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Abstract—There is a growing market for technologies ded-
icated to accelerating Artificial Intelligence (AI) workloads.
Many of these emerging architectures promise to provide sav-
ings in energy efficiency, area, and latency when compared to
traditional CPUs for these types of applications. In particular,
neuromorphic analog and digital technologies provide both low-
power and configurable acceleration of challenging artificial
intelligence (AI) algorithms. If designed into a heterogeneous
system with other accelerators and conventional compute
nodes, these technologies have the potential to augment the
capabilities of traditional High Performance Computing (HPC)
platforms. We present a codesign ecosystem that leverages an
analytical tool, ATHENA, to accelerate design space explo-
ration and evaluation of novel architectures.

Index Terms—Machine Learning, Codesign Tools, Neuro-
morphic Computing,

I. Introduction

For decades computing relied on the steady growth of
performance provided with each new generation of CPUs.
As this performance began to taper off, users turned to the
wide Single Instruction, Multiple Data (SIMD) capabilities
provided by GPUs to supplement the performance of some
algorithms. This scaling issue is also driving a significant
amount of research in new acceleration hardware designed
for high-efficiency and performance [1]. Although the
factors that pushed users to GPUs (Moore’s Law and
Dennard scaling) still exist for the time being [2], [3],
advances in fabrication and circuit design are pushing
accelerators closer to the CPU [4]-[7].

Moreover, high-performance computing is evolving be-
yond historically floating-point dense high-fidelity mod-
eling and simulation to one that melds this traditional
domain with machine learning models and large, often
sparsely connected, volumes of data [8]-[10]. This has
brought about a revolution in industry and academia, each
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proposing new, sometimes exotic, accelerators for these
emerging computing domains. Because of these trends, the
future likely entails system-on-package designs, blending
multiple types of compute in a tightly-coupled package to
enable orders of magnitude performance gains [11].

However, there are open questions about what can
and should be offloaded to an accelerator and which
accelerators make sense to co-package with a CPU. The
diversity of workloads from home users, to datacenters,
to HPC centers guarantees that there will not be a
single solution that fits the needs of all stakeholders.
Even looking at the application space of a single site like
Argonne National Laboratory [12], Oak Ridge National
Laboratory [13], or NERSC [14] makes it difficult to sketch
out a possible solution. This vast design space begs for a
co-design approach to discover best practices and inform
cross-technology standards.
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ATHENA-SST Integration.

This paper leverages ongoing investments in code-
sign simulation tools such as the Structural Simulation
Tool (SST) [15] to provide a flexible cycle-approximate
simulation foundation. The problem with these simula-
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tions is that the time-to-solution can be hours or days,
which makes identifying an optimal design point a years-
long task. To reduce the design space, we developed
Analytical Tool for Heterogeneous Neuromorphic Architec-
tures (ATHENA), an analytical performance estimation
tool which can be used to gather rapid insights into hard-
ware performance. To help leverage ATHENA'’s results,
we further developed ATHENA-SST Integration Tool
(ASIT) to bridge ATHENA with lower-level Structural
Simulation Toolkit (SST) simulations [16]. These tools
focus on allowing rapid prototyping of emerging analog
and neuromorphic architectures.

The following architectures can be evaluated using our
codesign tools:

o Dataflow Architectures: Codesigned dataflow acceler-
ator to enable Al technologies.

e Analog Accelerators: Analog neural network infer-
ence accelerators that leverage emerging analog de-
vices [17]-[19].

o Spiking Architectures: A highly configurable model
of spiking neural network (SNN) hardware, able to
model STPU (Spiking Temporal Processing Unit) neu-
romorphic architecture [20], Intel’s Loihi [21], IBM’s
TrueNorth [22], and future designs.

A. ML Accelerators

Challenges in power scaling of conventional digital
computing have ushered in a new ‘Golden Age in Com-
puter Architecture’ [23]. A wide variety of design tools
have emerged to facilitate research into these novel and
emerging computational architectures. Design tool sup-
port ranges from less precise analytical assessments to
high fidelity simulations. Analytical approaches include
Modeling Accelerator Efficiency via Spatio-Temporal Re-
source Occupancy (MAESTRO) and Eyeriss Eyexam [24],
[25]. Other analytical tools like Timeloop [26], focus upon
assessing properties of a hardware architecture such as
the utilization of resources and identifying the optimal
dataflow strategy for the architecture. Cycle-accurate tools
on the other hand offer more accurate, but slower solutions
with increased fidelity. Examples include Systolic CNN
AcceLErator Simulator (SCALE Sim) and Nvidia Deep
Learning Accelerator (NVDLA) [27], [28]. Scale SIM and
NVDLA are largely focused on ML accelerator approaches
such as systolic arrays and CNN accelerators. There is also
growing interest in emerging neuromorphic architectures.
For example, NeMo utilizes the Rensselaer’s optimistic
simulation system (ROSS) in a discrete event simulation
tool to provide a functional simulation of the IBM
TrueNorth spiking neuromorphic architecture [29]. There
has also been development of additional tools to account
for the performance of emerging device technologies such
as CrossSim [30] and PUMA [31]. This spectrum of
analytical modeling capabilities help enable co-design and
the assessment of the impact of incorporating emerging

ML accelerator and neuromorphic architectures into truly
heterogeneous HPC systems [32].

B. Emerging Analog Accelerators

ATHENA leverages the Silicon-Oxide-Nitride-Oxide-
Silicon (SONOS) floating-gate (FG) based accelerator
design [17] as an initial exemplar for analog accelerators.
These devices are fabricated in the embedded 40 nm
process and enable 8-bit in situ matrix multiplications.
The SONOS analog memory arrays are optimized for
neural network inference and have been shown to achieve
20 TOPS/W on ResNet-50 with a £ 10x gain in energy
efficiency over state-of-the-art digital and analog inference
accelerators [17].
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Fig. 2: Analog Crossbar Array (a) Schematic of an analog
crossbar using floating-gates. (b) The analog crossbar
essentially performs matrix multiplication, where V is
equivalent to X, G is equivalent to weight matrix W and
output I is equivalent to .

SONOS floating-gates are a type of non-volatile memory
device that enable matrix computation. Typically, digital
dataflow accelerators use arrays of Multiply-Accumulate
(MAC) units, but are limited by memory read/write and
data movement costs. In analog Matrix-Vector Multiplica-
tion (MVM) arrays as shown in Figure 2(a), the input
vector is encoded in the applied voltage to the rows
V, the weight matrix W is encoded in the memory cell
conductance, and the dot product is the output I n the
column currents. Using Kirchhoff’s current law, products
accumulate on the bit line. The current is then quantized
using an Analog-to-Digital Converter (ADC) and sent to
the next layer’s array. This is equivalent to Figure 2(b)
matrix multiplication, where V is equivalent to ¥, G is
equivalent to weight matrix W and output I is equivalent
to y.

Unlike digital dataflow accelerators, the SONOS analog
accelerator tile contains multiple MVM arrays as seen in
Fig. 6. This posed some challenges adapting to this novel
accelerator as discussed in Section III.

II. ATHENA Overview

We intend ATHENA to be an end-to-end tool that
enables evaluation of performance across a wide variety



of hardware designs. ATHENA provides the ability to
quickly examine the performance in terms of latency,
energy requirements, and network traffic limitations of
novel analog neuromorphic hardware [33]. In addition,
ATHENA will provide the ability to generate estimates
of hardware from problems implemented in PyTorch,
TensorFlow, and MLIR [34]-[36]. By providing rapid
performance estimates, ATHENA will enable us to quickly
prototype new hardware designs. In addition to the rapid
performance prototyping provided by ATHENA, we will
also leverage more traditional simulation tools as the
neuromorphic architecture matures [16].
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Our work leverages the existing work shown in [26]
with the Timeloop software tool, a dataflow style mapping
tool that can estimate energy for CMOS logic based ML
acceleration devices along with Accelergy [37] to assist
with energy and area lookup tables. Timeloop supports
single layer mapping of a mneural network. ATHENA
generates multiple hardware/problem inputs for Timeloop
while adapting Accelergy hardware design descriptions to
generate a hardware layout file for each layer of the run
(changing active rows and columns), as shown in Figure 3.
This allows for more dynamic energy estimates, enabling
support for analog hardware while enabling code re-use.
We have adapted Timeloop to provide estimates of a tiled
analog ML acceleration device [17] through Accelergy’s
Energy Reference Table (ERT) and Area Reference Table
(ART) integration. This implementation is a proof of
concept to demonstrate suitability of analytical methods
for estimating performance of analog devices.

III. Modeling the SONOS FG Analog Accelerator in
ATHENA

ATHENA models analog MVM array based hardware
leveraging the Accelergy+Timeloop software tools. Adap-
tation of the analog hardware required emulating the
MVM array in the context of a CMOS-based hardware
acceleration device. To accomplish this, we implemented
a plugin and wrapper based system around the Accel-
ergy+Timeloop framework. An overview of the ATHENA
system is shown in Figure 5. ATHENA acts primarily as
a “wrapper” to Accelergy and Timeloop, providing a user
interface entry point as well as analysis tools. Furthermore,
ATHENA provides an energy estimate plugin system to
Accelergy, providing energy tables that the Timeloop
mapper can use to estimate analog hardware performance,
shown in a high level in Figure 4. ATHENA is able to
coerce TimeLoop into estimating tiled analog hardware
through the use of both the wrapper functionality and
the Accelergy plugin.

Adapting a dataflow-centric analytical performance esti-
mation tool to enable analog hardware estimation required
several design changes. ATHENA works as a wrapper
and plugin for Timeloop and Accelergy, allowing for
the mapping of multi-component SONOS hardware tiles
using Timeloop. A high level overview of ATHENA is
shown in Figure 3, detailing the program’s flow from
input processing, output generation, and wrapping over
Timeloop and Accelergy.

Within the SONOS hardware, MVM Arrays are com-
bined into structures called “Tiles” as shown in Figure 6.
ATHENA represents tiles as “Fat Processing Element
(PE)s”, given these tiles are much larger than a typical
dataflow accelerator PE, wrapping energy and perfor-
mance into a single logical cluster of PEs.

A. Hardware Description in ATHENA

To provide energy and latency estimates, Timeloop com-
putes data movement across the buffers within a defined
hardware device. At the PE level, Timeloop estimates the
cycles needed to complete the required computation based
on the number of available PEs, the buffer size and width,
and the Network-on-Chip (NOC) bandwidth.

First, the tool must be aware of both the number
of available compute units and the limits of the MVM
array sizes. To represent a tile within these constraints we
defined a cluster of PEs within the Timeloop hardware
definition system. This cluster contains a set of “dummy”
PEs, “dummy” buffers, along with peripheral components
that make up the tile. To represent the MVM array within
the cluster, a group of PEs coupled to scratchpad memory
exist. The scratchpad memory connects to the ATHENA
energy estimation tables, which provides data on a SONOS
array’s performance. The PEs exist to allow Accelergy to
successfully map the input problem to hardware, however
they report zero energy.
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Fig. 4: Overview of ATHENA’s hardware mapping and interface to Accelergy and Timeloop.

Each group of MVM cores, in the ATHENA hardware
design mapping, contains an extra “scratchpad” memory
buffer. This scratchpad memory buffer serves two purposes.
First, the memory represents the analog MVM array’s
stored weight values. The memory is configured as read-
only, and can only store the weights of the input problem.
This memory layer also represents the intensity of the
MVM computation when computing energy values. As
Timeloop assumes a linear increase in energy based on
the number of arithmetic operations performed, the mem-
ory layer’s access patternzs are used to infer the total
utilization of the MVM array per clock cycle.

One constraint of Accelergy and Timeloop is that they
are unable to dynamically change the energy required for
a single MAC operation when finding a valid and optimal
mapping for a given hardware configuration. However,
Accelergy will look up different energy values based on
memory access patterns. ATHENA uses these memory
layers to identify and compute the active rows and
columns in the SONOS array, providing energy values
to Timeloop that can be incorporated into the mapping
cost model.

Each tile, from the perspective of Accelergy, is a cluster
of PEs. This cluster can be mapped similarly to a standard
dataflow-centric hardware design. ATHENA’s design takes
the memory access patterns reported by Accelergy, and
uses them to represent tile access energy. This technique
enables Timeloop’s mapping algorithm to receive more
dynamic energy costs when exploring the mapspace. In
standard Timeloop, energy costs are fixed at runtime; each
MAC operation cost is fixed based on the hardware class
and definition within the energy look up tables or calling
functions.

1 # Fat PE simplified example - MVM array
2 subtree:

3 # Non MVM Components of a tile

4 # Fat PE:

5 subtree: # Virtual cluster of MVM arrays
6 - name: MVMArray|[0..4]

7 - local:

8 - name: mvm__in

9 class: SRAM
10 attributes:
11 sizeKB: 8

12 - name: SONOs__access

13 class: sonos__array pattern
14 - name: scratchpad[0..294911] # MVM Array Weights
15 class: sonos__dummy # Scratchpad containing

—  weights

16 attributes:

17 action_ name: read

18 network__drain: sonos__output_ network
19 - name: MVM]0..294911]
20 class: compute
21 subclass: sonos__array #sonos array
22 attributes:
23 fat: 1
24 action__name: compute
25 n_mvm_ rows: 1152
26 n_mvm_ cols: 256
27 - name: sonos__output__network
28 class: sonos__tile_ network
29 - name: ALUin
30 class: SRAM
31 network_ fill: sonos_ net__output
32 network_drain: alu_ network

Fig. 5: Simplified example of a SONOS tile def-
inition using Accelergy’s hardware definitions
with ATHENA’s extensions.

Accelergy defines hardware as a set of hierarchical levels,
with each level containing directly attached components.
The topmost level can contain representations of off-
chip memory, while the lowest level contains compute
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Fig. 6: Overview of SONOS Floating-gate based analog accelerator architecture and tile. (a) Tile architecture for the
SONOS analog inference accelerator (b) Detailed diagram of SONOS accelerator tile. Analog accelerator arrays are
computationally denser than a conventional digital accelerator PE with four 1152 x 256 MVM arrays in the same tile
along with peripheral circuits, control unit and 64 kB local memory.

elements. Each level can be repeated, to represent mul-
tiple groups of connected components. In the case of
the SONOS— Accelergy hardware definition, subtrees are
defined for the MVM core with attached MVM-in and
Arithmetic Logic Unit (ALU)-in buffers and the tile
structure. Figure 5 is a simplified example of the hardware
definition file used by ATHENA and Accelergy. Each tile
has 4 MVM arrays, defined on line 7. Each MVM array
has an SRAM buffer component, which is attached to
a SONOS_access element. This element is treated as a
zero energy memory buffer by Timeloop. However, the
memory access patterns are used to find energy used based
on the number of active SONOS rows and columns for a
particular computation.

To allow Timeloop to map computation, the SONOS ac-
cess element is attached to a scratchpad memory element
which represents the intrinsic memory of the analog array.
We restrict the data mapped to this element such that
the weights or read-only portion of the input problem
are stored within these values. There is one scratchpad
entry per MVM cell which provides the weight table for
Timeloop’s mapping. Next, the MVM array is defined as a
set of generic “compute” component classes. The compute
class is a standard PE compute element in Timeloop. In
this mapping, the ATHENA energy table reports zero
energy for using this MVM array, as the inherent cost of
computation is already reported by the ATHENA energy
tables based on the memory access patterns via the compo-
nent defined in line 13. The results of these values are sent
via the on-tile network to the ALU-in SRAM buffer, which
connects to the non-MVM component network. Figure 4

also provides a graphical overview of the structure of
the SONOS hardware mapping in the ATHENA system.
This diagram illustrates where non-MVM, and thus non-
ATHENA components are connected to the ATHENA
based hardware.

B. Energy/Area Tables

To enable fast energy and area estimation, ATHENA
uses energy and area lookup tables. ATHENA generates
these tables before each run, providing a fast way to
estimate how much energy a particular input problem
will consume. Data from this table was extracted from
a simulation of the SONOS hardware, discussed in [17].
Energy provided by this simulation data contains per-
array MVM energies based on the number of active
rows and columns. Using this data, we generated energy
reference tables for use with the ATHENA and Timeloop
system.

ERTSs consist of a set of values based on the actions
performed by a particular hardware component. Each
action has a corresponding value in the table, and energies
are provided. The end result file is generated by Accelergy,
using ATHENA as a plugin. A small sample of this end
result data file is shown in Figure 7.

ATHENA uses the number of MAC operations required
to compute a problem as the basis for estimating energy
required for computation. Within the ERT table, as can
be seen in Figure 7, each entry for a particular hardware
element has a corresponding activity entry. Since we are
adapting Timeloop’s energy system to support dynamic
MAC energies, MAC compute values are computed and



1 ERT:

2 version: 0.3
3 tables:
4 - name: system__arch.chip.tile[0..255].Core[0..3].

< sonos__array__pattern

5 actions:

6 - name: read

7 arguments:

8 active__cols: 0

9 active__rows: 0

10 energy: 4.80143808e—07
11 - name: read

12 arguments:

13 active__cols: 1

14 active__rows: 0

15 energy: 4.92697728e—07
16 - name: read

17 arguments:

18 active__cols: 2

19 active__rows: 0
20 energy: 5.05251648e—07
21 - name: read
22 arguments:
23 active__cols: 3
24 active__rows: 0
25 energy: 5.17805568e—07
26 - name: read
27 arguments:
28 active__cols: 4
29 active__rows: 0
30 energy: 5.30359488e—07

-

Fig. 7: Small selection of an ATHENA+Accelergy ERT,
with memory access patterns showing as active rows
and active_ columns which provide energy values for the
underlying MVM array.

ART:

version: 0.3

tables:

- name: system__arch.chip.tile[0..255].D2A_NoC
area: 84.992

- name: system__arch.chip.tile[0..255].A2D_NoC
area: 1972.25

- name: system__arch.chip.chip_ net
area: 181

© 00Uk W

Fig. 8: Small selection of an ATHENA+Accelergy ART,
with various example components and their corresponding
areas.

stored as part of the memory read operations. As MAC
operations occur while running the mapper, the energy
values in the ERT are added to the running total.

The ART is similar to the ERT, in that it is also a
generated lookup table. Instead of providing energy-action
values it provides area estimates. As an example, Figure 8
shows some components of a ART. This file is generated
by using Accelergy, with the ATHENA plugin providing
other area estimates. When running ATHENA, the ART is
used to provide estimates of the area of the processor. This
functionality has the potential to be leveraged for a design
space exploration tool. The total area of the processor
could be added as a constraint when finding efficient
hardware designs. Currently, in ATHENA the ART is
an informational tool. Accurate area estimations need

to be gathered for specific subcomponents. Furthermore,
using ATHENA as a design space exploration tool will be
examined as future work.

Typically, analytical tools for dataflow accelerators
largely ignore the cost of computing activation functions.
When examining the energy of dataflow accelerator hard-
ware, the cost of activation functions is relatively small
when compared to the cost of the large MAC operation
energy cost. This however is important when considering
binary neural networks or spiking neural networks. Binary
neural networks leverage simplified activation functions
which could affect the total energy of an analog accelerator
device. In [38], switching from an 8-bit to 1-bit activation
function improved overall energy costs of the matrix-vector
operation from 2.850nJ to 0.198nJ. This speedup is due to
the 1-bit activation functions being computed directly on
the MVM array, rather than requiring a separate circuit
after the ADC components.

ATHENA has preliminary support for activation func-
tion hardware, but this is still a work in progress. To
add support for activation functions, we first compute
the size of the output dimensions of the running layer.
Given a word-size in an ALU and a bit-precision from
the network, we can determine the count of activation
function operations that need to be completed for a given
input layer. This allows ATHENA to compute the energy
required to run the activation function circuitry for a
given input layer. To further enhance the feature set of
ATHENA, we are currently adding support for binary
activation functions. Binary activation functions are a way
to create neuromorphic spiking hardware using analog
devices. This functionality will be fully integrated in a
future release of ATHENA.

IV. Results

To examine ATHENA’s accuracy for the SONOS ac-
celerator we compared our results with SONOS hardware
[17]. Specifically, we compared the energy estimates of the
analog MVM tiles. The energy use of these MVM tiles is
approximately 1% of the total energy of the accelerator.
Examining only the MVM arrays gives a deeper insight
into ATHENA’s ability to measure analog device energy
accurately. These experiments used the convolutional
layers in the VGG-16 network with a 224 x 224 input size.

Table I shows the results of using ATHENA’s method of
computing values compared against the results from the
low-level SONOS simulation. We found that the MVM
energy array accuracy ranged from approximately 22 %
to 98 % over all layers. A major source of the inaccuracy
in these results stems from the more dynamic way that
the SONOS simulation engine maps workloads across the
available compute resources on-chip. Using an ERT as a
lookup method has the potential to lose some dynamic
behavior of the underlying hardware.

This is a trade-off between accuracy and modeling speed.
Look-up-tables will provide the most performance, but



SONOS Hardware Simulator [17] ATHENA Result Accuracy
1.07 pJ 2.14 pJ 32.80%
3.75 pJ 8.52 pJ 22.29%
2.10 pJ 2.13 pJ 98.81%
3.97 pJ 4.02 pJ 98.81%
1.04 pJ 1.06 pJ 97.60%
2.08 pJ 2.13 pJ 97.60%
2.08 pJ 2.13 pJ 97.60%
1.01 pJ 1.06 pJ 95.18%
2.03 pJ 2.13 pJ 95.18%
2.03 pJ 2.13 pJ 95.18%
0.48 pJ 0.53 pJ 90.25%
0.48 pJ 0.53 pJ 90.25%
0.48 pJ 0.53 pJ 90.25%

TABLE I: MVM energy estimates from ATHENA’s MAC
operation count method versus SONOS simulation against
the VGG-16 convolutional neural network. Only convolu-
tional layers are compared. Each energy result is from the
MVM arrays in all tiles, and does not contain peripheral
circuits. This gives us confidence in ATHENA’s modeling
of the SONOS FG analog accelerator.

with potentially the least accuracy, especially when com-
pared with lower-level simulation tools. This trade-off can
be mitigated by leveraging more detailed simulation tools
which can both inform the analytical model’s accuracy
and provide further insights into the overall hardware
performance and behavior.

A. Using ATHENA to Compare Hardware Performance

To demonstrate some capabilities of ATHENA, we ran
a performance comparison between a virtual Eyeriss-like
hardware architecture [25] against the tile-based SONOS
analog device with and without a 14-bit ReLU enabled
and disabled. In Table II, we show the results of this

VGG Layer Eyeriss Energy (pJ) SONOS Energy (pJ)
No ReLLU 14-Bit ReLU
Conv. 1 925.06 42.235 42.574
Conv. 2 12196.60 139.119 146.344
Conv. 3 5636.16 75.684 79.296
Conv. 4 11384.15 139.694 146.919
Conv. 5 5524.96 37.442 41.054
Conv. 6 10739.76 74.273 81.498
Conv. 7 10739.76 74.273 81.498
Conv. 8 5174.99 23.995 27.607
Conv. 9 10710.05 71.804 79.029
Conv. 10 10710.05 71.947 79.172
Conv. 11 3015.38 13.763 15.569
Conv. 12 3015.38 13.617 15.423
Conv. 13 3015.38 13.617 15.423

TABLE II: Comparison of energy estimates generated
through ATHENA over the convolutional layers of VGG-
16 running on an Eyeriss-like hardware device and the
SONOS analog accelerator. In addition to the Eyeriss-Like
energy values and SONOS tile based architecture, we also
show the effect of adding a 14-bit ReLU circuit to the
SONOS tiles.
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Fig. 9: A comparison of multiple convolutional neural
network performances using ATHENA between a single
SONOS tile accelerator, a PIM crossbar style analog
accelerator, a NVDLA-Like dataflow accelerator, and an
Eyeriss-like dataflow accelerator.

comparison. In both of these results, the digital component
ERTs were generated based on a 32 nm process node.
SRAM memory values were previously gathered from
CACTT [39], and NOC values were generated using data
included in Accelergy. As shown in Table II, for inference
over the convolutional layers of VGG-16, the analog
hardware was between two and three orders of magnitude
more energy efficient, even when accounting for the energy
use of the peripheral support components such as DACs
and ADCs.

ATHENA’s design intent is to allow large scale neuro-
morphic analog hardware co-design in an efficient and fast
manner. To demonstrate the capabilities of ATHENA’s
modular design, we examined the relative performance of
the dataflow architecture used to benchmark the under-
lying TimeLoop tool [26], a SONOS multi-tile hardware
accelerator, a simple 512 x 512 memristor hardware accel-
erator, as well as an Eyeriss-like design original described
in [25] with 14-bit floating point PEs.

We swept over a selection of common convolutional
networks to create a sample of energy performance. We
examined DenseNet201, Inception v3, Shufflenet v2, and
AlexNet. Figure 9 shows the estimated energy each of these
networks would consume based on a 224 x 224 x 3 input
image inference. The data provides insights into potential
hardware design trade-offs when optimizing for energy.

We also examined wall clock time for these runs.
Figure 10 shows the average wall clock time for each combi-
nation of hardware and network examined by ATHENA.
The underlying mapper uses an embarrassingly parallel
method of exploring the hardware mapspace, using thread-
ing to explore different map space paths. As such, adding
cores will potentially improve the total mapspace search
size, but will not result in faster wall-clock times. For all
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Fig. 10: Mean ATHENA wall-clock time in seconds across
multiple hardware and network configurations.

of these runs, we configured the mapper to use 32 cores
on a single machine running an Intel® Xeon® Gold 6230R
CPU at 2.10GHz. ATHENA is able to produce a mapping
using TimeLoop for analog hardware within ~ 20 minutes
when estimating performance against the DenseNet CNN,
a network with 201 layers to evaluate. ATHENA’s fastest
time was on the order of 10 seconds. These times highlight
how rapid prototyping can be achieved through the use
of analytical methods. ATHENA provides this extremely
rapid time to performance estimation, which opens up the
potential for extensive design space exploration of analog
hardware.

V. ASIT: Athena-SST Integration Tool

ASIT allows for the user to pass in a specific input
problem, to be tested against different hardware architec-
ture. ASIT identifies the series of operations needed to run
these problems, then builds a set of possible compatible
hardware architectures that could theoretically execute
the problem set. ASIT then utilizes ATHENA in order to
evaluate the performance execution of the input problem
set over the specified hardware.

ASIT evaluates performance as the minimum of a
selected metric. Currently, energy (as a function based
on activity), latency (in clock cycles) and area can be
selected individually as optimization targets. ASIT selects
the “best” performing hardware design and generates
a configuration for an SST component based on this
hardware. This is implemented via a set of configuration
parameters which define the component’s capabilities in
terms of compute size, memory capacity, and other values.
In the case of the SONOS system the parameters are tile
size, number of tiles, and cache sizes. As ATHENA is
estimating novel analog hardware performance, the design
of SST components to support these devices is critical to
increase supported hardware in SST. A supported compo-
nent must have a set of configurable parameters which

ASIT can populate based on the ATHENA hardware
design. To increase the number of supported hardware
devices, more SST components need to be added, along
with a corresponding set of ATHENA hardware and ASIT
output configuration parameters.

ASIT Run Example
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Fig. 11: ASIT Functional Diagram showing the example
run using a MAERI style dataflow accelerator, a mem-
ristor crossbar based accelerator, and the SONOS with
ReLU accelerator.

A. Results

We evaluated ASIT on three different hardware configu-
rations: A SONOS-Tile based analog accelerator, a simple
memristor crossbar array design, and one digital hardware
configuration, which were then present to ATHENA to
evaluate over. In Figure 11, we show where these example
inputs are given, and what the resulting data points were.
This run attempted to find the least energy use out of the
three input hardware designs given. After generating an
ATHENA hardware list and running the ATHENA and
TimeLoop mapping systems, the results were sent to the
ASIT system. In this example, ASIT chose the SONOS
tile-based device based on the low reported energy use
from the ATHENA run. ASIT then generated a template



file for SST which could be used to generate more accurate
results, or run in a larger SST simulation to generate a
heterogeneous system result.

B. Extending ASIT

ASIT is intended to provide a link between an analytical
performance estimation tool, and the SST simulation
engine. In the future, ASIT will be able to generate
an SST model based on more primitive SST component
templates, allowing for full simulation of a variety of
hardware. ASIT will allow for integration of any device
supported both by ATHENA and SST template enabled
components, specifically targeting architectures including;:
tile-based digital components, analog accelerators, and
neuromorphic accelerators. With the addition of these
hardware components to ATHENA and SST, ASIT will
allow for the evaluation of efficiency of these hardware
designs before implementing them into SST. This would
allow for an array of different architectures to be filtered
through so the best-fit option is the one chosen to be fully
simulated.

Eventually, ASIT will enable rapid prototyping of ana-
log devices for specific applications with a higher fidelity
simulation step in the loop. This could pave the way to a
true design space exploration software system for analog
and analog-based neuromorphic hardware.

VI. Future HPC Impact

The post-exascale era in computing will require hetero-
geneous node and system architectures to achieve power,
cost, reliability, and usability requirements while main-
taining the rate of increase of application performance.
As modern High Performance Computing (HPC) systems
increase overall compute power, the physical number of
compute nodes has been decreasing while the number of
compute cores and accelerator cores have been increasing.
In the Top 500 list [40], [41], the highest performing sys-
tems are no longer those with only the highest node count.
The highest performing system are those that leverage
smaller counts of more powerful individual nodes with high
processor core counts, usually leveraging dedicated accel-
eration hardware [42]. Previous and current investments
develop strategies to target heterogeneous nodes that use
well-understood computing components (CPUs alongside
GPUs). However, the slowing of Moore’s law is driving
the computing community toward more specialized forms
of compute to achieve performance. This has led to an
explosion of different accelerator types actively used in in-
dustry. Google’s Tensor Processing Unit (TPU)s [43], the
Nvidia Deep Learning Accelerator (NVDLA) accelerator,
the Cerebras [44] wafer-scale processor, the Mythic analog
floating-gate accelerator [45], and a variety of other devices
all have unique approaches to improving the performance
of specific aspects of computation.

It is imperative that we address the challenges of
heterogeneous compute in the post-exascale era in the

long-term. Leveraging the power of accelerators to improve
the performance of compute-intensive applications is a
key component of this effort. Using novel approaches,
such as neuromorphic and analog crossbars, that improve
performance through the reduction of the von Neumann
bottleneck are key components of the future of computing.

These new devices require new co-design approaches
which include identification/mapping and architectural
exploration. These two approaches are complimentary
in our co-design methodology to design heterogeneous
architectures that incorporate novel computing paradigms.
Future work will include seamlessly integrating ATHENA
with SST, to evaluate heterogeneous workloads and dy-
namically map workloads at run time.

Given an input neural network or other MVM operation,
the ATHENA system will generate multiple candidate
hardware designs, search through candidates to recom-
mend one or more hardware devices, then through ASIT
generate an SST discrete event simulation component. The
user is then able to evaluate the original input problem
against the selected hardware in either SST or even
potentially lower-level simulation tools.

In this work, we showcased the first components of
this eventual end-to-end system. ATHENA, leveraging the
mapping abilities of the underlying TimeLoop software,
generates fast performance estimates of how analog devices
would perform against convolutional and matrix operation
problems. ASIT provides a way to search across hardware
elements, search for an optimal set of hardware designs,
and generate a configuration for the SST software. These
components form the backbone of a complete analog end-
to-end co-design exploration tool.

Current work in progress includes developing analog
models in SST and leveraging ATHENA as performance
estimator to SST, to enable approximate modeling of
performance before detailed cycle-accurate simulations in
SST. This work includes simulation models for tile-based
analog devices, traditional crossbar devices, and neuro-
morphic hardware devices. With the inclusion of mapping
as an integrated component to SST will enable direct
generation of an accelerator component for SST. Since
SST provides the ability to map at multiple hardware
resolutions including large-scale HPC networks, this inte-
gration will provide a full discrete event based simulation
of heterogeneous HPC systems, complete with energy and
latency estimates based on real-world workloads. This
enhanced simulation capability could pave the way for the
next generation of efficient hybrid supercomputer designs.

Further work includes allowing ASIT to search across
more fine-grained hardware configurations. Currently,
ASIT searches against a set of pre-configured hardware
designs. Allowing ASIT to vary specific elements of these
designs in a limited fashion could further enable rapid
hardware design exploration. Adding this capability would
require a rapid multi-variable optimization search across
not just large hardware configurations but also individual



component sizes. This would make ATHENA capable of
large-scale heterogeneous hardware design optimization.

These expanded tool capabilities will identify, evaluate,
design, and analyze next-generation architectures special-
ized for specific workloads. It is a critical step in enabling
co-design of next generation heterogeneous computing
platforms, from HPC to the edge, with broad impacts in
scientific computing, machine learning and performance
and SWaP-constrained edge applications.
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