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Abstract—In recent years we have been exploring a novel asyn-
chronous, ballistic physical model of reversible computing, vari-
ously termed ABRC (Asynchronous Ballistic Reversible Compu-
ting) or BARC (Ballistic Asynchronous Reversible Computing). In 
this model, localized information-bearing pulses propagate bidi-
rectionally along nonbranching interconnects between I/O ports 
of stateful circuit elements, which carry out reversible transfor-
mations of the local digital state. The model appears suitable for 
implementation in superconducting circuits, using the naturally 
quantized configuration of magnetic flux in the circuit to encode 
digital information. One of the early research thrusts in this effort 
involves the enumeration and classification, at an abstract theoret-
ical level, of the distinct possible reversible digital functional be-
haviors that primitive BARC circuit elements may exhibit, given 
the applicable conservation and symmetry constraints in super-
conducting implementations. In this paper, we describe the moti-
vations for this work, outline our research methodology, and sum-
marize some of the noteworthy preliminary results to date from 
our theoretical study of BARC elements for bipolarized pulses, 
and having up to three I/O ports and two internal digital states. 

Keywords— theoretical models of reversible computation, asyn-
chronous ballistic reversible computing, reversible superconducting 
circuits, superconducting flux quanta 

I. INTRODUCTION 

A longstanding motivation for the exploration of reversible 
computation in a classical computing context has been to im-
prove the energy efficiency of general digital computing hard-
ware, with the goal of circumventing the Landauer limit and ap-
proaching true physical (i.e., thermodynamic) reversibility [1]. 
Most design schemes for hardware implementation of classical 
reversible computation that could potentially approach physical 
reversibility rely on synchronous, adiabatic transformations of 
the machine’s digital state under control of externally supplied 
power-clock waveforms (e.g., see [2][3]). Approaching physical 
reversibility requires these waveforms to be provided using 

high-quality resonant circuit elements to recover and reuse sig-
nal energy. But designing high-quality resonant circuits presents 
significant engineering challenges [4]. 

A potential alternative to this adiabatic approach to reversi-
ble computing is represented by ballistic schemes for reversible 
computing, the archetypal example of which is Fredkin’s billiard 
ball model [5]. In ballistic approaches, the energy required to 
carry out logical state transitions is carried along with the digital 
information in a compact, ballistically-propagating entity (e.g., 
an ideal billiard ball), and interactions (e.g., elastic collisions) 
between these entities carry out reversible logical operations, 
while locally conserving signal energy. However, classic setups 
for ballistic reversible computing required precise synchroniza-
tion between independent ballistic signals, which is not physi-
cally realistic. Realistic implementations would incur chaotic in-
stability that degrades signal trajectories, requiring dissipation to 
restore the degraded signal. 

These well-known difficulties with synchronous ballistic 
models of reversible computing motivated development of the 
novel reversible computing paradigm known as asynchronous 
ballistic reversible computing [6] (abbreviated ABRC or hence-
forth BARC). In BARC, the ballistically-propagating energy- 
and information-bearing entities (which we call “pulses”) follow 
one-dimensional, non-branching interconnects, interacting one 
at a time with stationary circuit elements or “devices” bearing 
an internal digital state. Due to the temporal separation of pulse 
arrivals, the physical dynamics of this class of systems is much 
less prone to dynamical instability, needing only relatively oc-
casional signal restoration to keep pulses’ kinetic energies and 
arrival times within specified tolerances. 

The BARC model was first introduced in 2017 along with a 
proof of its computation universality [6], and in 2018 [7] and 
2019 [8] we described early results from a present effort at San-
dia to develop a physical implementation of this new scheme in 
superconducting circuits. In this effort (called BARCS, for 
BARC with Superconductors), pulses are physically embodied 
by solitons of quantized magnetic flux, i.e., fluxons, propagating 
along long Josephson junction (LJJ) transmission lines, and the 
devices are also implemented as JJ circuits. In BARCS circuits, 
a natural digital representation of information utilizes the polar-
ization and location of magnetic flux quanta in the circuit; su-
perconductor physics naturally stabilizes digital information en-
coded in this way. 

A central goal of the BARCS effort is to demonstrate work-
ing implementations of a computation-universal subset of the 
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possible asynchronous reversible devices. The engineering work 
on this is still in progress, but an important theoretical step on 
the way to this goal is to thoroughly characterize the possible 
digital functional behaviors of such devices. Thoroughly under-
standing the full space of design possibilities facilitates our 
search for workable physical implementations of useful devices, 
and for simplified schemes for constructing arbitrary reversible 
computations out of potentially implementable primitive circuit 
elements. 

In this paper, we summarize the major results to date that 
have emerged from the theory side of this effort, which include 
the classification of the possible asynchronous reversible behav-
iors for devices having up to three bidirectional I/O ports and 
two internal states, in the context of applicable conservation and 
symmetry constraints. To facilitate this effort, we developed a 
simple Python program called barc to assist in classifying 
BARCS devices. 

The organization of this paper is as follows: §2 briefly re-
views the BARCS model; §3 introduces notations for transition 
functions and symmetries; §4 summarizes some results to date 
from the function classification effort; §5 gives a brief overview 
of the custom barc software tool facilitating this effort; and §6 
concludes. Note that the present paper comprises a somewhat 
high-level overview of our work in progress; a more detailed re-
port of results along these lines will be published at a later time. 

II. REVIEW OF BARCS MODEL 

The Ballistic Asynchronous Reversible Computing (BARC/ 
ABRC) model was previously detailed in [6]. In lieu of repeating 
the full definition here, we briefly review a few key features. A 
BARC circuit is a network of primitive devices a.k.a. elements, 
each of which has a fixed set of named or numbered I/O ports. 
Each port connects to one end of a (non-branching) interconnect. 
Localized information-bearing pulses (which are conserved, as 
in [5]) propagate ballistically (i.e., with low loss) along the in-
terconnects. In general, all ports and interconnects are assumed 
to be bidirectional; that is, pulses may propagate in either direc-
tion, although a given circuit may have been designed for use 
with a specific (e.g., feed-forward) directionality. 

The key difference between BARC vs. synchronous ballistic 
models (compare Figs. 1(b) and 1(a)) is that, in BARC, we spec-
ify that pulses must arrive at a given device at different times 
from each other, that is, far enough apart so the device dynamics 
is insensitive to the relative pulse arrival times. Doing logic in 
BARC therefore requires devices with a persistent internal state 
variable (circled S in Fig. 1(b)) so that data inputs can be mean-
ingfully combined.  

In general, pulses may come in multiple distinct types; how-
ever, universal reversible logic can be built even with just one 
pulse type; Figs. 1(c,d) illustrate part of a construction for this 
from [6]. The control pulse 𝐶 (if present) arrives first (@1), sets 
the state of the toggle barrier, and then (@2) the data pulse 𝐷 (if 
present) passes through the barrier if 𝐶 had arrived (output 𝐶𝐷), 
or reflects off the barrier and is routed around to the other output 
𝐶𝐷ഥ. This circuit is designed for feedforward operation within a 
larger circuit that reversibly resets the state of the toggle barrier 
(which can be done easily using two additional devices termed 
toggling rotaries, TR; e.g. see Fig. 2). Inverting logic operations 

can be implemented using a dual-rail encoding, and superfluous 
(“garbage”) outputs can be later decomputed using a similar cir-
cuit, as is typical within reversible logic architectures. 

Although the above construction is sufficient to demonstrate 
universality, the superconducting circuit domain naturally sup-
ports not one but two pulse types, consisting of opposite polari-
ties of magnetic flux quanta [7]. One aspiration of the BARCS 
effort is to identify a simple set of BARC primitives in general 
utilizing such bipolarized pulses that are readily implementable 
as reactive (i.e., undamped) superconducting circuits and are 
sufficient for universal reversible computation. To facilitate this 
effort, we would like to understand the full set of all possible 
bipolarized BARCS elements having up to three I/O ports and 
up to two internal states. The remainder of this paper summari-
zes our work in progress on this task. 

III. DEFINITIONS AND NOTATIONS 

In general, we may assume some fixed but arbitrary set of 
labels (e.g., ↑, ↓) for the two distinct moving flux (fluxon) polar-
ities 𝑚. For each specific type of device having 𝑛 I/O ports and 
𝑘 internal states, we may also assume that there is an associated, 
arbitrary set of labels (e.g., {1, … , 𝑛} ) for its ports 𝑝 , and 
similarly a set of labels (e.g., {Sଵ, … , S௞} ) for its available 
internal states 𝑠. 

For a given device, an input syndrome 𝑖 = 𝑚⟩𝑝(𝑠) denotes 
a (moving) fluxon with polarity 𝑚 arriving at port 𝑝 when the 
device is in state 𝑠, and an output syndrome 𝑜 = (𝑠)𝑝⟩𝑚 de-
notes a fluxon with polarity 𝑚 emerging from port 𝑝 of an ele-
ment that is now in state 𝑠. The transition function 𝑓 of a given 
BARCS element is simply a map 𝑓: 𝐼 → 𝑂 from the set 𝐼 = {𝑖} 
of possible input syndromes to the set 𝑂 = {𝑜} of possible out-
put syndromes; any given transition 𝑓(𝑖) ∈ 𝑂 may also be writ-
ten out more explicitly as 

 𝑚௜⟩𝑝௜(𝑠௜) → (𝑠௢)𝑝௢⟩𝑚௢, 

Fig. 1. Illustration of BARC model. Inputs to (a) traditional, synchronous bal-
listic devices, contrasted with (b) asynchronous ballistic devices, which may 
have internal state. (c) Two example devices: (Left) a stateless Rotary R which 
routes pulses clockwise between adjacent ports, and (Right) a Toggling Con-
trolled Barrier (TCB) a.k.a. “Toggle Barrier”, which has conducting (C) and 
nonconducting (NC) states. Pulses reflecting off the control terminal toggle the 
state; pulses on other terminals reflect in state NC and pass through in state C. 
(d) Part of the universal circuit construction from [6], illustrating how R and 
TCB devices can be set up to implement a reversible AND-like function, given 
an unpolarized pulse-type alphabet (i.e., where only one type of pulse is used). 



where the 𝑖, 𝑜 subscripts denote the values associated with input 
and output syndromes, respectively. In this paper, we assume 
that each transition function 𝑓 comprises an injective map over 
its entire domain 𝐼, so that we say it is fully logically reversible. 
In future work, we will also explore transition functions 𝐹 that 
are only injective over an assumed set 𝐴 ⊂ 𝐼; such functions are 
termed conditionally logically reversible, and their appropriate 
use can be adequate for achieving energy-efficient computation, 
as discussed in the earlier work on generalized reversible com-
puting theory [9]. 

When studying the implementability and distinctness of 
BARCS elements, it’s useful to consider the applicable sym-
metries that they could respect. Any given (self-)symmetry 𝒳 is 
associated with some invertible symmetry transformation 𝑋 that 
operates on transition functions 𝑓, and a symmetry group 𝔛 con-
sisting of distinct powers of 𝑋 (with 𝑋଴ = I being the identity). 
The symmetries considered in our studies include: 

 Direction-reversal symmetry 𝒟  – This refers to sym-
metry of 𝑓 under an exchange of roles between input and 
output syndromes (ignoring their notational differences). 
Note that 𝐷(𝑓) corresponds to 𝑓ିଵ. 

 State-exchange symmetry 𝒮 – Defined only for two-state 
devices, this refers to symmetry of 𝑓 under an exchange 
of the two state labels 𝑆ଵ, 𝑆ଶ. 

 Flux-negation symmetry ℱ – This refers to symmetry of 
the device’s transition function under a polarity reversal 
of both internal and I/O fluxes (and associated currents). 
Properly defining this symmetry’s relations to others re-
quires that the encoding of internal states in terms of flux 
configurations in the circuit element has been defined. 
However, to simplify implementations, we initially as-
sume that the state encoding is such that a flux negation 
transformation includes performing a state exchange 𝑆. 
Note that ℱnegation also includes exchanging I/O fluxon 
polarities. For physical reasons, it appears that imple-
mentable BARCS devices must obey ℱ symmetry unless 
the symmetry is explicitly broken, e.g., by introducing 
permanently trapped fluxes into the device’s structure. 

 Port-relabeling symmetries ℛ௉ – These refer to symme-
tries under permutations P of the port labels. Special ca-
ses include ℛ𝐫 = rotational symmetry, and ℛ{௣} = reflec-
tion of port labels across the port p “axis” (note that de-
fining both of these requires specifying the port order). 
ℛ(𝑛) refers to symmetry under all possible port rear-
rangements for an 𝑛-port device. 

In addition to the ℱ symmetry constraint, planar circuit ele-
ments with continuous superconducting boundaries must obey a 
flux conservation constraint; however, characterizing the de-
tailed implications of this constraint requires specifying how in-
ternal states are encoded—specifically, what is the net internal 
flux of the device in each of its states. In this work, we consid-
ered cases in which the net internal fluxes of the two states were 
{1, −1} or {0,0} in units of the magnetic flux quantum Φ଴. 

IV. SUMMARY OF RESULTS 

At this time, we have essentially completed the classification 
of BARCS functional element behaviors for devices with up to 
three I/O ports and up to two internal states. Below is a summary 
of some of the key results to date for various device types: 

 One port, one state. – As was mentioned in [7], the only 
reversible elements of this type are the reflector and the 
inverting reflector; these have trivial superconducting 
implementations as closed-circuit and open-circuit line 
terminations. 

 One port, two states. – Modulo basic symmetries, the 
only nontrivial element is the reversible memory (RM) 
cell, described [7] and implemented [8] in 2019. A test 
chip for it was fabricated in 2020, and a U.S. patent on 
the implementation concept was issued in 2022 [10]. 

 Two ports, one state. – There are four I/O syndromes, so 
4! = 24  reversible functions. The nontrivial function 
with maximal symmetry is a bidirectional NOT gate; this 
is trivially implementable as a non-planar circuit via a 
half-twist of the conductor pair in the interconnect; a 
planar implementation (with open boundary) was de-
scribed in [11]. One interesting albeit less-symmetrical 
element is the reversible polarity filter (RPF); it lacks ℱ 
symmetry, and so its implementation would require per-
manent trapped flux or external flux biasing. 

 Two ports, two states. – In this case, there are 2ଷ = 8 
possible I/O syndromes and thus 8!  =  40,320 reversi-
ble functions, so full enumeration and classification re-
quires software assistance. However, restricting attention 
to flux-conserving planar circuits simplifies the situation 
considerably. If the internal states are both flux-neutral, 
the I/O fluxon polarity is unaffected by the operation; 
and if ℱ symmetry is also respected, the function count 
reduces to 2ଶ! = 24, of which 14 are atomic and nontriv-
ial. Alternatively, if internal states are flux-polarized, the 
only possible effect on the fluxes is an exchange, like in 
the RM cell. There are 7 primitive functions of this type 
(modulo symmetries), and the most self-symmetrical of 
these include the Ballistic Shift Register (BSR) [12], and 
a dual-port version of the RM cell (differing from the 
BSR in that the fluxon emerges from the same port that 
it entered). We recently implemented the 2-port RM cell 
at the schematic level and verified its functionality in 
WRspice. 

 Three ports, one state. – If we ignore conservation and 
symmetry constraints, there are (2 × 3)! = 720 possi-
ble functions in this case, requiring software enumera-
tion. But if we assume flux conservation and ℱ  sym-
metry, the only nontrivial behavior is a polarity-indepen-
dent rotary. It is not yet clear whether this function is im-
plementable as an unbiased, reactive BARCS circuit. 

 Three ports, two states. – Without constraints, there are 
12! = 479,001,600 possible fully reversible functions. 
Restricting attention to flux-conserving, ℱ -symmetric 
functions lowers this to 252 functions for flux-polarized 



states, and 720 for flux-neutral states. These cases are de-
scribed in more detail below. We have verified a 3-port 
version of the RM cell in WRspice. 

The most complex category of devices studied in detail in 
this effort so far was the last one mentioned above, consisting of 
all three-port flux-conserving elements with two flux-neutral in-
ternal states and respecting ℱ  symmetry. The barc program 
generated a complete enumeration of all 600 non-trivial, primi-
tive transition functions in this category and grouped them into 
45 distinct symmetry-equivalence groups (Table II), such that 
the members of each such class transform to each other via some 
subset of the natural mutually commuting symmetry transform-
ations that function descriptions in this family may support. The 
11 largest equivalence classes represent the most “irregular” re-
versible device behaviors of this type, each of which exhibits 
only the minimal self-symmetry ( ℱ ) that is assumed to be 
required. Each such behavior can be described via 24 essentially 
equivalent transition functions, corresponding to the largest 
composite symmetry group 𝔇 ⋅ 𝔖 ⋅ ℜ(3) consisting of all 2 ⋅ 2 ⋅
6 = 24 possible combinations of the various optional symmetry 
transformations (𝐷, 𝑆, and the various port rearrangements 𝑅௉).  

Similarly, in the flux-polarized case, 219 of the 252 func-
tions are non-trivial primitives, and classify into 39 equivalence 
groups (Table III). Since applying 𝑆  transforms would cause 
flux conservation violations in this case, the overall composite 
symmetry group becomes just the 12-element group 𝔇 ⋅ ℜ(3). 

Space constraints preclude inclusion, in the present paper, of 
a detailed description of each of the many qualitatively distinct 
device types (i.e., equivalence groups) that we identified in this 
study; the full details will be published in a subsequent article. 
For now, we illustrate the flavor of the results with a few exam-
ple function descriptions. 

V. EXAMPLE FUNCTIONAL ELEMENT BEHAVIORS 

The following example behaviors (Figs. 2–5) are all taken 
from the set of 3-port, 2-state flux-conserving ℱ-symmetric ele-
ments with flux-neutral internal states. (Such states might be im-
plemented by, for example, an internal exchange between two 

Fig. 2. The Polarized Neutral Toggle Rotary (PNTR) leaves the polarity of the 
moving fluxon unchanged, routes it in a polarization-dependent direction, and 
alternates its direction with each fluxon that passes through. The arrows in the 
figure illustrate behavior for positive input fluxons. The dots denote that the 
state is toggled when the arrows are followed. 

Fig. 3. The Polarized Toggle Controlled Barrier (PTCB) extends the ordinary 
unipolar Toggle Control Barrier (TCB) described in [6] and Fig. 1 by taking on 
opposite state behaviors for oppositely-polarized fluxons that hit the L/R 
channel ports. 

Fig. 4. Two variations of a behavior called Polarized Throw Switch (PTS)
which routes fluxons from the central port C to either the L or R arm port 
depending on the device’s state (also called L or R).  The “Type A” behavior 
(left) does not change its state when a fluxon bounces off one of the L/R arm 
ports, whereas the “Type B” behavior (right) does. Labels on the arrows 
illustrate the state (L/R) during the given transition. Arrow-less lines denote 
that transitions are allowed in both directions. 

Fig. 5. A Flipping Diode (FD) is a 2-port device that passes fluxons between 
its L/R channel ports in one direction, and reflects them in the other direction, 
and toggles its state when they pass through. A Controlled Flipping diode 
(CFD) adds a 3rd port C that also toggles the state when a fluxon reflects off of 
it. A Polarized Controlled Flipping Diode (PCFD) differs from regular unpo-
larized CFD behavior just in that the role of the two states is interchanged for 
negatively-polarized fluxons hitting the L/R channel ports. 



oppositely polarized storage cells.) Due to flux conservation, the 
I/O fluxon’s polarity remains unchanged by an interaction with 
such a device. All of the diagrams illustrate functional behaviors 
for the case of a positively polarized (+1Φ଴) fluxon only. Due 
to ℱ-symmetry, the behavior for a negatively polarized (−1Φ଴) 
fluxon is the same as that shown except that the roles of the two 
states are interchanged. 

Proper BARCS-style (reactive) circuits implementing these 
functions have not yet been found, but the search continues. 

VI. CLASSIFICATION TOOL 

The task of enumerating and classifying possible BARCS 
functions of different types is being facilitated by a simple cus-
tom software tool called barc, written in Python for this pur-
pose. This tool simply (1) enumerates all reversible transition 
functions of a given type, (2) groups them into symmetry/equiv-
alence classes, where the members of each such class transform 
to each other via combinations of 𝐷, 𝑆, 𝑅௉ transforms, and (3) 
prints out a listing of the equivalence classes and a representative 
function in each class. Table I summarizes the overall structure 
of the program, with modules grouped into layers reflecting de-
pendencies. Table II summarizes results for the largest category 
of devices studied to date, mentioned above, i.e., the 600 non-
trivial functions for 3-port, 2-state, flux-conserving, flux-neutral 
elements. Fig. 6 shows sample output from barc describing one 
of the 45 equivalence classes (here describing its behavior for 
positive fluxons) in this category. Table III summarizes results 
for the 3-port, 2-state, flux-conserving, flux-polarized elements. 

Other cases that had been previously analyzed by hand were 
also verified by the barc program, including those for 1- and 
2-port devices with two flux-polarized or flux-neutral states. In 
the 2-port flux-polarized case, there are 4 equivalence groups of 
size 1 (fully self-symmetric) and 3 equivalence groups of size 2 
(elements having dual representations). In the 2-port flux-neu-
tral case, there are 3 equivalence groups of size 2 and 1 equiva-
lence group of size 8—this one is an element that we call the 
asymmetric polarized flipping diode APFD or selectable barrier 
SB which has minimal self-symmetry; the APFD and SB behav-
iors are 𝒟-duals to each other. 

VII. CONCLUSON 

Some next steps planned for this particular line of work are 
to more fully document the results of the classification effort, as 
well as to continue our investigations regarding implementabil-
ity of the elements, with assistance from the circuit-discovery 
tool discussed in [8], which is still in development. Components 
suitable for consideration include inductors, mutual inductances, 
capacitors, unshunted Josephson junctions (both regular and 𝜋 
junctions), and other types of reactive superconducting devices 
that have been proposed. In the process of searching for element 
implementations, we might discover that implementable beha-
viors must obey additional symmetries, reducing the number of 
behavioral elements that we need to consider. Finally, we hope 
to discover a new universal circuit construction utilizing imple-
mented elements, which can then serve as a basis for exploring 
architectural implementations for more complex reversible 
functional behaviors. 

 

TABLE I.  MODULES IN THE BARC TOOL 

Layer  Module Names & Descriptions 
4 barc (top-level program)  
3 deviceType – Classification of devices with given dimensions. 
2 deviceFunction – Device with a specific transition function. 
1 pulseAlphabet – Sets of pulse types. 

symmetryGroup – Equivalence class of device functions. 
transitionFunction – Bijective map, input→output syndromes.  

0 characterClass – Defines a type of signal characters. 
deviceDimensions – Defines size parameters of devices. 
dictPermuter – Used to enumerate transition functions. 
pulseType – Identifies a specific type of pulse. 
signalCharacter – Identifies I/O event type (pulse type & port). 
state – Identifies an internal state of a device. 
stateSet – Identifies a set of accessible device states. 
symmetryTransform – Invertibly transforms a device function. 
syndrome – An initial or final condition for a device transition. 
utilities – Defines some low-level utility functions. 

TABLE II.  RESULT SUMMARY FOR 3-PORT FLUX-NEUTRAL DEVICES 

Equivalence Class Size: 2 4 6 12 24 

Tot. Self-Symmetry Group Size: 12 6 4 2 1 

No. of Equivalence Classes: 1 1 9 23 11 45 

Total number of Functions: 2 4 54 276 264 600 

TABLE III.  RESULT SUMMARY FOR 3-PORT FLUX-POLARIZED DEVICES 

Equivalence Class Size: 1 2 3 6 12 

Tot. Self-Symmetry Group Size: 12 6 4 2 1 

No. of Equivalence Classes: 1 4 6 24 4 39 

Total number of Functions: 1 8 18 144 48 219 
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Symmetry group #38 has 6 functions: 
    Function #155. 
    Function #340. 
    Function #481. 
    Function #285. 
    Function #365. 
    Function #185. 
  
Example: Function #155 = [1]*3(L,R): 
    1(L) -> (R)2 
    1(R) -> (L)3 
    2(L) -> (R)1 
    2(R) -> (R)3 
    3(L) -> (L)2 
    3(R) -> (L)1 
  
Function #155 has the following symmetry properties: 
    It is D-dual to function #481 
    It is S-dual to function #481 
    It is E(1,2)-dual to function #340 
    It is E(1,3)-dual to function #185 
    It is E(2,3)-dual to function #481 
    It R(-1)-transforms to function #365 
    It R(1)-transforms to function #285 

Fig. 6. Example description of an equivalence class as output by barc. 
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