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• Answer: it depends pivotally on the nature of the uncertainty 
represented by the PDFs
– Perfect model if the PDFs represent populations of results 

from a stochastic system tested multiple times w/ no other 
uncertainty in the tests (aleatory uncertainty only)

– Model likely has error if the PDFs represent only epistemic 
uncertainty (lack of knowledge) regarding the deterministic 
value of a response

The Significance of Aleatory vs. Epistemic 
uncertainty in model validation

sim. experim.

These PDFs line up perfectly. Is the model prediction 
perfect or likely biased?
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• Real Space approach can be viewed as an extended hybrid of other 
well-established validation frameworks:

– ASME V&V20 2009 Standard for V&V in CFD and Heat Transfer 
• Subtractive-difference metric is geared for validation of models of effectively 

deterministic systems (i.e., no “traveling” uncertainties intrinsic to the model)
• Full treatment of epistemic lack-of-knowledge type uncertainties in model 

discretization solution error and modeled experimental ICs/BCs and measured 
experimental inputs and outputs

• 2-parameter probabilistic uncertainty treatment based on mean and stdev.
– ASME V&V10.1 2012 Supplement for V&V in Computational Solid Mech.

• built for validation of models of stochastic systems with significant aleatory variability
• uses Ferson/Oberkampf “Area” validation metric for mis-match of sim. & exper. CDFs
• can be extended to treatment of aleatory and epistemic uncertainties (e.g., with a 

segregated “Probability box” uncertainty representation per Ferson & Oberkampf) 
• ignores some important types of experimental epistemic uncertainty that ASME VV20 

and Real Space include
– Real Space: no restrictions, + significant extensions

Treatment of Aleatory and Epistemic Uncertainties
in Model Validation
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Concept of 
“Traveling” and “Non-Traveling” Uncertainties

Traveling Uncertainties are intrinsic to the model being validated 

They come with the model as a consequence of model-form error 
and/or lack of knowledge about values of parameters in the model. 

They are consistent between the validation conditions and model 
applications beyond the validation activity. 

Non-Traveling uncertainties are particular to the validation activity 

They are outside the traveling model of extrapolation interest
• e.g., experimental measurement uncertainties and model 

discretization related solution uncertainty in the validation activity



• Subtractive difference is a popular way of comparing data against model 
predictions for model validation assessments (but best used for only non-traveling 
epistemic uncertainties) 

• The subtractive difference transform yields a less definitive validation result vs. 
staying in real space – see example below

• Subtractive Difference has non-unique mapping from real space to transform 
space, as do other (perhaps all?) validation metric discrepancy transforms

• Subtractive Difference non-uniqueness is not a problem if constrained to
Non-Traveling epistemic uncertainties, but is a problem for Traveling epistemic 
uncertainties (to be explained verbally) 

Real Space vs. Subtractive-Difference
Transform Representation of Model Discrepancy

sim.

Case 1 Case 2

{Sim.} – {Exper.} =

Real Space Difference Space

Both Cases 1 & 2

exper. sim.exper.

Example 
with Traveling
Epistemic 
uncertainties in 
the model and 
differing risk 
connotations
with its use 
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ASME VV10 Applicability to One Experiment
with Epistemic Uncertainty Only

• Depending on the details, ASME VV10
does in some cases properly account for traveling and 
non-traveling epistemic uncertainties in the model

• But does not show how to handle complex experimental 
uncertainty:
– random and systematic components of error and 

correlated errors in measurements of inputs and outputs

• ASME VV20 has demonstrated complex experimental 
uncertainty with probabilistic non-traveling uncertainties

• Real Space has demonstrated complex experimental 
uncertainty with probabilistic and/or interval traveling 
and/or non-traveling uncertainties
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• Where place burden of proof? 
– Optimistic stance: Assume model is unbiased if don’t 

have positive proof that it is biased (outside expr. uncer.)
• Oberkampf & Roy: “When the simulation is a P-Box due to 

insufficient information provided by the validation 
experiment, the model is given more leeway in comparing 
with the experiment, as is appropriate.”

• “Free lunch”— the more experimental uncertainty, the more 
model-bias leeway allowed 

• eliminates Model Bldr.’s risk but increases Model User risk

– Conservative: Treat model as potentially biased up to 
magnitude allowed by resolution uncertainty in expers.

• Real Space – reduces Model User’s risk but increases 
Model Builder’s risk

• ASME V&V20 – similar

Model Builder’s Risk vs. Model User’s Risk
with respect to systematic uncertainty in 
experiment conditions 



Now Consider Multiple Replicate Tests with Stochastically Varying Systems

• For validation of models with traveling aleatory uncertainty
that represents the stochastic variability in the systems  

• random/aleatory variation of the systems from test-to-test

• test-to-test random/aleatory variation of measurement errors 
on inputs and/or outputs (“random” uncertainties) 

• test-to-test effectively constant errors in measurements of 
inputs and/or outputs (“systematic” uncertainties)



Real Space comparison for Stochastic 
Experimental and Simulation Results
(at same input conditions, shown side-by-side for comparison)
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• Intuitive visual indication of how accurate the model is, on several fronts:
– Means of the predicted and experimental populations 
– Variances
– Percentiles
– Range of response %, e.g. the “central” 95% between 2.5 and 97.5 percentiles
(These last two account for combined uncertainty in mean, variance, and possible higher 
moments of stochastic response and are found to be the most useful in practice)

• Percentile comparisons are particularly useful for validation of models to be 
used for analysis of performance and safety margins

Aleatory
uncertainty

Epistemic
uncertainty

simulationsexperiments

Aleatory & 
Epistemic
uncertainty

e.g. compare
5th percentile
of response

• Compare statistical measures of response, not whole CDFs
• Use sparse-sample UQ methods to bound experim. and sim. statistics
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VV20 Subtractive-Difference Metric prevents proper 
handling of Modeled Variability among a Population 
of Stochastic Systems in Replicate Experiments

Real Space approach
 works; no model
    error indicated

ASME VV20 Sub-
tractive Diff. Metric
• non-zero uncertainty 
results--attributed as 
possible model bias

VV10 Area Metric
 works; no model 
    error indicated
• zero area 

between exper. 
and sim. CDFs

response
value

sim.

experim.

{Diff} = {Sim} – {Exper} 

exper. sim.

• Conditions: no measurement errors in 
the experiments; and large # of tests

• Observed response variability is due to 
unit-to-unit stochastic variability of the 
tested systems, and not due to testing 
variability

Let simulated stochastic 
variability from the 
model exactly equal the 
variability of many real 
systems tested

• Traveling stochastic 
variability

Uncertainty should be zero for exact 
match between experim. and sim. results 
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Non-Uniqueness of Area Metric
of CDF Mismatch

     Real Space method
• like-percentiles of CDFs are
  compared 
• Unique and more granular
  quantification of how CDFs
  differ
• reveals different prediction
  risks in these two cases 

response
value

sim. experim.

• non-uniqueness of Area Metric can 
hide prediction risk and undermine 
metric use for extrapolation (next 
slide)

Consider two 
cases where relative 
uncertainties in 
experiment and 
simulation results 
are very different

case 1 case 2

Exp. vs. Sim. aleatory 
uncertainties, 2 cases

Area Metric
• same area value both 
  cases; risk-indifferent

case 1 case 2

area = A0 in both cases and for 
∞ other CDFs that could be 
                                        compared  
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Val. pt. 1

this

Real Space method
• reveals differing

sim. & exper. trends

Area Metric

Input, xi 

response
value

Input, xi 

Input, xi Input, xi 

• same areas for diff. 
model trend errors

circumstance 1
circumstance 2

response
value

integrated discrepancy 
area = A0 in both cases  

integrated discrepancy 
area = A* in both cases  

sim. experim.

experim.sim.

Area Metric Non-Uniqueness can
also obscure the Trend of Model Error

Val. pt. 1 pt. 2

pt. 2 Val. pt. 1 pt. 2

Val. pt. 1 pt. 2
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• Explicitly accounts for epistemic uncertainty arising 
from small sample sizes (limited numbers of replicate 
tests) in experimental characterization of mtls., systems
– a dominant or significant uncertainty in many cases

• The RS framework has demonstrated protocols for 
treatment of the following representations of 
uncertainty, individually and in combination:
– Interval 
– Distributional (probability density functions) 
– Discrete (non-parametric) 

• e.g. different turbulence model forms and
discrete stress-strain curves (functional data)

Other Differentiating Features 
of the Real Space methodology
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Support for Prediction Bias Correction
and Extrapolation

• ASME VV10
– A possible extension exists per Roy & Oberkampf, but 

only when the experimental and simulation PDFs don’t overlap 
significantly.

• Then the Area metric has a physical connotation of the difference 
between the means of the distributions, so a mean correction can 
be applied to the simulation PDF (but not percentile-by-percentile 
like the Real Space method allows).

• ASME VV20
– no established connectivity to bias-correction or extrapolation

• Real Space
– Prediction bias correction for a selected percentile of response  and 

Predictor-Corrector extrapolation of the correction, with extrapolation 
UQ scaled to extrapolation distance 



• The Real Space validation methodology is versatile and 
practical, geared for:
– expensive computational models (minimal # of simulations)
– stochastic phenomena and models 
– multiple replicate experiments with random and systematic 

uncertainties on experimental inputs and outputs
– few replicates (sparse data)
– rollup of various types, sources, and representations of uncertainty

• aleatory and epistemic
• traveling, non-traveling
• probabilistic, interval, and discrete variables and functions

• Real Space Validation results are:
– relatively straightforward to interpret for model adequacy and bias corr.
– especially relevant for assessing models to be used for the analysis of 

performance and safety margins 15


