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I. Introduction

Missile configurations consist of numerous systems that require reliable aerodynamic models at the early stages
of system design. Challenges and limitations in both ground and flight testing place an immense burden on

computational fluid dynamics (CFD) for the development of complex rocket systems and high-speed vehicles. There are
often small margins for modeling errors due to the high energy environments associated with supersonic and hypersonic
flight. Thus, careful study and understanding of the aerodynamic loading environment early in the design process, along
with the development of efficient models, is needed in order to enable successful missions.

One specific concern with aerodynamic model development is balancing accuracy with turnaround time. Despite
being an exceptionally parallel process, high fidelity computer experiments still have limitations on turnaround time.
Often compute server availability is limited, and some flight regimes are simply harder to model accurately, thus
requiring more attention from the modeler to obtain a converged solution. To meet this need, one potential approach is
building a CFD surrogate that combines multiple data sources of varying fidelity through hierarchical kriging [1]. This
process leverages a limited amount of high fidelity data by using a subset of the overall design space in areas of interest
to augment a comprehensive set of lower fidelity data. This approach was originally developed by Han and Göertz [1],
and their demonstrative example showed improvement in lift-curve predictions for an asymmetric airfoil when using
only four high fidelity training points in addition to 22 lower fidelity training points. Additionally, it was shown that
hierarchical kriging provides a more reasonable mean squared error estimation than traditional cokriging for a lower
online computational cost. More recently, hierarchical kriging was used to aid in the design of film-cooling hole arrays
on turbine blades, resulting in roughly a 25% reduction in compute time to obtain the optimum solution [2]. There
exists a gap in applying hierarchical kriging to broad parameter spaces with multiple independent variables, and the
analysis herein works towards filling that gap.

While wind-tunnel testing and high-fidelity CFD are still necessary for maturing any missile system, this work
seeks to improve the quality of aerodynamic predictions in the early phases of conceptual and preliminary design.
Specifically, this work compares a CFD surrogate model built using hierarchical kriging against wind tunnel results from
an open source NASA-designed missile configuration [3, 4]. This standard missile configuration is an axisymmetric
fin-controlled vehicle, and there exists wind tunnel data for each component over a fairly large Mach and angle of attack
range. This paper outlines the process for developing the CFD surrogate and its comparison against experimental data.
This paper provides a comprehensive overview of the current state-of-the-art in 6DOF aerodynamic model development
for preliminary design.

II. Methodology
This study will focus on four different aerodynamic loads prediction methods: 1) NASA wind tunnel data [3, 4], 2)

RANS CFD predicted integrated forces and moments, 3) Euler CFD predicted integrated forces and moments, and 4)
CFD surrogates for integrated forces and moments. The first represents the most accurate solution and is considered the
benchmark. The second is the highest fidelity computational method which will serve as an additional benchmark. The
third represents the method used to generate the majority of the data for the CFD surrogate, which will ultimately be
augmented with a subset of RANS CFD data. The CFD surrogate, built using hierarchical kriging of CFD, is considered
a moderate fidelity model that captures the prominent features of the actual CFD. It has an online computational
requirement comparable to simpler engineering-level approximations, but a high offline computational requirement for
model construction. Each of these aerodynamic loads prediction methods is discussed next.
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A. Wind Tunnel Model
Development of this wind tunnel model began in the early 1980’s when NASA entered into a cooperative agreement

designed to expand the aerodynamic databases used in current missile aerodynamic prediction tools [3]. The cooperative
agreement involved the three branches of the U.S. Department of Defense (Army, Navy, and Air Force) along with
industry partners, and thus, the Triservice Missile Database was developed. Complete details on this database can be
found in [3].

More recently, a NASA study in 2005 produced aerodynamic data for a generic missile configuration similar to the
Standard Missile used in the Triservice Missile Database [3, 4]. The experiments covered Mach numbers from 0.6 to
4.63 for angles of attack from -2° to 24°, roll angles from -90° to 0°, and fin deflection angles from -30° to 30°. All
seven missile configurations considered in the reference work are shown in Fig. 1. The wide range of conditions and
configurations over a relevant Mach range make this dataset an ideal comparison to the CFD surrogate technique.

Fig. 1 NASA Configurations [3, 4]

The experiments that will be used for comparison to the the computer models cover Mach numbers ranging from
0.60 to 3.95. The configuration considered in this conference paper is Configuration 3, shown in Fig. 1. The set of wind
tunnel results that will be used to benchmark the CFD surrogate are listed in Table 1.

Table 1 Wind tunnel run matrix

Run Number Mach Total Angle of Attack [deg.]
1412 0.60 -2.0 0.0 2.0 4.0 6.0 8.0 12.0 16.0 20.0 22.0
1392 0.90 -2.0 0.0 2.0 4.0 6.0 8.0 12.0 16.0 20.0 22.0
1372 1.18 -2.0 0.0 2.0 4.0 6.0 8.0 12.0 16.0 20.0 22.0
655 1.70 -1.2 -0.2 1.8 4.0 6.0 7.8 9.8 13.8 – –
666 2.36 -1.3 -0.3 1.7 3.7 5.7 7.8 9.7 13.8 16.7 –
677 2.86 -1.1 -0.1 2.0 4.0 6.0 8.0 10.0 14.0 17.0 –
251 3.95 -2.0 0.0 2.0 4.0 6.0 8.0 12.0 16.0 20.0 –
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1. Reference Moment
It has been speculated that the moment reference point (MRP) reported in NASA/TM-2005-213541 is incorrect.

Doyle et. al postulated that pitching moment values were offset from the test data by an amount resulting from a
1.75” (0.04445 m) shift in the center of pressure [5]. Doyle et. al found that this difference was consistent across
all Mach numbers and roll angles, confirming that the problem was likely the moment reference point. The authors
are in agreement with Doyle et. al, and all calculations in this work use a moment reference point 25.137" aft of the
nose, instead of the 23.387" specified in the NASA report. A pitching moment comparison of Cart3D results using the
original and shifted moment reference point relative to the wind tunnel data is shown in Fig. 2 for Mach 0.60, 1.18, 1.70,
and 2.86. Normalized root mean squared error is used to quantify the improvement with the moment reference point
shift. This error metric is given by

NRMSE =

√︃
1
𝑚

Í𝑚
𝑖=1 ( |WT𝑖 − MODEL𝑖 |)2

1
𝑚

Í𝑚
𝑖=1 ( |WT𝑖 |)

(1)

where MODEL is the Cart3D prediction at the conditions listed in Table 1, WT is the wind tunnel value, and 𝑚 is angle
of attack.

(a) Mach 0.60 (b) Mach 1.18

(c) Mach 1.70 (d) Mach 2.86

Fig. 2 Comparison of original and shifted moment reference point.

Shifting the MRP of the computational CMYNR predictions results in less error relative to the wind tunnel, as shown
qualitatively in Fig. 2 for Mach 0.60, 1.18, 1.70, and 2.86 and quantitatively in Table 2 for all Mach numbers. Included
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Table 2 NRMSE and percent improvement for all Mach numbers.

Mach 0.60 0.90 1.18 1.70 2.36 2.86 3.95
NRMSE, Original MRP 0.21 0.45 0.36 0.68 3.47 4.84 3.11
NRMSE, Shifted MRP 0.25 0.73 0.15 0.15 0.84 1.48 0.64
Percent Improvement [%] -19.0 -38.4 58.3 78.0 75.8 69.4 79.4

in Table 2 is NRMSE (Eq. 1) for the two MRP’s as well as percent improvement in NRMSE, defined as (Original MRP
− Shifted MRP)/(Original MRP)×100. Note that for all supersonic Mach numbers, the new MRP results in over 58%
improvement. For the two lowest Mach numbers, the resulting NRMSE shows negative improvement. As shown in
Fig. 2a, the shifted moment more closely aligns with the tunnel results up to 𝛼𝑡=10°. It is believed that the original
MRP results past 𝛼𝑡=10°coincidentally match the wind tunnel results, thus skewing the NRMSE. The same is true for
Mach 0.90. Such deviations result for reasons separate from MRP location, and are analyzed further in Sec. III.A.

2. Base Drag
Base pressure corrections between flight, simulation, and ground testing are historically difficult to reconcile. The

wind tunnel results in NASA/TM-2005-213541 accounted for base drag by using internal pressure measurements.
Approximate base pressures were found by taking the difference between pressure measurements of the body base cavity
and the free-stream static pressure. These approximate base pressures were then used to correct the configuration axial
force data. Specifically, the axial force coefficients due to the approximate base drag were subtracted from the measured
axial force coefficients of the forebody. While this did eliminate the need for base pressure measurements there are
various unaccounted for flow phenomena, such as effects from the sting and base cavity, that could act as potential error
sources. Additionally, CFD was allowed to compute pressure distribution on the base, but forces and moments were
only integrated over the forebody. This is equivalent to applying a vacuum to the base. These methods are standard
practice for base pressure corrections and were implemented as such.

B. Hierarchical Kriging 6DOF CFD Surrogate
A high-level schematic of the general CFD surrogate modeling approach is shown in Fig. 3. First, the complete

geometry is built using the programmatically-driven geometry tool, Engineering Sketch Pad. Next, following the
establishment of the training points, a steady-state Euler CFD solution is computed at each of these points in the sample
space. Additionally, a steady-state RANS CFD solution is computed for a subset of the full training set. Finally,
hierarchical kriging [1] is used to combine the two levels of fidelity into a single surrogate, and the resulting surrogate is
used as a model for all operating conditions within the bounds. Note that in this preliminary study, Mach number is not
included as an independent variable. Instead, one surrogate is produced per Mach number. More details on each of the
steps are included next.

Fig. 3 CFD surrogate generation process.

1. Engineering Sketch Pad
Engineering Sketch Pad (ESP) was developed by Robert Haimes at Massachusetts Institute of Technology and

John F. Dannenhoffer, III at Syracuse University as part of a NASA Cooperative Agreement [6]. This tool gives the
user total control over complex geometries, with the ability to easily modify slight configuration changes, e.g. control
surface deflections, and output a surface mesh in a broad range of formats [6, 7]. With ESP, geometry is created via
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user-readable text input files that contain mathematical expressions defining the vehicle configuration, naturally allowing
parametric control over the geometry. ESP has proven useful for 6DOF aerodynamic models, where simulations are
required for numerous geometric configurations. The software enables automation of solid model generation and surface
tesselation.

2. RANS CFD
A commercially available software, CFD++, from Metacomp Technologies, is used for all Navier-Stokes CFD

solutions in this study. CFD++ is a finite volume solver based on an unstructured framework and is capable of handling
general polyhedral cells. CFD++ can efficiently solve compressible flows (at all Mach numbers) and incompressible
flows, including both single and multi-species treatment, reacting flows, multiphase flows, steady and unsteady flows,
rotating machinery, conjugate heat transfer, porous media, etc. Various topography-parameter-free models are used to
capture turbulent flow features. The nonlinear subset of these models accounts for Reynolds stress anisotropy, streamline
curvature and swirl. All these models can be either integrated directly to the wall, or combined with a sophisticated
wall-function treatment that models the effects of compressibility, pressure gradient and heat transfer.

CFD++ allows for very easy treatment of complex geometries thanks to its unification of structured, unstructured
and multi-block grids. CFD++ can also handle complex overset and patched non-aligned grids. The code’s versatility
allows the use of various elements within the same mesh such as hexahedral, triangular prism, pyramid and tetrahedral
elements in 3-D, quadrilateral and triangular elements in 2-D, and line elements in 1-D.

A multi-dimensional higher-order Total Variation Diminishing interpolation scheme is used to avoid spurious
numerical oscillations in the computed flowfield. These polynomials are exact fits of multi-dimensional linear
data. Various approximate Riemann solvers are used to guarantee correct signal propagation for the inviscid flow
terms. Advanced convergence acceleration techniques used include unique pre-conditioning, relaxation and multi-grid
algorithms.

In this study, each steady-state solution is obtained on a fixed, unstructured grid of approximately 13 million cells
using the 3-D compressible Reynolds-averaged Navier-Stokes (RANS) equations. All simulations use the two-equation
realizable 𝑘-𝜖 turbulence model, and vehicle boundaries are specified as adiabatic walls. Unstructured grids are produced
using the ANSA pre-processor, from BETA-CAE [8]. Tetrahedral volume cells in the computational region near the
vehicle body were controlled using two density cylinders to limit maximum cell edge length, shown in Fig. 5. Prism
layers with a first layer height of 0.005 mm were generated near the body to ensure 𝑦+ less than or equal to 1 over the
majority of the vehicle, as shown in Fig. 6a. The corresponding pressure distribution for a total angle of attack of 12°at
Mach 3.95 is shown in Fig. 6b.

Fig. 4 RANS surface mesh produced with ANSA
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(a) XZ-view at Y=0

(b) YZ-view at X=600mm (c) YZ-view at X=1020mm

Fig. 5 13M cell volume mesh for RANS.

(a) 𝑦+ Distribution

(b) Pressure Distribution

Fig. 6 𝑦+ and pressure distribution for a Mach 3.95 case with a total angle of attack of 12° (contour legend
omitted).
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3. Euler CFD
All Euler CFD solutions are generated using the NASA inviscid, embedded-boundary Cartesian mesh flow solver,

Cart3D [9–12]. Cart3D uses adaptively refined Cartesian grids to discretize the space around a given geometry [11].
Cart3D’s adjoint-based solver automatically refines the mesh as simulations evolve in order to reduce overall error in a
set of user-defined objective functions. For all results in the analysis herein, the mesh adaptation was carried out for at
least four iterations to generate a volume mesh between 20 and 130 million cells, depending on the flight condition.
An example of a final adjoint-adapted mesh with 22 million cells along with the corresponding pressure coefficient
distribution for a total angle of attack equal to 12° at Mach 3.95 is shown in Fig. 7.

(a) Example adjoint-based final mesh from Cart3D (b) Pressure coefficient distribution

Fig. 7 Adjoint-based adapted 22M cell final mesh from Cart3D for a Mach 3.95 case with a total angle of attack
of 12° and the corresponding pressure coefficient distribution (contour legend omitted).

4. Hierarchical Kriging
Hierarchical kriging in this work is used to combine two datasets of differing fidelity. The approach uses a standard

kriging model of lower fidelity data as a model trend input into a second kriging of higher fidelity data; i.e. a subset
of RANS CFD training points is used to augment a denser dataset of Euler CFD training points. Note that although
two levels of fidelity are used in this work, the method is not limited to two datasets. The hierarchical component of
the kriging interpolation permits the use of any number of fidelity levels. The following theoretical description of
hierarchical kriging is adopted from Han and Görtz [1].

For a given 𝑚-dimensional problem the lowest fidelity data, level 0, 𝑦0 : R𝑚 → R, is of size 𝑛0, and the next highest
fidelity data, level 1, 𝑦1 : R𝑚 → R, is of size 𝑛1, where 𝑛0 > 𝑛1.

The low-fidelity design sites are:

𝑺0 =

h
𝒙 (1)

0 , · · · , 𝒙 (𝑛𝑙 )
0

i
∈ R𝑚×𝑛0 . (2)

and the low-fidelity training points are:

𝒚0,𝑠 =
h
𝑦
(1)
0,𝑠 , · · · , 𝑦

(𝑛0 )
0,𝑠

i𝑇
=

h
𝑦
(1)
0 (𝒙 (1)

𝑙
), · · · , 𝑦 (𝑛0 )

0 (𝒙 (𝑛0 )
0 )

i𝑇
∈ R𝑛0 . (3)

Similarly, the high-fidelity design sites are:

𝑺1 =

h
𝒙 (1) , · · · , 𝒙 (𝑛1 )

i𝑇
∈ R𝑚×𝑛1 , (4)

and the high fidelity training points are:
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𝒚1,𝑠 =
h
𝑦
(1)
1,𝑠 , · · · , 𝑦

(𝑛1 )
1,𝑠

i𝑇
=

h
𝑦
(1)
1 (𝒙 (1) ), · · · , 𝑦 (𝑛)1 (𝒙 (𝑛1 ) )

i𝑇
∈ R𝑛1 (5)

First, a standard kriging of the lowest fidelity level 0 dataset is constructed. In general, a kriging interpolant for a
function of interest is characterized by local deviations, 𝑪 (𝒙), from a global approximation, 𝑮 (𝒙). This general form of
kriging trained using the data defined in Eqs. 2 and 3 is shown in Eq. 6 [13–15].

𝑦̂0 (𝒙) = 𝑮 (𝒙) + 𝑪 (𝒙) (6)

where 𝑦̂0 (𝒙) is the standard kriging interpolant at a desired point in the parameter space. Note that 𝒙 is a vector of input
parameters at the desired sample point. The final form of the kriging predicted response at some desired point in the
parameter space, 𝒙, is given by

𝑦̂0 (𝒙) =
�
𝒓𝑇0 𝑹

−1
0 𝒚𝑇0,𝑠

	
−
�
𝑭𝑇𝑹−1

0 𝒓0 − 𝒇0
	𝑇

𝛽0 (7)

with the generalized least squares solution, 𝛽0, defined as

𝛽0 =
�
𝑭𝑇𝑹−1

0 𝑭
	−1 �

𝑭𝑇𝑹−1
0 𝒚0,𝑠

	
(8)

where 𝒚0,𝑠 is a matrix of sample responses defined by Eq. 3. 𝑹0 is a Gaussian correlation function:

𝑹(𝒙𝒊 , 𝒙 𝒋) = exp

(
−

𝑚∑︁
𝑘=1

𝜃𝑘abs(𝒙𝒌𝒊 − 𝒙𝒌𝒋 )
2

)
(9)

where 𝑘 refers to the 𝑘th input parameter, and hyperparameter optimization constants, 𝜃𝑘 , are obtained through
maximizing the likelihood function:

1√︁
(2𝜋𝜎2)𝑛 |𝑹0 |

exp

(
−1

2
(𝒚𝑠 − 𝛽0𝑭)𝑇𝑹−1

0 (𝒚𝑠 − 𝛽0𝑭)𝑇

𝜎2

)
(10)

where the estimated process variance is

𝜎2 =
{𝒚𝑠 − 𝑭𝛽0}𝑇 𝑹−1

0 {𝒚𝑠 − 𝑭𝛽0}
𝑛

(11)

Equation 11 concludes the construction of the lowest fidelity kriging surrogate. More details on building such a
kriging can be found in [13–15].

The general form of the two level hierarchical kriging predictor is

𝑦̂1 (𝒙) = 𝑦̂0 (𝒙)𝛽0 + 𝒓𝑇1 (𝒙)𝑽HK (12)

where the vector,

𝑽HK = 𝑹−1
1 (𝒚1,𝑠 − 𝑭𝛽1) (13)

and

𝛽1 =
�
𝑭𝑇𝑹−1

1 𝑭
	−1 �

𝑭𝑇𝑹−1𝒚1,𝑠
	

(14)

Equation 14 is essentially a scaling factor, which indicates correlation between the low- and high-fidelity datasets.
Next, the correlation matrix is similarly tuned using Eqs. 9 through 11, replacing 𝑹0 and 𝛽0 with 𝑹1 and 𝛽1, respectively.
In this formulation, the same Gaussian correlation function (Eq. 9) is used to calculate 𝜃𝑘 for both fidelity levels. It is
important to highlight that the behavior of the approximated lowest fidelity function 𝑦̂0 is explicitly included in 𝑦̂1. This
is the primary benefit of using hierarchical kriging over standard or universal kriging.

III. Results and Discussion
Comparisons of all modeling techniques are presented in the following order: A) comparison between CFD training

data and wind tunnel results, B) benchmarking of CFD surrogate against wind tunnel results, and C) computational
requirements.
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A. Comparison of CFD to Wind Tunnel
Hierarchical kriging aims augment a dense set of low fidelity, quick to compute data points with a subset of higher

fidelity, more computationally expensive data points; thus, reducing the overall offline time of model generation while
simultaneously allowing for the addition of high fidelity points over time. It is important to inspect the training data
for both levels of fidelity to better understand potential sources of model discrepancies. For this study, the Euler CFD
training points are evenly spaced every 1 degree of total angle of attack from −4° to 24°, and the RANS CFD training
points are evenly spaced every 4 degrees of total angle of attack within the same bounds. The following sections
qualitatively compare the CFD training data to the wind tunnel results.

1. Comparison of Cart3D to Wind Tunnel
Comparisons between inviscid Cart3D predictions and wind tunnel results are shown in Figs. 8 through 14. Included

in each figure are axial force coefficient, CA, normal force coefficient in the non-rotating reference frame, CNNR, and
pitching moment coefficient in the non-rotating reference frame, CMYNR.

For CA, there is an expected offset between Cart3D and the wind tunnel for all Mach numbers. This offset can
mostly be attributed to the absence of viscosity in Cart3D, and there could be additional error associated with the base
drag approximation described in Sec. II.A.2. Furthermore, for all of the supersonic Mach numbers, the wind tunnel
predicts a sharper increase in CA near 𝛼𝑡 = 5°. This is not reflected in the Cart3D predictions.

As expected, there is much better agreement for CNNR than for CA between the two predictions. In general, Cart3D
more closely matches the wind tunnel as Mach number increases. For Mach < 2, Cart3D begins to deviate from the
tunnel near 𝛼𝑡 = 10° and greater. This can be seen in Figs. 8a, 9a, 10a, and 11a.

Interestingly, the Cart3D predicted CMYNR deviates significantly when 𝛼 > 5° for all Mach numbers except Mach
0.60 (Fig. 8c) and Mach 1.70 (Fig. 11c). The largest difference in CMYNR between Cart3D and the wind tunnel exists
for the only transonic Mach number, Mach 0.90, shown in Fig. 9c. These CFD cases were difficult to converge, and the
authors will revisit the transonic solution methods and convergence criteria in future work.

(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 8 Comparison of Cart3D to NASA-TM-213541 wind tunnel results at Mach 0.60.

(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 9 Comparison of Cart3D to NASA-TM-213541 wind tunnel results at Mach 0.90.
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(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 10 Comparison of Cart3D to NASA-TM-213541 wind tunnel results at Mach 1.18.

(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 11 Comparison of Cart3D to NASA-TM-213541 wind tunnel results at Mach 1.70.

2. Comparison of CFD++ to Wind Tunnel
Comparisons between viscous CFD++ predictions and wind tunnel results are shown in Figs. 15 through 20. Similar

to the previous section, there is one figure per Mach number; and, CA, CNNR, and CMYNR are included in each figure.
The CFD++ predicted CA closely matches the wind tunnel CA for all Mach numbers. This improvement in

prediction relative to Cart3D is expected because viscous terms are included in CFD++. However, some deviation can
be associated with both the base drag measurements in the tunnel and difficulty in computational modeling of heavily
separated base flow regions. Note that the difference between CFD++ and the tunnel generally increases with 𝛼𝑡 .

There is very good agreement for both CNNR and CMYNR across all Mach numbers and 𝛼𝑡 ’s. There is still a slight
increase in model difference as 𝛼𝑡 increases, but this is not as significant as with Cart3D. Thus, implying viscous effects
become more prominent with 𝛼𝑡 . Additionally, there is less noise in the CFD++ data, relative to Cart3D for Mach 0.60,
0.90, and 1.18. This is true for CA, CNNR, and CMYNR.

B. Comparison of CFD Surrogate Model to Wind Tunnel Results
Essential to any application of CFD surrogates is ensuring a sufficient quantity and distribution of sample points.

The following section examines CFD surrogate convergence using the complete Euler CFD dataset and varying the
number of high-fidelity, RANS CFD training points. Convergence relative to the wind tunnel (WT) data is assessed
using 𝐿1- and 𝐿∞-norms, given by

𝐿1 =

𝑚∑︁
𝑖=1

|MODEL𝑖 − WT𝑖 | (15)

𝐿∞ = max|MODEL − WT| (16)

where 𝑚 corresponds to the total number of angles of attack included in the model. Note that one surrogate is created
per Mach number in order to reduce the number of independent variables. Mean 𝐿1- norms and 𝐿∞-norms are used to
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(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 12 Comparison of Cart3D to NASA-TM-213541 wind tunnel results at Mach 2.36.

(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 13 Comparison of Cart3D to NASA-TM-213541 wind tunnel results at Mach 2.86.

assess all kriging models in Figs. 22 and 23, respectively. Note that 0 training points on the x-axes is referring to the
number of high fidelity training points only. These values at 𝑥 = 0 in the figures include all low fidelity training points.

A third metric used to asses the kriging models is correlation coefficient 𝑅2, given by

𝑅2 =

"
cov(MODEL,WT)√︁

cov(MODEL,MODEL)cov(WT,WT)

#2

(17)

where cov is the covariance [16]. Correlation coefficient 𝑅2 is shown in Fig. 24.
Using an 𝐿1-norm or similar is essential to determining kriging convergence as it suggests convergence in the

magnitude of the prediction. However, 𝐿1-norms cannot be used in isolation to signify a good quality model because,
despite capturing magnitude, they cannot guarantee that a model is also capturing the shape of the data. It is for these
reasons that 𝑅2 is also used, as it determines convergence in the overall shape of the predictions. Typically, an 𝑅2 > 0.8
is considered a model with good predictive capabilities [17].

It is obvious from the mean 𝐿1-norm in Fig. 22a and the 𝐿∞-norm in Fig. 23a that the inclusion of higher fidelity
points improves the model dramatically for CA. Interestingly, convergence is not improved by adding all seven high
fidelity points. This is likely because the first two high fidelity points included in the hierarchical kriging are the two 𝛼

endpoints of the design space. With respect to 𝐿1, Figs. 22a and 23a suggest that there is marginal improvement in the
overall model past using high fidelity points at the bounds of this small hyperspace. This is true for all Mach numbers.

For CNNR and CMYNR, the addition of more higher fidelity points results in an improved model. In general, this is
true for all Mach numbers, and can be seen in both the mean 𝐿1-norm and 𝐿∞-norm in Figs. 22b, 22c, 23b, and 23c.
Note that the transonic Mach number, Mach 0.90, is most improved by the addition of high fidelity points. The error for
Mach 0.90 dominates the error in the full design space for CNNR and CMYNR, as shown by the black lines in Figs. 23b
and 23c.

In Fig. 24a, only four of the seven Mach numbers modeled have an 𝑅2 that exceeds 0.8, and the average 𝑅2 across the
full design space is slightly less than 0.8 when all high fidelity points are included. All of this highlights the difficulty in
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(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 14 Comparison of Cart3D to NASA-TM-213541 wind tunnel results at Mach 3.95.

(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 15 Comparison of CFD++ to NASA-TM-213541 wind tunnel results at Mach 0.60.

capturing the shape of the wind tunnel CA with the current model. It is possible that the addition of more high fidelity
training data would improve 𝑅2; however, it is also likely that since all CA curves have relatively small slopes, that small
variations in the wind tunnel data will continue to result in low correlation despite increasing amounts of training data.

1. Standard Kriging using Cart3D
To further investigate differences between the final hierarchical kriging model and the wind tunnel, comparisons

of the standard kriging model component are compared to the tunnel results directly in this section. Pitch moment
comparisons for Mach 0.60, 0.90, and 2.86 with increasing number of Cart3D training points are shown in Figs. 25, 26,
and 27, respectively. Also included in each figure are correlation coefficient 𝑅2, mean 𝐿1-norm, and 𝐿∞-norm between
the standard kriging prediction and the wind tunnel.

For Mach 0.60 in Fig. 25, the standard kriging prediction consistently improves with increasing number of training
points. Both the mean 𝐿1-norm and 𝐿∞-norm decrease with more training points. The same is true for Mach 0.90 in
Fig. 26, but the values for mean 𝐿1-norm and 𝐿∞-norm are much larger in magnitude. Cart3D differs significantly
from the wind tunnel past 𝛼𝑡 ≈ 5° for this transonic Mach number. For Mach 2.86 in Fig. 27, using only 3 training
points coincidentally results in the largest 𝑅2. Increasing the number of Cart3D training points decreases 𝑅2 because
the standard kriging of Cart3D differs in shape from the wind tunnel CMYNR, particularly when 𝛼𝑡 > 5°. The 𝑅2, mean
𝐿1-norm, and 𝐿∞-norm reported in Figs. 27b and 27c for 9 and 27 training points, respectively, suggest there is little
improvement in the kriging surrogate from using more than 9 training points for Mach 2.86.

2. Hierarchical Kriging using CFD++ and Cart3D
Comparisons of the hierarchical kriging CFD surrogate models to wind tunnel results for Mach 0.60, 0.90, and 2.86

are shown in Figs. 28, 29, and 30, respectively. Overall, the hierarchical kriging model trained using both CFD++ and
Cart3D offers better predictions than the standard kriging of Cart3D alone.

For Mach 0.60 in Fig. 28, there is only marginal improvement past the addition of 2 high fidelity training points.
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(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 16 Comparison of CFD++ to NASA-TM-213541 wind tunnel results at Mach 0.90.

(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 17 Comparison of CFD++ to NASA-TM-213541 wind tunnel results at Mach 1.18.

Note that these two CFD++ points are at the edges of the 𝛼𝑡 design space. This is a key finding, as it highlights the
ability of hierarchical kriging to effectively use global trend information from a lower fidelity dataset with a subset of
higher fidelity data to produce a quality model.

Contrary to Mach 0.60, shown in Fig. 29a, including just two high fidelity points at Mach 0.90 worsens the model
prediction relative to the standard kriging for the same Mach number. This is quantified by the mean 𝐿1-norm and
𝐿∞-norm equal to 18.19 and 4.8, respectively, for hierarchical kriging compared to that from standard kriging using
all 27 low fidelity points equal to 14.42 and 3.86, respectively. Doubling the number of high fidelity points to four in
Fig. 29b improves the error metrics, but results in a large standard deviation between training points, shown by the
dashed lines. All seven training points are required to reduce the standard deviation. Because Cart3D differs so greatly
from the tunnel results at Mach 0.90, using the Cart3D training points does not appear to improve the model when there
are at least four evenly spaced high fidelity training points.

For Mach 2.86 in Fig. 30, there is marginal improvement past 4 high fidelity training points. The addition of the
CFD++ point at 𝛼𝑡=8° results in an obvious improvement in the Mach 2.86 hierarchical kriging model since Cart3D
differs significantly from the wind tunnel near 𝛼𝑡=8°. This improvement is most obvious in the increase in 𝑅2 from
0.7152 in Fig. 30a to 0.8706 in Fig. 30b.

C. Computational Expense
The computational expenses of the different modeling approaches are listed in Table 3. Wall time is the total wall

time required to achieve a converged CFD solution or the time of a single kriging surrogate function call. Computer
time is computed by multiplying the wall time by the number of processors. The total cost to obtain the training data for
a given kriging model is computed using the cost of CFD listed in Table 3 multiplied by the number of training points.
Note that the compute time to obtain an Euler solution is dominated by the grid adaptation step described in Sec. II.B.3,
and not the flow solution.

Overall, as Table 3 demonstrates: 1) once constructed, the CFD surrogate approaches maintain a low computational
expense, and 2) even with grid adaptation, the cost to obtain an Euler CFD solution is nearly 7 times less than for RANS.
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(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 18 Comparison of CFD++ to NASA-TM-213541 wind tunnel results at Mach 1.70.

(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 19 Comparison of CFD++ to NASA-TM-213541 wind tunnel results at Mach 2.36.

Reducing the amount of RANS data required to build a CFD surrogate offers significant improvement with respect to
computational expense which is particularly valuable during preliminary design stages.

Table 3 Average wall times and computer times of CFD and CFD surrogates

Model Wall time, s Computer time, s
RANS CFDa 1.7 × 103 8.9 × 105

Euler CFDb 1.2 × 103 1.3 × 105

Standard krigingc 1.0 × 10−1 1.0 × 10−1

Hierarchical krigingc 1.0 × 10−1 1.0 × 10−1

a 2.6 GHz Intel Sandy Bridge processors (512)
b 2.6 GHz Intel Sandy Bridge processors (112)
c 2.5 GHz Intel Xeon E7-4880v2 processors (1)

IV. Conclusions and Future Work
This work discusses the impact of a CFD surrogate approach to building 6DOF aerodynamic models for fin-controlled,

slender, axisymmetric vehicles. The computer tools used and the hierarchical kriging method are outlined in detail. The
different sources of training and validation data are described, including a description of the wind tunnel model and
validation database. This analysis highlights the impact of varying the fidelity and amount of training data on the overall
model. The following principal conclusions are drawn:

1) In agreement with previous work by the authors in [15], it is best to use a combination of error metrics to observe
surrogate convergence. For the preceding analysis, mean 𝐿1-norms and correlation coefficient were used to asses
convergence of model prediction magnitude and shape, respectively. Also, 𝐿∞-norms were used to identify the least
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(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 20 Comparison of CFD++ to NASA-TM-213541 wind tunnel results at Mach 2.86.

(a) Axial force coefficient (b) Normal force coefficient (c) Pitching moment coefficient

Fig. 21 Comparison of CFD++ to NASA-TM-213541 wind tunnel results at Mach 3.95.

predictive regions in the design space.
2) For subsonic Mach numbers, when 𝛼𝑡 < 5°, Cart3d results for CNNR and CMYNR accurately predicted the wind

tunnel values. For superonic Mach numbers, Cart3D aligned well with the wind tunnel values up to 𝛼𝑡 ≈ 10° − 12°. As
expected, Cart3D drastically underpredicted CA due to the lack of viscous drag in Euler CFD.

3) CFD++ accurately predicted CA, CNNR, and CMYNR across all Mach numbers. Differences between CFD++
and the wind tunnel values generally increased with 𝛼𝑡 . Because of this, the hierarchical kriging model that combined
the Euler data with a subset of CFD++ was more predictive than the standard kriging model of Cart3D, particularly for
CA.

In summary, hierarchical kriging is a valuable tool for 6DOF aerodynamic model development for preliminary
design. It is well suited for any research application where computer codes of varying fidelity are in use, and its online
time is similar to that of standard kriging. Future work will incorporate other independent variables, such as roll angle
𝜙, as well as independent control deflections for 6DOF simulation and other vehicle configurations.
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(a) Mean 𝐿1-norm for CA (b) Mean 𝐿1-norm for CNNR

(c) Mean 𝐿1-norm for CMYNR

Fig. 22 Mean 𝐿1-norm versus number of high fidelity sample points for all kriging surrogates.

(a) 𝐿∞-norm for CA (b) 𝐿∞-norm for CNNR

(c) 𝐿∞-norm for CMYNR

Fig. 23 𝐿∞-norm versus number of high fidelity sample points for all kriging surrogates.
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(a) 𝑅2 for CA (b) 𝑅2 for CNNR

(c) 𝑅2 for CMYNR

Fig. 24 Correlation coefficient versus number of high fidelity sample points for all kriging surrogates.

(a) Training Points = 3 (b) Training Points = 9

(c) Training Points = 27

Fig. 25 Comparison of standard kriging models for pitching moment coefficient using Cart3D data at M = 0.6.
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(a) Training Points = 3 (b) Training Points = 9

(c) Training Points = 27

Fig. 26 Comparison of standard kriging models for pitching moment coefficient using Cart3D data at Mach 0.90

(a) Training Points = 3 (b) Training Points = 9

(c) Training Points = 27

Fig. 27 Comparison of standard kriging models for pitching moment coefficient using Cart3D data at Mach
2.86.
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(a) Training Points = 2 (b) Training Points = 4

(c) Training Points = 7

Fig. 28 Comparison of hierarchical and standard kriging models for pitching moment coefficient at Mach 0.6.

(a) Training Points = 2 (b) Training Points = 4

(c) Training Points = 7

Fig. 29 Comparison of hierarchical and standard kriging models for pitching moment coefficient at Mach 0.90.
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(a) Training Points = 2 (b) Training Points = 4

(c) Training Points = 7

Fig. 30 Comparison of hierarchical and standard kriging models for pitching moment coefficient at Mach 2.86.
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