage is dropped across the select device

* To achieve correct output current, a higher voltage must be applied
* This additional voltage changes as a function of the conductance
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The blue dashed line
represents y=x or the
conductance of the
resistor by itself.



Compensation Voltage
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« Compensation voltage can be found perfectly for a single cell

* Function of select device steepness, resistor conductance, and “nominal” voltage
 Nominal voltage is the voltage across the resistor necessary to output the correct current
* Not practical to implement individual compensation for each cell

* Pick one compensation voltage for entire array with goal of minimizing error
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Weighted vs Unweighted Compensation
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Fig. 5. (a) unweighted compensation (b) weighted compensation
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ZIIROSS SIMM Results
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Unweighted compensation accuracy on both MNIST and
CIFAR-10 is minimally affected by device steepness and
conductance on/off ratio
Assuming a realistic 60mV/dec, unweighted compensation
achieves an accuracy of 90.29%

This is only 0.44% below ideal floating-point results
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Conclusions

* Non-volatile memory arrays with a 1S1R topology can be made compatible with
accurate neural network inference if the errors induced by the select device are
appropriately compensated

* Showed that a single compensation voltage, applied uniformly across the entire
system, can effectively reduce these errors to enable accurate inference

» With this compensation, a CIFAR-10 accuracy that is within 0.44% of the floating-
point digital result can be achieved using a realistic selector with 60 mV/decade
steepness

* The accuracy is insensitive to the memory device On/Off ratio

* These results are promising for the use of dense 1S1R arrays for analog neural
network inference

* Future work should investigate how selector-induced errors interact with other
sources of analog error, and how these different errors can be mitigated together

- These include parasitic resistance, process variations, other non-idealities, etc.
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