This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressediin
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

LDMS Streams Integration: For Run Time
Diagnosis of HPC Applications

Sara Walton, SNL

Devesh Tiwari, Northeastern University

Ana Luisa V. Soldérzano, Northeastern University

Omar Aaziz, SNL

Ben Schwaller, SNL

Jim M. Brands, SNL _ _ .

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

SAND2022-16974C

@ceNERGY NISA

onal Wucloar Securty Aamins

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-
NA0003525.

LDMS Streams Integration: Motivation

Application performance continues to show high variations on large-scale production systems. This can be
caused by a variety of system related components (i.e. system usage, file system, network congestion, etc.)

« Difficult to determine root cause of performance related problems

- Difficult to have a thorough understanding of throughput for system-specific behaviors and application performance of
similar applications across a system

Timestamped time-series of performance profiling and 1/0 data at run time is needed to find errors, correlate
with other events, and take actionable response.

Enable HPC users, system administrators, application developers, system architects and researches to gain
further insights into application performance and interaction with system resources.

Developed tools for Darshan, Caliper and Kokkos that provides performance profiling and I/0 event
timeseries data to be analyzed in real time.

Darshan
. Uses Darshan’s I/0 tracing events to collect to generate time-series histories of 1/0 behavior

. Provides absolute time-series timestamps that can be used to evaluate I/0O performance in many levels of the
/0 subsystem

. Captures read/write/close/open/flushes events for POSIX, MPI-10, STDIO and HDF5 data

Caliper

. Take advantage of Caliper framework to easily instrument application codes or keep the current
instrumentations.

. Allow users to collect Caliper data parallel to other system metrics currently being collected by LDMS on
production machines.

Kokkos

* Leverage performance and progress instrumentation already implemented within Kokkos. User does not need
specify what data to collect.

|
LDMS Streams Integration: Benefits m
|

* No application changes or recompilation required.

Provide the ability to correlate application performance and I/0 behavior to system monitoring data.

LDMS Streams Integration: Overview

LDMS Streams: An LDMS message bus (publish/subscribe) capability that enables injection of application progress and performance
information, during runtime, into its data stream.

Darshan: A lightweight I/O characterization tool that transparently captures application I/O behavior from HPC applications with minimal
overhead.

Caliper: A program instrumentation and performance measurement framework that allows others to implement analysis capabilities (e.g.
performance profiling, tracing, monitoring, and auto-tuning) into applications using Caliper’s annotation API.

Kokkos: A C++ parallel programming ecosystem for performance portability across multi-core, many-core, and GPU node architectures.
Provides abstractions of parallel execution of code and data management.

Kokkos Data Collection Darshan Data Collection
kokkosConnector darshanConnector
A Kokkos-LDMS functionality that utilizes LDMS Streams to collect Kokkos A Darshan-LDMS functionality that utilizes LDMS Streams to collect
related data during runtime. Kokkos sampler controls the sampling rate Darshan’s original /O tracing, Darshan’s eXtended tracing (DXT) and
and provides the option to sample data using a count-based push. absolute timestamp during runtime. Publishes JSON formatted message
Publishes JSON formatted message to LDMS Streams interface. to the LDMS Streams interface.

Caliper Data Collection

caliperConnector

A Caliper-LDMS functionality that utilizes LDMS Streams to collect
Caliper related data and absolute timestamp during runtime.
Publishes JSON formatted message to the LDMS Streams interface.

o
!

LDMS Streams Integration: Darshan Data Injection
darshanConnector

Connector Darshan
i darshan-core 3
HAVE_LDMS
| module_initialize
—> darshan_ldms_initialize \

runtime data

* ENABLE_LDMS (¢-=— -~
v

\/

Darshan Log File

LDMS Transport
. .) . L * Check if any <module>_ENABLE_LDMS env variable is set.
y _ —
#module,uid,ProducerName,switches,file,rank,flushes,record_id,exe,max_byte, type,job_id,op,cnt,se Re-connect to LDMS daemon if it did not initialize
g:off,seg:pt_sel,seg:dur,seg:len,seg:ndims,seg:reg_hslab,seg:irreg_hslab,seg:data_set,seg:npoints,se I o ’
g:timestamp,seg:total,seg:start Gather meta data of I/O events.

"POSIX",12345,“n1",-1,“/home/user/mpi-io-test.tmp.dat",0,-
1,7268045394536033567,“/home/user/mpi-io-test",-1,"MET",11801265,"open",1,-1,-1,0.000602,-1,-1,-
1,-1,"N/A",-1,1669666470.827069,0.000602,0.329433
"POSIX",12345,“n1",-1,"N/A",0,-1,7268045394536033567,"N/A",-1,"MOD",11801265,"close",1,-1,-
1,0.000177,-1,-1,-1,-1,"N/A",-1,1669666470.827495,0.000778,0.330284

LDMS Streams Integration: Darshan Configuration

Darshan - Build and install Darshan-LDMS integrated code and set a single env variable
* Build against the [dms library by adding --with-ldms=<path-to-LDMS-install> to the configuration line.
« Set the LD_PRELOAD environment variable to the full path of the Darshan shared library before executing an application.

* LD_PRELOAD = <absolute-path>/libdarshan.so OR srun -n 4 --export=LD_PRELOAD=<absolute-path>/libdarshan.so
<application>

LDMS & Darshan - Set the following list of environment variables to connect to an LDMS streams daemon and
published I/0 event data:

« *MODULE* ENABLE_LDMS = Set to publish *MODULE* module data to LDMS daemon.
 DARSHAN_LDMS_PORT = Port number that the LDMS daemon is listening on.
 DARSHAN_LDMS_HOST = Hostname that the LDMS daemon is running on.
 DARSHAN_LDMS_XPRT = Type of transport the LDMS daemon is listening on.
 DARSHAN_LDMS_STREAM - Name tag (identifier) of the stream.

|
LDMS Streams Integration: Caliper Application Data Injection m

caliperConnector

CALI_MARK_LOOP_END(fooloop, “fooloop");

Application Code Caliper Framework
foo() {

CALI_MARK_FUNCTION_BEGIN; — +
CALI_MARK_LOOP_BEGIN(fooloop, “fooloop"); - Snapshot %
§ c
for(...){ — S LDMS Connector {©
% -publishes to LDMS —
} o) Streams API g
()]
—

CALI_MARK_FUNCTION_END;
}

{"job_id":11878171,"ProducerName":“n1","rank":0,"timestamp":1670373198.056455,"region":"init","time":33.172237 }

.
Callper runtime measurement Conflguratlon {"job_id":11878171,"ProducerName":"n1","rank":0,"timestamp":1670373198.056455,"region":"initialization","time":33.211929 }

COhtI’OlS the sampling rate in the SnapShOt {"job_id":11878171,"ProducerName":“n1","rank":0,"timestamp":1670373198.056455, "region":"main","time":44.147736 }
tri {"job_id":11878171,"ProducerName":“n1","rank":0,"timestamp":1670373203.556555, "region":"main","time":0.049086 }
rlggers {"job_id":11878171,"ProducerName":“n1","rank":0,"timestamp":1670373203.556555,"region":"run","time":0.049086 } I

* Target collection: user preference

LDMS Streams Integration: Caliper Configuration

Caliper - Build original Caliper program with the application and export a single env variable
* No modifications to Caliper's code or instrumentation were required to integrate LDMS.
* Point the LD_LIBRARY_PATH to Caliper’s library

* LD_LIBRARY_PATH= $LD_LIBRARY PATH:<path-to-caliper-installation>/lib64

LDMS & Caliper - Set the following list of caliper variables when executing a program:
 CALI_LOOP_MONITOR_ITERATION_INTERVAL - Collect measurements every n loop iterations
CALI SERVICES ENABLE > Define which services will be combined to collect data

* Enable LDMS service to collect data through LDMS by adding “Idms” to CALI_SERVICES ENABLE

« Enable MPI service to associate the MPI rank to the LDMS data by adding “mpi” to CALI_SERVICES_ENABLE

EXAMPLE:

CALI_SERVICES_ENABLE=/oop_monitor,mpi,ldms CALI_LOOP_MONITOR_ITERATION_INTERVAL=70 ./caliper_example.o
400

OR
export CALI SERVICES _ENAEBLE=loop_monitor,mpi,ldms
export CALI_LOOP_MONITOR_ITERATION_INTERVAL=70

LDMS Streams Integration: Kokkos to LDMS Publish
kokkosConnector

Application Code Kokkos Runtime Code

Kokkos::parallel_for(..., call kokkosp_begin_parallel_for(..)

KOKKOS_LAMBDA(int i) {

<loop body> <execute loop body>

3, Kokkos
call kokkosp_end_parallel for(..) “Sampler”
00 -Keeps statistics and

L timing to determine

LDMS_stream_publish

* Kokkos Sampler controls the sampling rate.
When triggered, it signals for the Kokkos
Connector to publish data to LDMS. Kokkos-LDMS Connector

-Publishes to LDMS Streams API

* The Kokkos Connector and Sampler have
been used in production systems.

LDMS Transport

#timestamp, job_id, rank,name, type,current_kernel_count, total_kernel_count,level, current_kernel_time, total_kernel_time
1627835612.086679,10195735,1,Kokkos: :View: :initialization [diagnostic:Solver Field:B_Field:temp],®,1218B,57972687,0,0.000085,182.693422
1627835613.709526,18195735,1, TimeAverage: : Continuous,®,24758,57972788,0,0. 000006, 182. 693428
1627B35616.787472,10195735,1,MigrateParticles::count,1,35408,579726889,0,0.000001,182.693430 9
1627835620, 448333, 18195735, 1,50 lverInterface: :Apply Trivial BC,®,7512,57972990,0,0.000002, 182.693432

10

LDMS Integration: Kokkos Configuration

Kokkos - Build and install Kokkos-LDMS integrated code and export a single env variable

* Set the KOKKOS_PROFILE_LIBRARY environment variable to the full path of the kokkos kernel and kokkos-ldms sampler
shared library files:

KOKKOS_PROFILE_LIBRARY = <absolute-path>/kp_sampler.sdh.so,; <absolute-path>/kp_kernel_ldms.so,

LDMS - Export the following env variables for the LDMS library
* LD_LIBRARY_PATH= $LD_LIBRARY PATH:<path-to-ldms-library>/lib64
* PATH= $PATH:<path-to-ldms-bin>/bin:<path-to-ldms-sbin>/sbin

LDMS & Kokkos - Export the following list of environment variables to connect to an LDMS streams daemon and
set the kokkos sampler rate:

 KOKKOS_LDMS_PORT = Port number that the LDMS daemon is listening on.

« KOKKOS_LDMS_HOST = Hostname that the LDMS daemon is running on.
 KOKKOS_LDMS_XPRT = Type of transport the LDMS daemon is listening on.
 KOKKOS_LDMS_STREAM > Name tag (identifier) of the stream.
 KOKKOS_LDMS_SAMPLER_RATE= Optionally sample Kokkos data. Default is 101 (1%).
 KOKKOS_LDMS_VERBOSE* - Optionally display extra information. Default is disabled.

* Contains information about the kokkos sampler so users are aware of
the rate at which they are collecting data (i.e. 1% vs 100%)

LDMS Integration: Data Flow Diagram

HPC System Storage/Analysis System

Time

v

Application

Darshan/Caliper/Kokkos

Connector

Analysis and
Visualization

h

Long-term
data store

LDMS Streams

* Overhead Testing (Darshan/Caliper)
* Experiments collecting Darshan/Caliper information only + LDMS-Integration

* Collect LDMS system monitoring information in the background (Darshan/Caliper)
* Ability to correlate absolute timestamp with system health

« Stream Injection notification with throttling
Darshan

- Validation against a varied set of applications:
« Benchmarks - HACC-IO, MPI-IO, Scientific I/0 kernels (e.g. FLASH, OpenPMD, E2E benchmarks, etc.)

* “Real world” - Quantum Espresso, STDIO, etc.
* Investigate difference between NFS and Lustre filesystems
Caliper

« Validation against various services with Caliper’'s annotation API
+ Context annotations, measurement services and data processing services

* Preserve hierarchy of function executions

Kokkos

I
12 I Next Steps m
I

« Utilize Kokkos Sampler feature on other applications of interest

* Investigate run time telemetry collection on non-Kokkos applications

Questions?

