
Xyce and support for modern
PDKs

Er ic Kei ter

Sandia Nat ional Laborator ies

AWG/MOS-AK Panel Discuss ion

Dec. 7 , 2022

SAND2022-16939CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline2

• Xyce open source circuit simulator overview

• Parallelism
• Talk is not focused on solvers, but parallel issues impact parser and setup

• PDK compatibility
• Device models
• Analysis options
• Expression support
• Language syntax
• Parser performance

• Xyce status and plans
• Current parser
• XDM file translator
• Replacing the Xyce parser w/ modern parse framework (using XDM grammars)

https://xyce.sandia.gov
https://github.com/xyce

The Analog Circuit Simulator3

• SPICE-style simulator includes many industry
models

• Serial and Distributed Memory Parallel (MPI-
based)

• Unique solver algorithms
• XDM netlist translator

• Hspice-to-Xyce
• Spectre-to-Xyce (new)

• Python model interface (new)
• Xyce at Sandia: https://xyce.sandia.gov

• Binary executables for Windows, MacOS and Red Hat
Enterprise Linux 7

• Xyce release source code, build instructions and more

• Xyce at GitHub: https://github.com/xyce
• For the latest stable changes to the source code Parallel Transistor-Level Circuit

Simulation, Keiter, et al.

• Open Source, GPLv3
• Since September of 2013 (Xyce 6.0)

• Xyce Release 7.6
• Nov, 2022; 32nd major release
• >9,100 registrants on xyce.sandia.gov since 2013
• Also numerous clones on github

4 Why Open Source?
• Foster external collaboration
• Feedback from wider community
• Taxpayer funded, so encouraged to open source
• Some of our funding requires it

• First open source release, v6.0
• November 5, 2013.
• GPL license v3.0
• Source and binary downloads available
• Most recent release (v7.6) ~Nov 2022.
• Next release (v7.7) ~May 2023.

https://xyce.sandia.gov

https://github.com/xyce
4

5 Xyce Capabilities
Typical
• DC, Transient, AC, Noise

• .DC, .TRAN, .NOISE, .AC (and .STEP)
• Post Processing:

• Fourier transform of transient output (.FOUR)
• Post-simulation calculation of simulation metrics
(.MEASURE)

• Output (.PRINT)
• Text Files (tab or comma delimited)
• Probe
• Gnuplot, TecPlot, RAW

• Analog Behavioral Modeling
• Verilog-A model compiler
• Expressions, functions, parameterizations…

5

Xyce Simulation Flow

Parsing
o Convert netlist file syntax to equivalent devices and

network/circuit connectivity

o Distribute devices over multiple processors

o Determine global ordering and communication

Device Evaluation
o Loop through all devices for state evaluation and matrix loading

Linear Solve
o Sparse linear algebra and solvers used to solve linearized system
o Direct solvers more robust, often the choice for commercial tools
o Iterative solvers have potential for better scalability, depends on

the preconditioner

Advanced Analysis Methods
o Sampling: Monte Carlo, LHS (DAKOTA)
o Optimization

7

Two Xyce parallel distributions:
device evaluation and matrix solve

 Multiple objectives for load balancing the solver loop
• Device Loads : The partitioning of devices over processes will impact device evaluation and matrix

loads
• Matrix Structure : Graph structure is static throughout analysis, repartitioning matrix necessary for

generating effective preconditioners

 Device Loads
• Each device type can have a vastly different
 “cost” for evaluation
• Memory for each device is considered
 separate
• Ghost node distribution can be irregular
• Device parallel distribution starts in the parser

 Matrix Structure
• Use graph structure to determine best
preconditioners / solvers

8 Xyce Parser Flow

Hand-written
lexer

Device Distribution
Tool

container<token>

1. First-come, first serve
2. Round-Robin
3. Device-Balanced

Pass 1 functions
Device statistics

Analysis statements
Options statements

Etc …

container<token>

Parallel
Distribution as

needed

…

Hand-written parsing
functions

Expression Library

Hand-written parsing
functions

1st pass

2nd pass

Parallel Device
distribution

Rest
of

Xyce

• Parsing happens in 2 passes

• First pass for gathering information (needed by second pass) and parsing that doesn’t need specific parallel distribution strategy (broadcast)

• Second pass is mainly for distributing device instances.

• Both passes have a lex and parse phase.

• In second pass, the parallel distribution happens between lex and parse.

• Planned refactor: replace hand-written lex and parse functions with modern lex/parse framework

• Use the grammars developed for the XDM tool (Spectre, Hspice, etc)

Lexing Parsing

Netlist

Xyce PDK compatibility
• In practice, PDK compatibility means netlist compatibility with commercial simulators
• Xyce syntax compatibility

• Xyce native parser improvements close to ngspice/Hspice
• Xyce Data Model (XDM)

• Available as part of Xyce code releases and also on github: https://github.com/Xyce/XDM
• Converts Hspice or Spectre format files to Xyce format

• Expression library
• Completely rewritten to support GF 12/14.
• Modern parser design
• Much faster, better scalability

• Verilog-A model compiler (ADMS = automatic device model synthesizer)

• Support for industry standard compact models: BSIM-CMG, UTSOI, BSIM4, etc. 9

PDK Xyce
demonstrate

d

GF 65nm ✓

GF 55nm ✓

GF 45nm ✓

GF 14nm ✓

GF 12nm ✓

ST 28nm ✓

TSMC 130 ✓

TSMC 65 ✓

PTM 45nm ✓

Sky130 ✓

 // -- code converted from analog/code block//
I(p,internal1) <+
((V(p,internal1)/R))staticContributions[admsNodeID_
p] +=
((probeVars[admsProbeID_V_p_internal1])/instancePar
_R);staticContributions[admsNodeID_internal1] -=
((probeVars[admsProbeID_V_p_internal1])/instancePar
_R);CapacitorCharge =
((probeVars[admsProbeID_V_internal1_internal2])*ins
tancePar_C);//

C++ code snippet
(actual Xyce file is 1500 lines)

PDK Compatibility: Expression performance
10

• New expression library: Xyce has had an old expression library for many years, that contained a large amount of
technical debt. Recently, with the 12nm GF PDK, we encountered an issue that couldn’t patched, so we wrote a new
expression library.

• With the new library the 12nm GF PDK parses successfully.
• Fixed at least 20 long-standing expression issues in our internal issue tracker
• Part of Xyce 7.2 (Nov, 2020)

.param�A=‘pow(3.0,2.0)’

.param�B=‘A+12*pi’exp

Param A + exp

* pi12

Param B

Param
A

^3 2

exp

• The 12nm GF PDK was that it had expressions with many levels
of nesting.

• Old library handled external dependencies via string substitution
(bad!)

• In the new library, this doesn’t happen.
parameter “B” AST parameter “A” AST

12nm GF
Circuit

Simulation Time
Xyce v7.1

Simulation Time
Xyce v7.2

Simulation
Speedup

UW VCO ∞ sec 20 sec ∞

• Improved parameter searches: Extensive use of
parameters, through .PARAM statements, was identified as a
performance bottleneck

• Replaced hidden linked list structure with hash table
• This improved the performance on internal GF45

circuits
• Part of Xyce 7.2 (Nov, 2020)

Circuit Simulation Time
Xyce v7.1

Simulation Time
Xyce v7.2

Simulation
Speedup

2 Clock Cycles 459 sec 60 sec ~8x

10 Clock Cycles 1025 sec 361 sec ~3x

o ADMS = Automatic Device Model Synthesizer
o Verilog-A: industry standard format for new models, including (relevant to DARPA):

o BSIM-CMG (FinFETs) – needed by process nodes <= 14nm.
o UTSOI – needed by ST28nm PDK.

o Automatically translates Verilog-A to Xyce-compliant C/C++ code
o Automatic differentiation (AD) was recently rewritten for better performance
o Can be invoked dynamically
o New replacement compiler under development

 // -- code converted from analog/code block// I(p,internal1) <+
((V(p,internal1)/R))staticContributions[admsNodeID_p] +=
((probeVars[admsProbeID_V_p_internal1])/instancePar_R);staticContribution
s[admsNodeID_internal1] -=
((probeVars[admsProbeID_V_p_internal1])/instancePar_R);CapacitorCharge =
((probeVars[admsProbeID_V_internal1_internal2])*instancePar_C);//

C++ code snippet
(actual Xyce file is 1500 lines)

Run admsXyce

PDK Compatibility: ADMS-Xyce model compiler

Circuit Model AD residual New AD residual Residual speedup AD total New AD total Total speedup

CMG inverter BSIM CMG 5.5 sec 1.13 sec 4.88x 5.9 sec 1.5 sec 3.93x

CMG testcase BSIM CMG 71 sec 14 sec 5.1x 74 sec 17 sec 4.35x

“Perry’s Circuit” VBIC ~70 hours ~6.5 hours 10x ~77 hours 13 hours 5.9x

New AD performance improvements

12

Notes about device model compatibility

• Support for industry standard models is mandatory
• Si2/CMC pushing standardization
• However, for older models (some of which pre-date this effort) standards are not always
clear

• Recent examples (for us):
• Spice3 diode not the same as many simulators’ diodes (sidewall capacitances)
• Berkeley BSIM3 not the same as many simulators (geometrical parameters)
• Berkeley BSIM4 not the same
• etc.

13 Recent new Xyce compatibility improvements (not exhaustive)
• Done recently

• Support for multipliers on all device models
• Support for subcircuit multipliers
• Support for .DATA
• Many expression operators: int(x), limit(x,y), sign(x,y), etc.
• Many .MEASURE features
• Support for .LIB
• Support for relative paths for .include and .lib
• Support for undelimited expressions
• Parameter precedence (if more than one param has same name, how to choose)
• ”atto” suffix. In Hspice the “a” suffix means 1e-18. In others, it means “amps”.

• In progress
• .IF/.ELSE/.ELSEIF/.ENDIF
• Reading .VEC files
• Reading SPEF files
• Supporting “$” as comment delimiter
• .AUTOSTOP
• etc

…
VV5 net3 0 DC 1
VV7 net1 0 EXP(0.0 1.0 100u 20u 600u 40u)
VV1 net7 0 SIN(0 1 1K 0 0 0)
VV9 net9 0 SIN(1 1 1K 0 0 0)
VV11 net11 0 PULSE(1 10 50u 50.0u 70.0u 200u 400u)
RR7 net1 V8 R=1K
…

…
V5 (net3 0) vsource dc=1 type=dc

V7 (net1 0) vsource type=exp val0=0.0 \
val1=1.0 td1=100u tau1=20u td2=600u \ tau2=40u

V1 (net7 0) vsource dc=0 mag=0 phase=0 \ type=sine
delay=0 sinedc=0 ampl=1 \
freq=1K damp=0

V9 (net9 0) vsource type=sine sinedc=1 \
ampl=1 freq=1K

V11 (net11 0) vsource type=pulse val0=1\
val1=10 period=400u delay=50u \ rise=50.0u fall=70.0u
width=200u

Tool Compatibility: Xyce Data Model (XDM)
• First released as part of Xyce 7.0 (April, 2020)
• For modern PDK files, file format is either Hspice or Spectre
• Pspice-to-Xyce input file translation complete
• Hspice-to-Xyce input file translation complete
• Spectre-to-Xyce file translation in progresss
• XDM is a stand-alone file translator, but eventually will replace Xyce parser (see next slides)

• Available as part of Xyce code releases and also on github: https://github.com/Xyce/XDM

XDM

14Spectre netlist

Xyce netlist

15 Xyce Parser Flow

Hand-written
lexer

Device Distribution
Tool

container<token>

1. First-come, first serve
2. Round-Robin
3. Device-Balanced

Pass 1 functions
Device statistics

Analysis statements
Options statements

Etc …

container<token>

Parallel
Distribution as

needed

…

Hand-written parsing
functions

Expression Library

Hand-written parsing
functions

1st pass

2nd pass

Parallel Device
distribution

Rest
of

Xyce

• Parsing happens in 2 passes

• First pass for gathering information (needed by second pass) and parsing that doesn’t need specific parallel distribution strategy (broadcast)

• Second pass is mainly for distributing device instances.

• Both passes have a lex and parse phase.

• In second pass, the parallel distribution happens between lex and parse.

• Planned refactor: replace hand-written lex and parse functions with modern lex/parse framework

• Use the grammars developed for the XDM tool (Spectre, Hspice, etc)

Lexing Parsing

Netlist

16 Xyce Parser Flow

Netlist Hand-written
lexer

container<token>

container<token>

…

Hand-written parsing
functions

Expression Library

Hand-written parsing
functions

1st pass

2nd pass

Parallel Device
distribution

Abstract Data
Model

Various Option
blocks, device
blocks, and
persistent
expressions
(parameters)

Binary I/O

Rest
of

Xyce

Modern Lexer
(flex/boost/etc)

Modern Parser
(bison/boost/etc)

functions

support multiple
grammars eventually

Expression Library

Modern Parser
(bison/boost/etc) functions

Lexing Parsing

• Parsing happens in 2 passes

• First pass is for gathering information (needed by second pass) and also for parsing stuff that doesn’t need specific parallel distribution
strategy

• Second pass is mainly for distributing device instances.

• Both passes have a lex and parse phase.

• In second pass, the parallel distribution happens between lex and parse.

• Planned refactor: replace hand-written lex and parse functions with modern lex/parse framework

• Recycle the grammars developed for the XDM tool (Spectre, Hspice, etc)

1. First-come, first serve
2. Round-Robin
3. Device-Balanced

Pass 1 functions
Device statistics

Analysis statements
Options statements

Etc …

Parallel
Distribution as

needed

Device Distribution
Tool

PDK Compatibility example:
UW SAR ADC Circuit example (GF 12nm)17

• Circuit is from an external group (non-Sandia)
• Xyce results match commercial simulator
• XDM+Xyce (version > 7.2) now supports the Global Foundries 12nm PDK

Commercial

Commercial

Commercial

Commercial

Commercial

Commercial

Commercial

Commercial

Xyce Team Acknowledgements18

• Eric R. Keiter
• Thomas V. Russo
• Richard L. Schiek
• Heidi K. Thornquist
• Ting Mei
• Jason C. Verley
• Karthik V. Aadithya
• Joshua D. Schickling
• Paul Kuberry
• Gary Templet
• Garrick Ng
• …and many others

 Contact:
 https://github.com/xyce

https://xyce.sandia.gov
 xyce@sandia.gov

 Google Group Forum:
 https://groups.google.com/group/xyce-users

Extra Slides19

X

20
PDK Compatibility example:
SAR ADC Circuit example (GF 65nm)

• SAR ADC = successive
approximation register analog-to-
digital converter

• Developed under the POSH
program by Bindu Madhavan and
Edward Lee

• working with the POSH group from
USC.

• GF 65nm
• 400 corner study

20

21
PDK Compatibility example:
SAR ADC Circuit example (GF 65nm)

• Results match well. RMS Errors small

• RMS relative error in v(sync) is 0.0434905680015374%
• RMS relative error in v(po<0>) is 0.0232474456164593%
• RMS relative error in v(po<1>) is 0.023581461963474%
• RMS relative error in v(po<2>) is 0.02583082511786%
• RMS relative error in v(po<3>) is 0.0240096727254828%
• RMS relative error in v(po<4>) is 0.0166525520072121%
• RMS relative error in v(po<5>) is 0.00929693070847055%
• RMS relative error in v(po<6>) is 0.0309201017241085%
• RMS relative error in v(po<7>) is 0.0230237794341722%
• RMS relative error in v(po<8>) is 0.0259005260949305%
• RMS relative error in v(po<9>) is 0.0175662606806119%
• RMS relative error in v(po<10>) is 0.00940986678122403%
• RMS relative error in v(po<11>) is 0.00976999004888706%

21

22

PDK Compatibility:
SAR ADC Circuit example (GF 65nm) Simulation timings
• GF 65nm
• Recent efficiency improvements to Xyce
have brought it close to “Simulator B” for
one processor.

• Still work to do to catch “Simulator A”.

• Some of the difference is due to BYPASS,
which is present in ”Simulator A”, but not
Xyce or “Simulator B”.

22

Xyce Distributions
• Binary installers (serial and parallel)

• RHEL 7
• MacOS
• Windows (serial only)
• http://xyce.sandia.gov

• Source code
• http://xyce.sandia.gov
• http://github.com/Xyce

• New: Installing Xyce via Spack, “a package manager for supercomputers, Linux, and MacOS”
• Use this to install Xyce with the python model interpreter (Xyce-PyMi) enabled.

23

https://spack.io

Xyce Mixed-Signal API24

Xyce Supports mixed signal by being callable as a library

Mixed Signal Simulation with Xyce:
• Both Python and C/C++ interfaces available
• Supported on RHEL6 and RHEL7
• Used by internal Sandia projects

• See SAND2018-14109

• Coupling Examples:
• Pyghdl (VHDL)
• GHDL (VHDL)
• Icarus (Verilog)
• Yale simulator (Prsim)
• Amstaff from Synopsys

Digital simulation
(using CocoTB and

GHDL)

Specify Upset of Interest (UOI)
• Time and location of upset
• How many digital gates are

simulated in Xyce (ROI)
• Length of Xyce simulation

Generate Xyce
netlist for Region of
Interest (ROI)

Initialize internal states of
CMOS devices
• Sandia has custom

scripts for this
• Still an ongoing

research topic.

Run Xyce simulation via
Python methods
• xyce_interface()
• initialize()
• updateTimeVoltagePairs()
• simulateUntil()
• close()

Extract voltages from
Xyce sim
• obtainResponse()
• Uses .MEASURE

statements
• Feedback results back

into digital sim

Example Sandia Mixed-signal Use-case

https://xyce.sandia.gov/files/xyce/AppNote-MixedSignal.pdf

25
Surrogate Modeling:
ML-based Python device models in Xyce (Xyce-PyMI)

Xyce-PyMi example.cir>>
* example.cir (Example of easy inclusion in a netlist)
YGENEXT devicename terminal1 terminal2
+ SPARAMS={NAME=MODULENAME VALUE=PythonDevice.py}

PythonDevice.py
import numpy as np
from BaseDevice import BaseDevice
class Device(BaseDevice):
 def computeXyceVectors(…):
 # definition of device in Python goes here

Xyce-PyMi
(Xyce + Python Model Interpreter)

• Full Xyce functionality + devices /
subcircuits / circuits defined in Python

• Python class defines how F, Q, B, dF/dX,
and dQ/dX vectors/matrices are
populated for Xyce DAE equation:

• residual = f(x,t) + dq(x,t)/dt - b(t)

“75% of ML developers and data scientists use Python”
 - State of the Developer Nation (Slashdata.co 2020)

Goal: To develop platform-
independent interpreter(s) for ML-
based surrogate models

Approach:
• Using Pybind11 to enable Xyce to

call the Python interpreter
• Leveraging Xyce GeneralExternal

interface (C++)
Benefit:
• Calling Python classes allows for

enabling various ML models
based on TensorFlow, PyTorch,
etc…

Distribution:
• Available in Xyce development

branch (on github.com), also in
Xyce v7.3 release.

26 Surrogate Modeling: Compact model examples

*�Netlist�for�Operational�Amplifier

VDD�����1���0��DC���2.5
R1�1�4�1e4
R2�1�5�1e4
R3�6�0�5e3
C1�4�0�5e-12
C2�5�0�5e-12
YGENEXT�pyQ1�4�7�6
+�SPARAMS={NAME=MODULENAME,DATAFILE�
�����������VALUE=../models/gmls_bjt_2N2222.py,../data/2N2222_alan.01.dat}
RQ1�7�2�50
YGENEXT�pyQ2�5�8��6
+�SPARAMS={NAME=MODULENAME,DATAFILE�
�����������VALUE=../models/gmls_bjt_2N2222.py,../data/2N2222_alan.01.dat}
RQ2�8�3�50
Em_plus�2�0�VALUE={1+50e-3*sin(2*pi*10*time)}
Em_minus�3�0�VALUE={1-50e-3*sin(2*pi*10*time)}

Operational Amplifier with BJTs

* Runs GMLS on data generated from synthetic MMBT2222, NPN, Fairchild

* Runs GMLS on data generated from synthetic 1N4148

Fast switching 1N4148 diode in bridge rectifier

*�Netlist�for�Bridge�Rectifier

V3�1�2�SIN�(0�2�10)
R3�3�0�10M
R4�3�4�100K
YGENEXT�pyd3�1�4
+�SPARAMS={NAME=MODULENAME,DATAFILE�
VALUE=../models/gmls_diode_1N4148.py,../data/1N4148_synthetic.dat}
YGENEXT�pyd1�3�1
+�SPARAMS={NAME=MODULENAME,DATAFILE�
VALUE=../models/gmls_diode_1N4148.py,../data/1N4148_synthetic.dat}
YGENEXT�pyd4�3�2
+�SPARAMS={NAME=MODULENAME,DATAFILE�
VALUE=../models/gmls_diode_1N4148.py,../data/1N4148_synthetic.dat}
YGENEXT�pyd2�2�4
+�SPARAMS={NAME=MODULENAME,DATAFILE�
VALUE=../models/gmls_diode_1N4148.py,../data/1N4148_synthetic.dat}
.TRAN�0�0.3s
.options�timeint�reltol=1.0e-4
.PRINT�TRAN�V(1)�V(2)�V(3)�V(4)�V(2,1)�V(4,3)
.END

Surrogate Modeling: Circuit examples
27

• Power Amplifier Circuit (PAC) loosely
inspired by circuits at Sandia. The
primary function of the circuit is to
drive a load at some voltage when a
logic HI signal is received.

• The DMD abstraction is trained using
several trajectories where the input is a
logic HI signal with varying maximum
voltages, pulse duration and start time.

Training Trajectories Validation Trajectories

DISTRIBUTION STATEMENT A / APPROVED FOR PUBLIC RELEASE

PI: Edgar Galvan

• Dynamic Mode Decomposition (DMD) System Identification

Circuit Simulations

Snapshot Matrices

Identify Discrete System

Snapshots

State Measurements

Control/Input Measurements

…

…

Schematic editing with Xyce
• Xyce is the simulator (like HSPICE, SmartSpice, Spectre, Eldo…), so Sandia does not provide a Schematic GUI.

However:

Typhoon HIL
• Free (not open-source)
• https://www.typhoon-hil.com/products/xyce-integration/
• Electrical power/distribution focus

28

Qucs-S
• Open Source (GPL2)
• https://ra3xdh.github.io
• https://github.com/ra3xdh/qucs_s

