
Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International

Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-

NA0003525.

LDMS Streams Integration: For Run Time
Diagnosis of HPC Applications

Sara Walton, SNL
Devesh Tiwari, Northeastern University
Ana Luisa V. Solórzano, Northeastern University
Omar Aaziz, SNL
Ben Schwaller, SNL
Jim M. Brands, SNL

SAND2022-16974CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

LDMS Streams Integration: Motivation

Application performance continues to show high variations on large-scale production systems. This can be
caused by a variety of system related components (i.e. system usage, file system, network congestion, etc.)

• Difficult to determine root cause of performance related problems

• Difficult to have a thorough understanding of throughput for system-specific behaviors and application performance of
similar applications across a system

Timestamped time-series of performance profiling and I/O data at run time is needed to find errors, correlate
with other events, and take actionable response.

Enable HPC users, system administrators, application developers, system architects and researches to gain
further insights into application performance and interaction with system resources.

Developed tools for Darshan, Caliper and Kokkos that provides performance profiling and I/O event
timeseries data to be analyzed in real time.

2

LDMS Streams Integration: Benefits

Darshan

• Uses Darshan’s I/O tracing events to collect to generate time-series histories of I/O behavior

• Provides absolute time-series timestamps that can be used to evaluate I/O performance in many levels of the
I/O subsystem

• Captures read/write/close/open/flushes events for POSIX, MPI-IO, STDIO and HDF5 data

Caliper

• Take advantage of Caliper framework to easily instrument application codes or keep the current
instrumentations.

• Allow users to collect Caliper data parallel to other system metrics currently being collected by LDMS on
production machines.

Kokkos

• Leverage performance and progress instrumentation already implemented within Kokkos. User does not need
specify what data to collect.

• No application changes or recompilation required.

Provide the ability to correlate application performance and I/O behavior to system monitoring data.

3

LDMS Streams Integration: Overview

Darshan: A lightweight I/O characterization tool that transparently captures application I/O behavior from HPC applications with minimal
overhead.

Caliper: A program instrumentation and performance measurement framework that allows others to implement analysis capabilities (e.g.
performance profiling, tracing, monitoring, and auto-tuning) into applications using Caliper’s annotation API.

Kokkos: A C++ parallel programming ecosystem for performance portability across multi-core, many-core, and GPU node architectures.
Provides abstractions of parallel execution of code and data management.

caliperConnector

A Caliper-LDMS functionality that utilizes LDMS Streams to collect
Caliper related data and absolute timestamp during runtime.
Publishes JSON formatted message to the LDMS Streams interface.

LDMS Streams: An LDMS message bus (publish/subscribe) capability that enables injection of application progress and performance
information, during runtime, into its data stream.

Caliper Data Collection

Darshan Data Collection

kokkosConnector

A Kokkos-LDMS functionality that utilizes LDMS Streams to collect Kokkos
related data during runtime. Kokkos sampler controls the sampling rate
and provides the option to sample data using a count-based push.
Publishes JSON formatted message to LDMS Streams interface.

Kokkos Data Collection

darshanConnector

A Darshan-LDMS functionality that utilizes LDMS Streams to collect
Darshan’s original I/O tracing, Darshan’s eXtended tracing (DXT) and
absolute timestamp during runtime. Publishes JSON formatted message
to the LDMS Streams interface.

LDMS Streams Integration: Darshan Data Injection

#module,uid,ProducerName,switches,file,rank,flushes,record_id,exe,max_byte, type,job_id,op,cnt,se
g:off,seg:pt_sel,seg:dur,seg:len,seg:ndims,seg:reg_hslab,seg:irreg_hslab,seg:data_set,seg:npoints,se
g:timestamp,seg:total,seg:start
"POSIX",12345,“n1",-1,“/home/user/mpi-io-test.tmp.dat",0,-
1,7268045394536033567,“/home/user/mpi-io-test",-1,"MET",11801265,"open",1,-1,-1,0.000602,-1,-1,-
1,-1,"N/A",-1,1669666470.827069,0.000602,0.329433
"POSIX",12345,“n1",-1,"N/A",0,-1,7268045394536033567,"N/A",-1,"MOD",11801265,"close",1,-1,-
1,0.000177,-1,-1,-1,-1,"N/A",-1,1669666470.827495,0.000778,0.330284

Darshan Log File

read, write, close

runtime data

* Check if any <module>_ENABLE_LDMS env variable is set.
 Re-connect to LDMS daemon if it did not initialize.

** Gather meta data of I/O events.

module_initialize
HAVE_LDMS

darshan_ldms_initialize

 open**
*_ENABLE_LDMS

darshan_ldms_connector_send

JSON buffer

darshan-core
Connector Darshan

runtime data

LDMS Transport

Aggregate &
calculate data

darshanConnector

LDMS Streams Integration: Darshan Configuration

Darshan – Build and install Darshan-LDMS integrated code and set a single env variable
• Build against the ldms library by adding --with-ldms=<path-to-LDMS-install> to the configuration line.
• Set the LD_PRELOAD environment variable to the full path of the Darshan shared library before executing an application.
• LD_PRELOAD = <absolute-path>/libdarshan.so OR srun -n 4 --export=LD_PRELOAD=<absolute-path>/libdarshan.so

<application>

LDMS & Darshan – Set the following list of environment variables to connect to an LDMS streams daemon and
published I/O event data:
• *MODULE*_ENABLE_LDMS  Set to publish *MODULE* module data to LDMS daemon.
• DARSHAN_LDMS_PORT  Port number that the LDMS daemon is listening on.
• DARSHAN_LDMS_HOST  Hostname that the LDMS daemon is running on.
• DARSHAN_LDMS_XPRT  Type of transport the LDMS daemon is listening on.
• DARSHAN_LDMS_STREAM  Name tag (identifier) of the stream.

6

LDMS Streams Integration: Caliper Application Data Injection7

{"job_id":11878171,"ProducerName":“n1","rank":0,"timestamp":1670373198.056455,"region":"init","time":33.172237 }
{"job_id":11878171,"ProducerName":"n1","rank":0,"timestamp":1670373198.056455,"region":"initialization","time":33.211929 }
{"job_id":11878171,"ProducerName":“n1","rank":0,"timestamp":1670373198.056455,"region":"main","time":44.147736 }
{"job_id":11878171,"ProducerName":“n1","rank":0,"timestamp":1670373203.556555,"region":"main","time":0.049086 }
{"job_id":11878171,"ProducerName":“n1","rank":0,"timestamp":1670373203.556555,"region":"run","time":0.049086 }

…
foo() {
 CALI_MARK_FUNCTION_BEGIN;
 …
 CALI_MARK_LOOP_BEGIN(fooloop, “fooloop");

 for(…) {
 …
 }
 CALI_MARK_LOOP_END(fooloop, “fooloop");
 …
 CALI_MARK_FUNCTION_END;
}
…

Application Code

Bl
ac

kb
oa

rd Snapshot

LDMS Connector
-publishes to LDMS

Streams API

LD
M

S
Tr

an
sp

or
t

Caliper Framework

• Caliper runtime measurement configuration
controls the sampling rate in the snapshot
triggers

• Target collection: user preference

caliperConnector

LDMS Streams Integration: Caliper Configuration

Caliper – Build original Caliper program with the application and export a single env variable
• No modifications to Caliper’s code or instrumentation were required to integrate LDMS.

• Point the LD_LIBRARY_PATH to Caliper’s library

• LD_LIBRARY_PATH= $LD_LIBRARY_PATH:<path-to-caliper-installation>/lib64

LDMS & Caliper – Set the following list of caliper variables when executing a program:
• CALI_LOOP_MONITOR_ITERATION_INTERVAL  Collect measurements every n loop iterations

• CALI_SERVICES_ENABLE  Define which services will be combined to collect data

• Enable LDMS service to collect data through LDMS by adding “ldms” to CALI_SERVICES_ENABLE

• Enable MPI service to associate the MPI rank to the LDMS data by adding “mpi” to CALI_SERVICES_ENABLE

EXAMPLE:

CALI_SERVICES_ENABLE=loop_monitor,mpi,ldms CALI_LOOP_MONITOR_ITERATION_INTERVAL=10 ./caliper_example.o
400

OR

export CALI_SERVICES_ENABLE=loop_monitor,mpi,ldms

export CALI_LOOP_MONITOR_ITERATION_INTERVAL=10

8

LDMS Streams Integration: Kokkos to LDMS Publish

9

• Kokkos Sampler controls the sampling rate.
When triggered, it signals for the Kokkos
Connector to publish data to LDMS.

• The Kokkos Connector and Sampler have
been used in production systems.

Kokkos-LDMS Connector
-Publishes to LDMS Streams API

…

Kokkos::parallel_for(… ,
KOKKOS_LAMBDA(int i) {
<loop body>
});

…

…

call kokkosp_begin_parallel_for(..)

<execute loop body>

call kokkosp_end_parallel_for(..)
..

Application Code Kokkos Runtime Code

Kokkos
“Sampler”

-Keeps statistics and
timing to determine

LDMS_stream_publish

LDMS Transport

kokkosConnector

LDMS Integration: Kokkos Configuration

Kokkos – Build and install Kokkos-LDMS integrated code and export a single env variable
• Set the KOKKOS_PROFILE_LIBRARY environment variable to the full path of the kokkos kernel and kokkos-ldms sampler

shared library files:
• KOKKOS_PROFILE_LIBRARY = <absolute-path>/kp_sampler.sdh.so; <absolute-path>/kp_kernel_ldms.so;

LDMS – Export the following env variables for the LDMS library
• LD_LIBRARY_PATH= $LD_LIBRARY_PATH:<path-to-ldms-library>/lib64
• PATH= $PATH:<path-to-ldms-bin>/bin:<path-to-ldms-sbin>/sbin

LDMS & Kokkos - Export the following list of environment variables to connect to an LDMS streams daemon and
set the kokkos sampler rate:
• KOKKOS_LDMS_PORT  Port number that the LDMS daemon is listening on.
• KOKKOS_LDMS_HOST  Hostname that the LDMS daemon is running on.
• KOKKOS_LDMS_XPRT  Type of transport the LDMS daemon is listening on.
• KOKKOS_LDMS_STREAM  Name tag (identifier) of the stream.
• KOKKOS_LDMS_SAMPLER_RATE Optionally sample Kokkos data. Default is 101 (1%).
• KOKKOS_LDMS_VERBOSE*  Optionally display extra information. Default is disabled.

10

* Contains information about the kokkos sampler so users are aware of
the rate at which they are collecting data (i.e. 1% vs 100%)

LDMS Integration: Data Flow Diagram

Long-term
data store

LDMS Streams

Application

Connector

LDMS Streams

Analysis and
Visualization

Time

HPC System Storage/Analysis System

Darshan/Caliper/Kokkos

LDMS Transport

Next Steps
• Overhead Testing (Darshan/Caliper)

• Experiments collecting Darshan/Caliper information only + LDMS-Integration

• Collect LDMS system monitoring information in the background (Darshan/Caliper)
• Ability to correlate absolute timestamp with system health

• Stream Injection notification with throttling

Darshan

• Validation against a varied set of applications:
• Benchmarks - HACC-IO, MPI-IO, Scientific I/O kernels (e.g. FLASH, OpenPMD, E2E benchmarks, etc.)
• “Real world” - Quantum Espresso, STDIO, etc.

• Investigate difference between NFS and Lustre filesystems

Caliper

• Validation against various services with Caliper’s annotation API
• Context annotations, measurement services and data processing services

• Preserve hierarchy of function executions

Kokkos

• Utilize Kokkos Sampler feature on other applications of interest

• Investigate run time telemetry collection on non-Kokkos applications

12

Questions?

