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Dust devils captured by Spirit rover.
Credit: NASA
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Introduction to Vortices

• Formed by warm pockets of air
• At least a meter in height and 

last at least 10 seconds (Oke et 
al, 2007)

• Dust devils unique in that they 
are dust-laden

• Notable dip in pressure near 
their centers

• Frequently observed on Mars by 
surface landers and orbiters
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Dust devil observed by the Curiosity rover. 
Credit: NASA
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Dust Devils on Mars

• Dust loading plays a primary role in 
Martian atmospheric dynamics

• Wind erosion could play a role in 
affecting biosignatures preserved in 
rock

• Dust devils could affect the longevity 
and efficacy of Martian landers and 
eventual human missions
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Mars InSight first and final selfies 
Credit: NASA
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Challenges in Studying Martian Dust Devils
• Lack of an in-depth record poses a 

problem given prevalence of dust 
devils on Mars

• Low station density
• Formation characteristics can be 

studied through the development of a 
catalog

• “ …deployment of sensor networks 
that produce a variety of data 
streams with high spatial and time 
resolution.” Jackson et al. (2018)
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Dust devil density plot in Lorenz and 
Jackson (2016)
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An Analog Study
• 7-year deployment of seismometers 

and infrasound microbarometers at 
Nevada National Security Site (NNSS) 
in Mojave desert

• 32 microbarometers, 20 broadband 
seismometers, 100 geophones 

• 104 station-days of data
• Unique landscape pockmarked with 

craters
• Atmospheric scaling from Earth to 

Mars
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Signatures in Time-Pressure Series

• Unique “heartbeat” signature good for 
correlation detector, consequence of 
convolving signal with instrument 
response

• Occur within 10-3  to 10-1 Hz frequency 
band

• Distinct in time
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Detector Architecture

Correlation Detector
• Pressure-time series signatures are great 

candidates
• Sensitive to noise
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Wavelet Detector
• Not as sensitive to noise compared to 

correlation detector
• Expensive
• Detections not specific to dust devils
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Wavelet Detector

• Confidence testing in spectral 
domain

• Deconvolve instrument response
• Smoothed in scale
• Removed segments that lie above .1 

Hz and less than 20 seconds in 
length

• Removed redundant detections
• Recalculated variance to remove 

bias against small dust devils
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Correlation Detector
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• Unique signature lends itself to 
correlation

• 15 templates of varying FWHM
• Convolve instrument response 

with pressure profile outlined by 
Jackson and Lorenz (2015)

• Cross correlate templates with 
time series
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Testing Methodology
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• 6 hour synthetics with random number of non-overlapping dust devils 
inserted at random points

• Dip (1-100 Pa), FWHM (1-300 seconds)
• Naturally observed dip 10-100 pa, FWHM 10-100s 
• Unique red noise profiles for each synthetic
• Recall and efficiency analysis
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Synthetic Run Summary
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• Run on 10,000 synthetics 
• Conducted only with white noise 

characterization in wavelet detector
Wavelet Detector
95.92 percent of dust devils were detected
Correlation Detector
83 percent of dust devils were detected
Joint Detector
With 99 percent precision, 91 percent of dust 
devils were detected
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Observational Data Trial (NNSS)
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• 62 days of data
• 7 stations
• 5976 detections in total
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Conclusion
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• Dust devils play an important role in the Martian environment, but 
population is hard to study

• A heavily-instrumented analog densely populated with arrays is 
available for analysis

• A parallel, automated detection scheme has been developed and 
characterized using 10,000 synthetics, yielding promising results



jpl.nasa.gov

Future Work

• Generate full catalog for 7 years of 
data

• Analysis on formation and 
dynamics on large N dataset

• Release catalog of dust devils 
through NASA PDS

• Extrapolate results to Mars based 
on atmospheric scaling relations
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Dust devil from Lorenz et al. (2016)
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