SAND2022-16939C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the| paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Xyce and support for modern
PDKs

Eric Keiter

Sandia National Laboratories
AWG/MOS-AK Panel Discussion
Dec. 7, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

* Xyce open source circuit simulator overview

* Parallelism
* Talk is not focused on solvers, but parallel issues impact parser and setup

* PDK compatibility

Device models X\ -
Analysis options yce

Expression support
Language syntax
Parser performance

https://xyce.sandia.gov
https://github.com/xyce

* Xyce status and plans
* Current parser
* XDM file translator
* Replacing the Xyce parser w/ modern parse framework (using XDM grammars)

3

The XYEE Analog Circuit Simulator

* SPICE-style simulator includes many industry - Open Source, GPLv3
models - Since September of 2013 (Xyce 6.0)
. I::Sr::\jl)and Distributed Memory Parallel (MPI- - Xyce Release 7.6
_ . * Nov, 2022; 32"d major release

* Unique solver algorithms - >9,100 registrants on xyce.sandia.gov since 2013
 XDM netlist translator * Also numerous clones on github

* Hspice-to-Xyce

* Spectre-to-Xyce (new) =
* Python model interface (new) E.gﬁ;g;?ngg;m

Xyce at Sandia: https://xyce.sandia.gov

i i Simulation
* Binary executables for Windows, MacOS and Red Hat L e a3 and Verification
Enterprise Linux 7 — @ fElectronic
* Xyce release source code, build instructions and more == ' and Biological
. _ s 2008 .58 Systems
« Xyce at GitHub: https://github.com/xyce Award Winner AR

Parallel Transistor-Level Circuit
Simulation, Keiter, et al.

* For the latest stable changes to the source code >

o ®

Why Open Source?

Foster external collaboration

« = 4 hips @ xycesandia.gov
Feedback from wider community ‘
Sandia
Taxpayer funded, so encouraged to open source @[ﬁ:lm ABOUT MISSIONS RESEARCH

Some of our funding requires it

First open source release, v6.0
November 5, 2013.

GPL license v3.0

Source and binary downloads available

Parallel electronic simulation
Most recent release (v7.6) “Nov 2022. N N <

Next release (v7.7) “May 2023. About Xyce

Xyce is an open source, SPICE-compatible, high-performance analog circuit simulator,
capable of solving extremely large circuit problems by supporting large-scale parallel I
computing platforms. It also supports serial execution on all common desktop platfon
small-scale parallel runs on Unix-like systems. In addition to analog electronic simula

https : //Xyce ° Sandia ° gOV Xyce has also been used to investigate more general network systems, such as neural

networks and power grids. Read more about Xyce,

https://github.com/xyce

: ‘ Xyce Capabilities

Typical Others
* DC, Transient, AC, Noise Harmonic Balance Analysis (.HB)

* .DC, .TRAN, .NOISE, .AC (and .STEP) > Steady state solution of nonlinear circuits in the
* Post Processing: frequency domain

* Fourier transform of transient output (.FOUR)
e Post-simulation calculation of simulation metrics
(.MEASURE)
e Output (.PRINT)
* Text Files (tab or comma delimited)
* Probe
* Gnuplot, TecPlot, RAW

* Analog Behavioral Modeling

Random Sampling Analysis |

> Executes the primary analysis (.DC, .AC, .TRAN, etc.)
inside a loop over randomly distributed parameters

Sensitivities
> Computes sensitivities for a user-specified objective

function with respect to a user-specified list of circuit
parameters (d0/dp...)

> Works with DC, AC or Transient analysis

* Verilog-A model compiler > E.g., an output voltage’s dependence on a
* Expressions, functions, parameterizations... capacitance

Polynomial Chaos methods
> Quadrature

> Regression

Xyce Simulation Flow

Parsing

o Convert netlist file syntax to equivalent devices and
network/circuit connectivity

o Distribute devices over multiple processors

o Determine global ordering and communication

Device Evaluation

o Loop through all devices for state evaluation and matrixteading

Linear Solve

o Sparse linear algebra and solvers used to solve linearized system

o Direct solvers more robust, often the choice for commercial tools

o lIterative solvers have potential for better scalability, depends on
the preconditioner

Advanced Analysis Methods

o Sampling: Monte Carlo, LHS (DAKOTA)
o Optimization

Netlist File

Parse

Nonlinear DAE Solver
F(x,x')=0

Discretize
v

Nonlinear Solver
F(x)=0

Linearize

v

Linear Solver
Ax=b

Two Xyce parallel distributions:
device evaluation and matrix solve

+ Multiple objectives for load balancing the solver loop

» Device Loads : The partitioning of devices over processes will impact device evaluation and matrix

loads

« Matrix Structure : Graph structure is static throughout analysis, repartitioning matrix necessary for

generating effective preconditioners

+ Device Loads
« Each device type can have a vastly different
“cost” for evaluation
* Memory for each device is considered
separate
* Ghost node distribution can be irregular
* Device parallel distribution starts in the parser

* Matrix Structure

» Use graph structure to determine best
preconditioners / solvers

Proc1

Load f, q, dF/dx, dQ/dx
for n'm devices

Proc 2

Load f, q, dF/dx, dQ/dx
for n'm devices

Proc 3

Load f, g, dF/dx, dQ/dx
for n'm devices

Procm

Load f, q, dF/dx, dQ/dx
for n'm devices

Device Loads

Global
Reorder

Partition

MPI
sumaAll

Proc1

Matrix Structure

: Xyce Parser Flow

Lexing

+ Pass 1 functions
Device statistics
1st pass _> Analysis statements
Options statements
Etc ...

container<token>

| Distribution as

Parallel

needed

Parallel Device
distribution

Parsing

v

Netlist | » Hand-written
lexer
container<token>
Device Distribution
Tool

* Parsing happens in 2 passes

N

First-come, first serve
Round-Robin
Device-Balanced

\4

Hand-written parsing
functions

Expression Library

Hand-written parsing

functions

Rest
of
Xyce

* First pass for gathering information (needed by second pass) and parsing that doesn’t need specific parallel distribution strategy (broadcast)

* Second pass is mainly for distributing device instances.

* Both passes have a lex and parse phase.

* In second pass, the parallel distribution happens between lex and parse.

* Planned refactor: replace hand-written lex and parse functions with modern lex/parse framework

* Use the grammars developed for the XDM tool (Spectre, Hspice, etc)

Xyce PDK compatibility

* In practice, PDK compatibility means netlist compatibility with commercial simulators
* Xyce syntax compatibility

» Xyce native parser improvements close to ngspice/Hspice dem)z,iirate
* Xyce Data Model (XDM) d
* Available as part of Xyce code releases and also on github: https://github.com/Xyce/XDM GF 65nm v
* Converts Hspice or Spectre format files to Xyce format GF 55nm J
* Expression library GF 45nm v
* Completely rewritten to support GF 12/14. GF 14nm J
* Modern parser design GE 12nm J
* Much faster, better scalability ST 28nm v
* Verilog-A model compiler (ADMS = automatic device model synthesizer) TSMC 130 v
= TSMC 65 v
SR s
e Sky130 Y

((probeVars [admsProbeID V_internall internal2])*ins
tancePar_C);//

C++ code snippet
(actual Xyce file is 1500 lines)

| Verilog-A I

* Support for industry standard compact models: BSIM-CMG, UTSOI, BSIM4, etc. 9

PDK Compatibility: Expression performance X4Jce

10

* New expression library: Xyce has had an old expression library for many years, that contained a large amount of
technical debt. Recently, with the 12nm GF PDK, we encountered an issue that couldn’t patched, so we wrote a new
expression library.

* With the new library the 12nm GF PDK parses successfully.
* Fixed at least 20 long-standing expression issues in our internal issue tracker

* Part of Xyce 7.2 (Nov, 2020)
 The 12nm GF PDK was that it had expressions with many levels

.Jparam A=pow(3.0,2.0)’
.param B='A+12*pi’

of nesting.
« OlId library handled external dependencies via string substitution
(bad!)
e _In the new lihrarv this daoesn’t hannen 3 " 2 12 ' P
il Bl il B
UW VCO oo sec 20 sec oo

Improved parameter searches: Extensive use of

parameters, through .PARAM statements, was identified as a Circuit Simulation Time Simulation Time Simulation

performance bottleneck Xyce v7.1 Xyce v7.2 Speedup
Replaced hidden linked list structure with hash table |2 ClockCycles 459 sec 60 sec ~8x
This improved the performance on internal GF45 10 Clock Cycles 1025 sec 361 sec ~3x

circuits
Part of Xyce 7.2 (Nov, 2020)

PDK Compatibility: ADMS-Xyce model compiler

ADMS = Automatic Device Model Synthesizer

Verilog-A: industry standard format for new models, including (relevant to DARPA):
o BSIM-CMG (FinFETs) — needed by process nodes <= 14nm.
o UTSOI — needed by ST28nm PDK.

Automatically translates Verilog-A to Xyce-compliant C/C++ code

Automatic differentiation (AD) was recently rewritten for better performance

Can be invoked dynamically

New replacement compiler under development

o iz anc
ceal o 4 b

e, Run admsXyce C++ code snippet
(actual Xyce file is 1500 lines)

// —-- code converted from analog/code block// I(p,internall) <+
((V(p,internall) /R))staticContributions[admsNodeID p] +=
[::::::::£:> ((probeVars[admsProbeID V p internall])/instancePar R);staticContribution
s [admsNodeID internall] -=
((probeVars[admsProbeID V p internall])/instancePar R);CapacitorCharge =

((probeVars[admsProbeID V internall internal2]) *instancePar C);//

| Lt I New AD performance improvements
Circuit Model AD residual New AD residual Residual speedup AD total New AD total Total speedup
CMG inverter BSIM CMG 5.5 sec 1.13 sec 4.88x 5.9 sec 1.5 sec 3.93x
CMG testcase BSIM CMG 71 sec 14 sec 5.1x 74 sec 17 sec 4.35x
“Perry’s Circuit” | VBIC ~70 hours ~6.5 hours 10x ~77 hours 13 hours 5.9x

12

Notes about device model compatibility

 Support for industry standard models is mandatory
* Si2/CMC pushing standardization

* However, for older models (some of which pre-date this effort) standards are not always
clear

* Recent examples (for us):

Spice3 diode not the same as many simulators’ diodes (sidewall capacitances)
Berkeley BSIM3 not the same as many simulators (geometrical parameters)
Berkeley BSIM4 not the same

* etc.

13

Recent new Xyce compatibility improvements (not exhaustive)

* Done recently
e Support for multipliers on all device models
e Support for subcircuit multipliers
e Support for .DATA
* Many expression operators: int(x), limit(x,y), sign(x,y), etc.
* Many .MEASURE features
* Support for .LIB
* Support for relative paths for .include and .lib
e Support for undelimited expressions
* Parameter precedence (if more than one param has same name, how to choose)
* "atto” suffix. In Hspice the “a” suffix means 1e-18. In others, it means “amps”.

* In progress
* .IF/.ELSE/.ELSEIF/.ENDIF
Reading .VEC files
Reading SPEF files
Supporting “S” as comment delimiter
AUTOSTOP
etc

Tool Compatibility: Xyce Data Model (XDM)

First released as part of Xyce 7.0 (April, 2020)
For modern PDK files, file format is either Hspice or Spectre
Pspice-to-Xyce input file translation complete
Hspice-to-Xyce input file translation complete
Spectre-to-Xyce file translation in progresss

XDM is a stand-alone file translator, but eventually will replace Xyce parser (see next slides)

* Available as part of Xyce code releases and also on github:

V5 (net3 0) vsource dc=1 type=dc

V7 (net1 0) vsource type=exp val0=0.0 \
val1=1.0 td1=100u tau1=20u td2=600u \ tau2=40u
V1 (net7 0) vsource dc=0 mag=0 phase=0 \ type=sine
delay=0 sinedc=0 ampl=1\

freq=1K damp=0

V9 (net9 0) vsource type=sine sinedc=1\
ampl=1 freq=1K

V11 (net11 0) vsource type=pulse val0=1\
val1=10 period=400u delay=50u \ rise=50.0u fall=70.0u
width=200u

—>

Spectre netlist

FEY
@

XDM

https://github.com/Xyce/XDM

Xyce

—)

VV5 net3 0 DC 1

VV7 net1 0 EXP(0.0 1.0 100u 20u 600u 40u)

VV1 net7 0 SIN(O 1 1K 0 0 0)

VV9 net9 0 SIN(1 11K 00 0)

VV11 net11 0 PULSE(1 10 50u 50.0u 70.0u 200u 400u)
RR7 net1 V8 R=1K

Xyce netlist

14

5 Xyce Parser Flow

Lexing Parsing
+ Pass 1 functions +
Device statistics Parallel
1st pass =i Analysis statements ——»| Distribution as > Hand-written parsing
Options statements needed functions
Etc ... i
container<token> Expression Library I
Netlist | » Han<|:|-wr|tten
exer
Rest B
of B
. Parallel Device Xyce
container<token> o]
distribution
Device Distribution 1. First-come, first serve
2nd pass ——> 2. Round-Robin —» .. > Hand-written parsing
Tool . .
3. Device-Balanced functions

* Parsing happens in 2 passes

* First pass for gathering information (needed by second pass) and parsing that doesn’t need specific parallel distribution strategy (broadcast)
* Second pass is mainly for distributing device instances.

* Both passes have a lex and parse phase.

* In second pass, the parallel distribution happens between lex and parse.

* Planned refactor: replace hand-written lex and parse functions with modern lex/parse framework

* Use the grammars developed for the XDM tool (Spectre, Hspice, etc)

6 Xyce Parser Flow

Lexing

+ Pass 1 functions
Device statistics
Analysis statements
Options statements

1st pass =i /

| Distribution as

Parallel

needed

Parallel Device
distribution

Etc ...
container<token>
Modern Lexer
Netlist > (flex/boost/etc)
container<token>
Device Distribution
Tool

* Parsing happens in 2 passes

* First pass is for gathering information (needed by second pass) and also for parsing stuff that doesn’t need specific parallel distribution

strategy
* Second pass is mainly for distributing device instances.

* Both passes have a lex and parse phase.

N

First-come, first serve
Round-Robin
Device-Balanced

\4

Parsing

A

Modern Parser
(bison/boost/etc)
functions

support multiple
grammars eventually

Expression Library

* In second pass, the parallel distribution happens between lex and parse.

* Planned refactor: replace hand-written lex and parse functions with modern lex/parse framework

Modern Parser

(bison/boost/etc) functions

Abstract Data
Model

Various Option
blocks, device
blocks, and
persistent
expressions
(parameters)

Binary I/O

Rest
of
Xyce

17

* Circuit is from an external group (non-Sandia)
e Xyce results match commercial simulator
 XDM+Xyce (version > 7.2) now supports the Global Foundries 12nm PDK

1.0

— 0.8

2

o 0.6 4
(o]
5 0.4
o
> 024

S 0.4
(=]
> 0.2

> 024

PDK Compatibility example:
UW SAR ADC Circuit example (GF 12nm)

UW SARADC Output D[7:4]

—— D<7>, commercial
¢ D<7>, xyce

T
0 100

T
200

T
300

T
400

T
500

| —— D<6>,1 commercia

* D<6>, xyce

0 100

200

300

400

500

| —— D<5>,| commercia

¢ D<5>, xyce

0 100

200

300

400

500

© i
o
T

| —— D<4>, Commercia

¢ D<4>, xyce

T
0 100

T
200

Time (ns)

T
300

T
400

T
500

1.0

Voltage (V)
o o o
B ()] o)

= 2 9
© o o N

Voltage (V) Voltage (V)
¢ o o o H 0o O o O O
N B [=)} [s:] o o N [s)]

ge (V)

UW SARADC Output D[3:0]

Xyce

e D<3>, xyce |

.

| —— D<3>, Commercial mm——t

0 100

200

300

400

500

| —— D<2>, Commercial

e D<2>, xyce

o

| =—— D<1>,| Commercial

| . D<1>, xyce
0] !] U
0.0

0

Y
200

T
300

T
400

T
500

—— D<0>, Commercial

200

1 MHM AR

Time (ns)

300

400

500

18

Xyce
Xyce Team Acknowledgements NYCE

Eric R. Keiter

Contact:
Thomas V. Russo https://github.com/xyce
Richard L. Schiek https://xyce.sandia.gov
Heidi K. Thornquist xyce@sandia.gov

Ting Mei
Jason C. Verley
Karthik V. Aadithya

Google Group Forum:
https://groups.google.com/group/xyce-users

Joshua D. Schickling Gocgle [= 0 Q
= - : = o 5

Paul Kuberry

Gary Templet

Garrick Ng

...and many others

Extra Slides

PDK Compatibility example:
20 SAR ADC Circuit example (GF 65nm)

* SAR ADC = successive

approximation register analog-to-

digital converter
* Developed under the POSH

program by Bindu Madhavan and

Edward Lee

* working with the POSH group from

USC.
* GF 65nm

* 400 corner study

{4(V_REFM)} {V{XI0:AR) - V{XI0:AM]) WISYNC)

{HiV_REFF)}

05 | Synchronization signal
o} . . .
1.52E-06 1.53E-06 1.54E-06 155E-0E
Time {s}
1]
5 Differential input to the comparator
0s r
[|
o A ! !
RN
1.52E-06 1.53E-06 Time (s} 1.54E-06 1.55E-06
f Reference current
. ‘
=00 '
001 |
1.52E06 TE25E06 T63E06 i ;E{f}ﬁ 15AE-06 1GAEE-06 155E-08
ams F
| Reference current
oot |
0005 | '
L ¥ ¢ - '1.&5'&%@}3' TaEEEwT T TERE®E T T55ED8

20

PDK Compatibility example:
2! SAR ADC Circuit example (GF 65nm)

Results match well. RMS Errors small

RMS relative error in v(sync) is 0.0434905680015374%
RMS relative error in v(po<0>) is 0.0232474456164593%
RMS relative error in v(po<1>) is 0.023581461963474%
RMS relative error in v(po<2>) is 0.02583082511786%
RMS relative error in v(po<3>) is 0.0240096727254828%
RMS relative error in v(po<4>) is 0.0166525520072121%
RMS relative error in v(po<5>) is 0.00929693070847055%
RMS relative error in v(po<6>) is 0.0309201017241085%
RMS relative error in v(po<7>) is 0.0230237794341722%
RMS relative error in v(po<8>) is 0.0259005260949305%
RMS relative error in v(po<9>) is 0.0175662606806119%
RMS relative error in v(po<10>) is 0.00940986678122403%
RMS relative error in v(po<11>) is 0.00976999004888706%

vEYNe

v(po<i=)

vipo<l=)

viposii=)

CAEGT

1 [i
Ll 1

wisync){Xyce)
visync){Simulator A)

| | 1] | | | |
VI Y 1 | | | | M | O 1 |
§E-O7 BE-O7 1E-DB

\ (M
SE07

Time (sec)
; - S —— PR——— -
A]] | = |
Il | i | ! | | i | vipe<l=}{Xyce)
:| i Lo . i ; ‘ mmmeme vipost=HSimulator A)
15 | | | | | | [
. Lo ! I
B | nuEn |
A L L ; . ; |
To ZE-07 DT qime (sec) BEO7 BE-O7 1E-06
W ['_""' I'_" i 1 1
2 *
i vipo=i=){Xyce)
i == wipo<iz){Simulator A)
15
1o 2E-07 4E07 Timefsec) BEQ7 BE-O7 1E-DE
T
2 h
f | vipo<ii=)(Xyce)
(A vipo<11=)(Simulator A)
15 4 |
f |
i |
1 1
! i
1 1
1 - e ——— " - - " - - - i
J ZEa7 AETT fime (sec) BE07 BEO7 1E-06

21

22

PDK Compatibility:

SAR ADC Circuit example (GF 65nm) Simulation timings

* GF 65nm

* Recent efficiency improvements to Xyce
have brought it close to “Simulator B” for
one processor.

e Still work to do to catch “Simulator A”.

* Some of the difference is due to BYPASS,
which is present in "Simulator A”, but not
Xyce or “Simulator B”.

100

total time (min)

=J
o

31
o

(A
o

SAR ADC Circuit (testADC12b_dig.cir) runtime comparisons

I | |
| W | Xyce
Simulator A BP=2 (serial only)
| Simulator A BP=0 (serial only)
- n n Simulator B (serial only)
- | .
n
[
l | !
2 4 6 8 10 12 14

22

Xyce Distributions

* Binary installers (serial and parallel)
* RHEL7
* MacOS

* Windows (serial only)
 http://xyce.sandia.gov

* Source code
 http://xyce.sandia.gov
* http://github.com/Xyce

* New: Installing Xyce via Spack, “a package manager for supercomputers, Linux, and MacOS”
* Use this to install Xyce with the python model interpreter (Xyce-PyMi) enabled.

@SPGCK https://spack.io

A flexible package manager supporting multiple versions, configurations,
platforms, and compilers.

23

y Xyce Mixed-Signal API

Example Sandia Mixed-signal Use-case Xyce Supports mixed signal by being callable as a library

Spemfy Upset of Interest (UOI) Geonerate Xvoe
y

Digital simulation
(using CocoTB and
GHDL)

- ©

Time and location of upset
How many digital gates are
simulated in Xyce (ROI)
Length of Xyce simulation

\ 4

Extract voltages from
Xyce sim

* obtainResponse()
* Uses .MEASURE

Run Xyce simulation via
Python methods
xyce_interface()

netlist for Region of
Interest (ROI)

Initialize internal states of
CMOS devices
¢ Sandia has custom

initialize() « scripts for this
statements updateTimeVoltagePairs|() + Stillan ongoing
* Feedback results back simulateUntil() research topic.

into digital sim

close()

SANDIA REPORT

SANDZ020-56814
Printed June 2020

Application Note:
Mixed Signal Simulation with Xyce" 7.1

Peter E. Sholander, Richard L. Schiek

labarztories

Mixed Signal Simulation with Xyce:
* Both Python and C/C++ interfaces available

Supported on RHEL6 and RHEL7
Used by internal Sandia projects
See SAND2018-14109

Coupling Examples:

Pyghdl (VHDL)

GHDL (VHDL)

Icarus (Verilog)

Yale simulator (Prsim)
Amstaff from Synopsys

https://xyce.sandia.gov/files/xyce/AppNote-MixedSignal.pdf

Surrogate Modeling:
2 ML-based Python device models in Xyce (Xyce-PyMI)

Goal: To develop platform-
independent interpreter(s) for ML-
based surrogate models

Approach:

* Using Pybind11 to enable Xyce to
call the Python interpreter

* Leveraging Xyce GeneralExternal
interface (C++)

Benefit:

e (Calling Python classes allows for
enabling various ML models
based on TensorFlow, PyTorch,
etc...

Distribution:

* Available in Xyce development
branch (on github.com), also in
Xyce v7.3 release.

__

Xyce pybindn
' | * example.cir (Example of easy inclusion in a netlist)

Xyce-PyMi example.cir YGENEXT devicename terminall terminal2 i
+ SPARAMS={NAME=MODULENAME VALUE=PythonDevice.py} |

r
1
L}

Xyce-PyMi

PythonDevice.py _
(Xyce + Python Model Interpreter) i import numpy as np O PyTorch .,F
i from BaseDevice import BaseDevice

Tensorflow yympy

class Device(BaseDevice):
def computeXyceVectors(...):
definition of device in Python goes here

* Full Xyce functionality + devices /
subcircuits / circuits defined in Python

Python class defines how F, Q, B, dF/dX,
and dQ/dX vectors/matrices are

populated for Xyce DAE equation:
* residual = f(x,t) + dq(x,t)/dt - b(t)

“75% of ML developers and data scientists use Python’
- State of the Developer Nation (Slashdata.co 2020)

26

Surrogate Modeling: Compact model examples

Operational Amplifier with BJTs

sekskorokokkokskokokskokk

* Netlist for Operational Amplifier
skeokskokkokoskokok ok okokk ok

VDD 1 0 DC 25 v
R114 led n

R2 15 le4

R3 6 0 5e3

C14 0 5e-12 R

C2 50 5e-12

YGENEXT pyQ1 476 =

+ SPARAMS={NAME=MODULENAME,DATAFILE
VALUE#models/gmls_bjt_2N2222.py,../data/2N2222_alan.01.dat}

RQ17 250

YGENEXT pyQ2 58 6

+ SPARAMS={NAME=MODULENAME,DATAFILE
VALUE#models/gmls_bjt_2N2222.py,../data/2N2222_alan.01.dat}

RQ2 83 50

Em_plus 2 0 VALUE={1+50e-3*sin(2*pi*10*time)}

Em_minus 3 0 VALUE={1-50e-3*sin(2*pi*10*time)}

Fast switching 1N4148 diode in bridge rectifier

sokskorokskkokkokokkokk

* Netlist for Bridge Rectifier

skskskskoskskoskkokkokkokk

V312SIN(0210)

R33010M

R4 3 4 100K

YGENEXT pyd3 1 4

+ SPARAMS={NAME=MODULENAME,DATAFILE
VALUE=../models/gmls_diode_1N4148.py,../data/1N4148_synthetic.dat}
YGENEXT pyd1 3 1

+ SPARAMS={NAME=MODULENAME,DATAFILE
VALUE=../models/gmls_diode_1N4148.py,../data/1N4148_synthetic.dat}
YGENEXT pyd4 3 2

+ SPARAMS={NAME=MODULENAME,DATAFILE
VALUE=../models/gmls_diode_1N4148.py,../data/1N4148_synthetic.dat}
YGENEXT pyd2 2 4

+ SPARAMS={NAME=MODULENAME,DATAFILE
VALUE=../models/gmls_diode_1N4148.py,../data/1N4148_synthetic.dat}
.TRAN 0 0.3s

.options timeint reltol=1.0e-4

PRINT TRAN V(1) V(2) V(3) V(4) V(2,1) V(4,3)

.END

W olts)

1 Mo
D4t —_, TN4145 compact model
0 | m— L TNA148 compact model i
Wi, TN4148 GMLS model
08+ R
W, 14148 GMLS model
-1 | n | L L
0 0.05 01 015 0z 025 03

Time [Secs)

* Runs GMLS on data generated from synthetic MMBT2222, NPN, Fairchild

W Wolts)

—\f’in,1N4148 compact madel
_Vout' 1M4148 cormpact model
Vi TH4148 GMLS model

* Vout' TN41458 GMLS model
T RF

* Runs GMLS on data generated from synthetic 1N4148

015 0z 025 03
Time [Secs)

27

* Dynamic Mode Decomposition (DMD)

/ Circuit Simulations \

Network A 1kOhm
22 KOhm L
Al -

. %

\ _/

* Power Amplifier Circuit (PAC) loosely
inspired by circuits at Sandia. The
primary function of the circuit is to
drive a load at some voltage when a
logic HI signal is received.

* The DMD abstraction is trained using
several trajectories where the input is a
logic HI signal with varying maximum
voltages, pulse duration and start time.

1+ denotes Moore-Penrose Inverse

Surrogate Modeling: CII'CUIt examples

Pl: Edgar Galvan

Snapshots

X = I.xllx2ix3a"'-xm—'l]
X' - [fz,fa,f,l, ,fm_]
U= [ﬁ.'bﬂ?nﬁd- '"lﬁm]

State Measurements

Control/lnput Measurements

Snapshot Matrices

Xpp1 = AX) + By,
¥ t
oy
[A4,B] = X [U]

\ Identify Discrete System/

Validation Trajectories

Training Trajectories

0.010 1
— 1
0.005 1 I2
— 13
UUOU 7 11 OGUO o e—a—m—a—g—n—a—d
4 |
- —0.010 - — I[1 DMD
/ —— [2DMD
—0.015 - / —— I3DMD

0 200 100 600 800 1000 0 200 400 600 800 1000
Time (p5)

0.010

0.005

—0.005 {

_—

—0.010 -

—0.015 1

DISTRIBUTION STATEMENT A /'];HBIE\’\J‘#EH FOR PUBLIC RELEASE

Schematic editing with Xyce

» Xyce is the simulator (like HSPICE, SmartSpice, Spectre, Eldo...), so Sandia does not provide a Schematic GUI.
However:.

Qucs-S Typhoon HIL
* Open Source (GPL2) * Free (not open-source)
* https://ra3xdh.github.io * https://www.typhoon-hil.com/products/xyce-integration/

* https://github.com/ra3xdh/qucs_s Electrical power/distribution focus

f_'| n |'-'| |H| I'-"| lﬁl M | |nl |'_|I |
|

AIRTRY |I||r

| | RIRTR
vy l'Jl VUV VYUY

'\yn.-

alamce

Freguancy I

