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Bridging the Gap between Plasma and Condensed Matter

* Fusion fuel passes through poorly
understood WDM regime on the
way to ignition

 Competing physics challenges
models

e Scarce experimental data,
uncertain conditions limit model
validation

* Validate modified AA against
more accurate but expensive
TDDFT

* Predict potential improvements
for x-ray diagnostic techniques
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Diagnosing Temperatures with X-ray Scattering

Electron temperature:

detailed balance between ~10 eV

red- and blue-shifted plasmon features

sensitivity limited to T ~ 10 eV

alternative: bound-bound features
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Glenzer et al., Phys. Rev. Lett. 98 (2007)

Ion temperature:

detailed balance between ~100 meV
red- and blue- shifted phonon features

detector limitations challenging

complement: band structure effects
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Simulating X-ray Scattering with Time-Dependent DF'T

(@ (b)
* Initial condition: equilibrium state from Mermin-DFT , -

* Evolve response to probe in real time

Perturbing Envelope

qu( t) = Hln(r,t)]¢;(r,t)
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*  Dynamic structure factor (DSF) related to Fourier

transform of density response
X(a, —q,w) = (g, w)/ (Vo f(w))

1 Im [)Z(qa —q, C(J)]

S(q,w) = T 1 e—w/(ksT)

Baczewski et al., Phys. Rev. Lett. 116 (2016)



Simulating X-ray Scattering with Average Atom

* Chihara decomposition: S(q,w) = S;;(q,w) + Srr(q,w) + Spr(q,w) + Spp(q,w)

2
e Modified Sgp captures non-Drude behavior Srr(q,w) = — ; ! e 4q Im [— L
— e W/ kB TNe

—  Mermin dielectric function

- non-ideal, quantum DOS

ema (b, w) =1+ (w + iv)[erpa (k,w + iv) — 1]

-  T-matrix elastic + inelastic collisions - erpA (k,w+iv)—1
w + v
erpA (k,0)—1

e Introduce bound-bound Sz to achieve continuity under ionization of bound states

Spr(q,w Zgz (e)(1 — f(g; +w)) MPF(q,w) sum over initial and final
bound states

Sep(q,w Zg, e)(1—f (5f))q5(w)/\/15«3(q,w) line shape



Bound-Bound Transitions in Aluminum
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Bound-Bound Transitions in Aluminum

Thermal depletion of 2p states for T = 20eV
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Bound-Bound Transitions in Aluminum arXiv:2109.09576

e Thermal depletion of 2p states for T = 20eV 10° f === Total === BF TDDFT
= FF

* Prominent 2s — 2p feature at ~40eV in DSF
- particularly towards higher angles

- very sensitive to T via 2p occupation
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Bound-Bound Transitions in Iron arXiv:2109.09576

 Richer set of transitions:
- 3p — 3d at ~55eV
- 3s — 3d at ~85eV
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Bound-Bound Transitions in Iron

* Richer set of transitions:
- 3p — 3d at ~55eV
- 3s — 3d at ~85eV
-  3s — 3p at ~35eV

 Apparent discrepancy in 3p-3d energy!
- ~5eV higher in TDDFT than AA
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New Collective Feature in Iron from TDDFT arXiv:2109.09576
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Diagnosing Temperatures with X-ray Scattering

Electron temperature: Ion temperature:
e detailed balance between ~10 eV * detailed balance between ~100 meV
red- and blue-shifted plasmon features red- and blue- shifted phonon features
e sensitivity limited to T ~ 10 eV * detector limitations challenging
e alternative: bound-bound features  complement: band structure effects
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Band Structure Effects out of Equilibrium

Melted Al (T =T =1eV)
e ~ideal free-electron gas

Isochorically heated Al (T=0, T =1eV)
e gaps among high-energy bands
DSF reflects details of band structure

May help simultaneously infer T and T, < T

isochoric melted

|

melt *

L ] 2p isochoric

<) ] == == melted

£ 1.0

g ]

%

3 1 2s

2,05

7 :

< i

“’0.0.--J--L.-............

—100 —50 0 50

energy - Er (eV)

_1 plasmon isochoric
Alo }/ = == melted
S bound-free q=1.6 A"
=10 |
&

A
1072

—
100
energy transfer (eV)

—
150

14



Band Structure Effects
T T =1eV

« Lower amplitude features with increasing T.

* T-sensitivity appears limited

 may improve at higher scattering angles
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Band Structure Effects

« Lower amplitude features with increasing T.
* T-sensitivity appears limited
 may improve at higher scattering angles

* Results insensitive to atomic configuration

at given T
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Conclusions

e Predict prominent bound-bound features in DSFs at high T
promising alternative to plasmon-based thermometry for kT, > Aw,

novel collective behavior in iron’s 3p — 3d transition

* Predict subtle band structure features in DSFs of isochorically heated materials

promising alternative to phonon-based thermometry for T, < T,

possibilities for simultaneously constraining T, and T,

promising for studies of ultrafast melting
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