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The Significance of Aleatory vs. Epistemic
uncertainty in model validation @E‘Egﬂﬁm

Laboratories

These PDFs line up perfectly. Is the model prediction
perfect or likely biased?

sim. experim.

d 4
NN

 Answer: it depends pivotally on the nature of the uncertainty
represented by the PDFs

— Perfect model if the PDFs represent populations of results
from a stochastic system tested multiple times w/ no other
uncertainty in the tests (aleatory uncertainty only)

— Model likely has error if the PDFs represent only epistemic
uncertainty (lack of knowledge) regarding the deterministic
value of a response ?




Treatment of Aleatory and Epistemic Uncertainties |
in Model Validation () diom
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» Real Space approach can be viewed as an extended hybrid of other
well-established validation frameworks:

— ASME V&V20 2009 Standard for V&V in CFD and Heat Transfer

« Subtractive-difference metric is geared for validation of models of effectively
deterministic systems (i.e., no “traveling” uncertainties intrinsic to the model)

 Full treatment of epistemic lack-of-knowledge type uncertainties in model
discretization solution error and modeled experimental ICs/BCs and measured
experimental inputs and outputs

« 2-parameter probabilistic uncertainty treatment based on mean and stdev.

— ASME V&V10.1 2012 Supplement for V&V in Computational Solid Mech.
* built for validation of models of stochastic systems with significant aleatory variability
» uses Ferson/Oberkampf “Area” validation metric for mis-match of sim. & exper. CDFs

 can be extended to treatment of aleatory and epistemic uncertainties (e.g., with a
segregated “Probability box” uncertainty representation per Ferson & Oberkampf)

* ignores some important types of experimental epistemic uncertainty that ASME VV20
and Real Space include

— Real Space: no restrictions, + significant extensions 3



Concept of @ Sandia
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“Traveling” and “Non-Traveling” Uncertainties Laboratores

Traveling Uncertainties are intrinsic to the model being validated

They come with the model as a consequence of model-form error
and/or lack of knowledge about values of parameters in the model.

They are consistent between the validation conditions and model
applications beyond the validation activity.

Non-Traveling uncertainties are particular to the validation activity

They are outside the traveling model of extrapolation interest

* e.g., experimental measurement uncertainties and model
discretization related solution uncertainty in the validation activity



Real Space vs. Subtractive-Difference .

Transform Representation of Model Discrepancy @[‘aﬂ“m“?énes

» Subtractive difference is a popular way of comparing data against model
predictions for model validation assessments (but best used for only non-traveling
epistemic uncertainties)

* The subtractive difference transform yields a less definitive validation result vs.
staying in real space — see example below

» Subtractive Difference has non-unique mapping from real space to transform
space, as do other (perhaps all?) validation metric discrepancy transforms

» Subtractive Difference non-uniqueness is not a problem if constrained to
Non-Traveling epistemic uncertainties, but is a problem for Traveling epistemic
uncertainties (to be explained verbally)

Example

with Traveling ]

Epistemic exper.—I |[— sim. exper. —| I—sim. | {Sim.} - {Exper.} =
uncertainties in

the model and

differing risk Case 1 Case 2 Both Cases 1 & 2
connotations — — '~ ~
with its use Real Space Difference Space




ASME VV10 Applicability to One Experiment
with Epistemic Uncertainty Only () diom
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* Depending on the details, ASME VV10
does in some cases properly account for traveling and
non-traveling epistemic uncertainties in the model

* But does not show how to handle complex experimental
uncertainty:

— random and systematic components of error and
correlated errors in measurements of inputs and outputs

« ASME VV20 has demonstrated complex experimental
uncertainty with probabilistic hon-traveling uncertainties

* Real Space has demonstrated complex experimental
uncertainty with probabilistic and/or interval traveling
and/or non-traveling uncertainties 6




Model Builder’s Risk vs. Model User’s Risk
with respect to systematic uncertainty in Sandia
experiment conditions @ Pt
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 Where place burden of proof?

— Optimistic stance: Assume model is unbiased if don’t
have positive proof that it is biased (outside expr. uncer.)
* Oberkampf & Roy: “When the simulation is a P-Box due to
insufficient information provided by the validation
experiment, the model is given more leeway in comparing
with the experiment, as is appropriate.”
* “Free lunch”— the more experimental uncertainty, the more

model-bias leeway allowed
* eliminates Model Bldr.’s risk but increases Model User risk

— Conservative: Treat model as potentially biased up to
magnitude allowed by resolution uncertainty in expers.
* Real Space — reduces Model User’s risk but increases
Model Builder’s risk
- ASME V&V20 — similar




Now Consider Multiple Replicate Tests with Stochastically Varying Systems

For validation of models with traveling aleatory uncertainty
that represents the stochastic variability in the systems

random/aleatory variation of the systems from test-to-test

test-to-test random/aleatory variation of measurement errors
on inputs and/or outputs (“random” uncertainties)

test-to-test effectively constant errors in measurements of
inputs and/or outputs (“systematic” uncertainties)



Real Space comparison for Stochastic

Experimental and Simulation Results @ el
(at same input conditions, shown side-by-side for comparison)
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« Compare statistical measures of response, not whole CDFs
* Use sparse-sample UQ methods to bound experim. and sim. statistics

experiments simulations
_ Aleatory
'\ uncertainty
Aleatory & | e.g. compare AN )
istemic | th i KXY
Epistemic | 5th percentile 1+ N2V Epistemic
|

. l,) uncertalnty
/

| ]
* Intuitive visual indication of how accurate the model is, on several fronts:
— Means of the predicted and experimental populations
— Variances
— Percentiles
— Range of response %, e.g. the “central” 95% between 2.5 and 97.5 percentiles

(These last two account for combined uncertainty in mean, variance, and possible higher
moments of stochastic response and are found to be the most useful in practice)

uncertainty of response

* Percentile comparisons are particularly useful for validation of models to be
used for analysis of performance and safety margins 9



VV20 Subtractive-Difference Metric prevents proper
handling of Modeled Variability among a Population@ Sandia

of Stochastic Systems in Replicate Experiments P

response
value
A

Let simulated stochastic « Conditions: no measurement errors in
variability from the experim the experiments; and large # of tests
model exactly equal the ' * Observed response variability is due to
variability of many real _ unit-to-unit stochastic variability of the
systems tested =) sim. tested systems, and not due to testing
 Traveling stochastic variability
variability
Real Space approach ASME VV20 Sub- VV10 Area Metric
v" works; no model tractive Diff. Metric v works; no model
t errorindicated t « non-zero uncertainty error indicated
results--attributed as ° Zero area
1 possible model bias between exper.
| {Diff} = {Sim} — {Exper} and sim. CDFs
l -
exper. sim.

»

. Uncertai;lty should be zero for exact
match between experim. and sim. results




Non-Uniqueness of Area Metric |
of CDF Mismatch () dio

Area Metric

response
value  Exp. vs. Sim. aleatory

e same area value both

Consider two uncertainties, 2 cases N A
cases where relative sim. experim. cases, rlsI()(Tlndlfferent

rtainties i ; area = A% in both cases and for
uncertain |tes '3 = / 4 , ° other,CDFs that could be
experiment an A7 \ compared
simulation results ) \ _.
are very different \

case1 case?2

Real Space method

* non-uniqueness of Area Metric can « like-percentiles of CDFs are
hide prediction risk and undermine compared
metric use for extrapolation (next « Unique and more granular
slide) quantification of how CDFs
differ

* reveals different prediction
risks in these two cases 11



Area Metric Non-Uniqueness can
Sandi
also obscure the Trend of Model Error @na?iu'r?al
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Real Space method Area Metric
rponse o reveals differing - same areas for diff.
vatue, sim. & exper. trends model trend errors

A

sim. experim

resporse  integrated discrepancy
' /" \ l value \ area = A0 in both cases

— Val.pt.1 —pt-2—
circumstance 1 —

A

integrated discrepancy
area = A" in both cases

12



Other Differentiating Features .
of the Real Space methodology @ aboraore

« Explicitly accounts for epistemic uncertainty arising
from small sample sizes (limited numbers of replicate
tests) in experimental characterization of mtls., systems

— a dominant or significant uncertainty in many cases

* The RS framework has demonstrated protocols for
treatment of the following representations of
uncertainty, individually and in combination:

— Interval
— Distributional (probability density functions)
— Discrete (non-parametric) /“

* e.g. different turbulence model forms and | /.
discrete stress-strain curves (functional data) 3



Support for Prediction Bias Correction Soni
and Extrapolation @Naﬂunal
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- ASME VV10
— A possible extension exists per Roy & Oberkampf, but
only when the experimental and simulation PDFs don'’t overlap
significantly.
* Then the Area metric has a physical connotation of the difference
between the means of the distributions, so a mean correction can
be applied to the simulation PDF (but not percentile-by-percentile

like the Real Space method allows).

« ASME VV20
— no established connectivity to bias-correction or extrapolation

* Real Space

— Prediction bias correction for a selected percentile of response and
Predictor-Corrector extrapolation of the correction, with extrapolation

UQ scaled to extrapolation distance 4
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* The Real Space validation methodology is versatile and

practical, geared for:

— expensive computational models (minimal # of simulations)

— stochastic phenomena and models

— multiple replicate experiments with random and systematic
uncertainties on experimental inputs and outputs

— few replicates (sparse data)

— rollup of various types, sources, and representations of uncertainty
« aleatory and epistemic
* traveling, non-traveling
 probabilistic, interval, and discrete variables and functions

* Real Space Validation results are:
— relatively straightforward to interpret for model adequacy and bias corr.
— especially relevant for assessing models to be used for the analysis of
performance and safety margins 15



