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Gaussian process / Bayesian optimization

Demo

Bayesian optimization - Demo

Bayesian Optimization After 3 Steps

Bayesian optimization - Iteration 3
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Gaussian process / Bayesian optimization
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Gaussian process / Bayesian optimization

Demo

Bayesian optimization - Demo

Bayesian Optimization After 5 Steps

—— Target
1.50 :
¢ Observations
----- Prediction
H£1.960
%
= 0 2 4 6 8 10
- X
I —— Acquisition Function
[ ¥  Next Best Guess
x
X
81
3
S
-2 0 2 4 6 8 10
x

Bayesian optimization - Iteration 5

Anh Tran (anhtran@sandia.gov) Versatile GPR/BO for Materials Design with Multiscale ICME [5 / 121] MIrACLE Forum


anhtran@sandia.gov

Gaussian process / Bayesian optimization
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Gaussian process / Bayesian optimization
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Gaussian process / Bayesian optimization
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Bayesian optimization - Demo
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Gaussian process / Bayesian optimization

Introduction

Advantages/Disadvantages

Bayesian optimization in a nutshell

Bayesian optimization = Gaussian process + sampling strategy

Advantages:
m optimize with uncertainty consideration (e.g. noisy observations)
m active machine learning (balance exploration-exploitation)
m derivative free (avoid computing Jacobian)
m global optimization (convergence in probability to global optimum)
m good convergence rate (provable asymptotic regret)
Disadvantages:
m high-dimensionality

m scalability: computational bottleneck O(n®)
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Gaussian process / Bayesian optimization

Introduction

Bayesian optimization features

very versatile (can solve a lot of practical problems)
Gaussian process regression:

multi-task/multi-output

multi-fidelity

gradient-enhanced

physics-constrained (monotonicity, boundedness, convexity, symmetry, etc.)
stochastic, heteroscedastic: non-Gaussian, student-t

time-series (forecasting)

mixed-integer, e.g. discrete/categorical

scalable to Big Data

latent variable model

high-dimensional

non-stationary kernel

Bayesian optimization:

constrained on objectives (known + unknown constraints)
multi-objective optimization (Pareto frontier/optimal, domination)

batch parallel optimization — asynchronous parallel optimization
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Gaussian process / Bayesian optimization

Fundamentals

Classical GP: Fundamentals

Let D, = {x;, yi }i=1 denote the set of observations and x denote an
arbitrary test points

pa(x) = po(x) + k(x) (K + o*1) 7 (y — m) (1)
o2(x) = k(x,x) — k(x) " (K + o?1) " Tk(x) (2)

where k(x) is a vector of covariance terms between x and x1.,, K is the
covariance matrix.
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Gaussian process / Bayesian optimization

Fundamentals

Classical GP: Fundamentals

m assuming stationary kernel — k(x,x’) only depends on r = ||x — X/||

m the covariance matrix: symmetric positive semidefinite matrix made
up of pairwise inner products

Kij = k(xi, x;) = k(x;, x;) = Kj; (3)
m kernel choice: smoothness assumption, e.g. C*
Matérn kernels:
2171/
Kij = k(xi,xj) = Ggﬁ(\/2ur)"K,,(\/2ur), (4)
174
K, is a modified Bessel fuction of the second kind and order v.
Common kernels:
= v =1/2 (very rough): Kyawem12(x,X') = 63 exp (—r)
B v =3/2 kyatems/2(x, x) = 05 exp (—v/3r)(1 + V3r),
m = 5/2: Kuams /2(x,X') = 03 exp (—V/5r) (14 VBr + §72),
m v — 00 (very smooth): ksg-ep(X,X’) = 63 exp (7§>

Log (marginal) likelihood function:

n 1 0, 2 1 Tt | 2p\—1
log p(y|x1:n, 0) = — 5Iog(27r) - 5Iog|K +o7l| 7£(y7m3) (K™ + 071" (y — mp)
-
data likelihood | as n1 “complexity” term “data-fit" term
smoother covariance matrix how well model fits data
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Gaussian process / Bayesian optimization

Acquisition

Acquisition function: How to pick the next point(s)

m how to pick the next point: exploitation (if 034 = 0% but pa > s then
choose A) or exploration (if ua = pg but 03 > o then choose A). If
m different flavors:
probability of improvement (PI) (Mockus 1982)

api(x) = ®(v(x)), (6)
where p
100 = 1) = Tee) ™
o (x)
expected improvement (El) scheme (Huang et al. 2006; Mockus 1975)
agl(x) = o () [y () P(v(x)) + (v (x)] (8)
upper confidence bound (UCB) scheme (Srinivas et al. 2009, 2012)
ayes(x) = p(x) + Ko (x), 9
where « is a hyper-parameter describing the exploitation-exploration

balance.
pure exploration™:
m maximal MSE o?(x) < maximal entropy: 1 log [270%(x)] +
m maximal IMSE [ _ . o%(x)

other: KG (generalized El), MES, PES, etc.
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Gaussian process / Bayesian optimization

Acquisition

Acquisition function: Reparameterization

Reparameterization in deep learning by Wilson, Hutter, and Deisenroth
2018.

Table: 11/~ right-/left-continuous Heaviside step function; ReLU + sigmoid (o)
+ softmax: activation function; ¥ = LLT: Cholesky; v ~ N(0, X) residual

Abbr.  Acquisition function £ Reparameterization

El Ey[max(ReLU(y — «))] E,[max(ReLU(u + Lz — &))]

PI Ey[max(1~(y — a))] E.[max(o(#2=2))]

SR Ey[max(y)] E,[max(p + Lz)]

UCB  Eyfmax(u+ /% )] Ed[max(u + /% |Lz)]

ES —Ey, [H(Ey,jy, [17 (v — max(ys)))]  —Ex, [H(Ey, [softmax( £z 2222 )]

KG ]E)'a [max(/‘bb + zb,az;;(Ya - ﬂa))] IE:za [max(ﬂb + Zb@z;; LaZa)]
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Gaussian process / Bayesian optimization

Optimization parallelism

Optimization parallelism on HPC for MPI applications

2 1 P: Proportion
Hﬁ 1-P+ § S: Speedup parallel Portion

m P =0.95 — SpeedUp ~ 20 ] -

times ] —
m fixed computational budget: 256 & 3 hours/256 procs

x 60 CPU hours £o]
m sequential: simulation takes 3 ‘%’:

hours to flnlsh with 256 procs — ‘] 60 hours/1 proc

20 cases in 60 hours “

m parallel: 60 hours (2.5 days) :
with 1 proc for 1 case — 256
cases in 60 hours

T T
3 F 8

512 -
1024
2018
4096
8192
16384

32768

65536

T
]
umber of Processors

Z 16

Amdahl’s law for parallelization.
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ICME applications

Overview — MGl with ICME

Gaussian process / Bayesian optimization

ICME applications
m Overview — MGI with ICME
m Inverse problems in process-structure (kinetic Monte Carlo)
m Inverse problems in composition-property (DFT + MD)
m Inverse problems in structure-property (CPFEM)

Conclusion
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ICME applications

Overview — MGl with ICME

Process-structure-property relationship

m process: x + 4,0 ~ N[0, 03] — deterministic, controllable within a
tolerance ¢ (in a manufacturing context)

m (micro)structure — random /stochastic, spatio-temporal, microstructure
representations (physics-based vs. data-driven), image (i.e.
high-dimensional), limited/scarce data

m property/performance: y = f(x) + ¢, ~ N(0,02) — deterministic

with Gaussian noisy observations
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ICME applications

Overview — MGl with ICME

Process-structure-property relationship

Nature of inverse problems

The nature of the input, i.e. deterministic or stochastic, determines the
methodology for solving the inverse problem in PSPP.

m for deterministic variables in process — composition,
process—structure: Bayesian optimization (or any other optimization
methods)

m for stochastic variables (typically affiliated with microstructure), such
as grain size distribution, orientation distribution, in
structure—property: Bayesian inference is more appropriate to infer a
distribution of features
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ICME applications

Overview — MGl with ICME

Multi-scale ICME models as forward models

Length [m]

€, FO, FFT)

d phases (CPFEM)

109 100 109 100 Time (5]
Courtesy of Prof. Dierk Raabe.
https://www.dierk-raabe.com/multiscale-modeling/.

m Common ICME models: DFT, MD, PF, CPFEM, kMC, CA, DDD.

m Multi-physics ICME models: DFT+MD, PF+CPFEM, kMC+4CPFEM,
kMC+PF, DDD+CPFEM, MD+CPFEM, PF+kMC, MD+kMC, etc.
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ICME appl
Overview — MGl with ICME

Beyond forward ICME models: MGI as inverse problems (2010s)

ns

Materials Genome Initiative
for Global Competitiveness

MATERIALS GENOME
INITIATIVE

June 2011

STRATEGIC PLAN

MATERIALS GENOME INITIATIVE
Materials Genome Initiative STRATEGIC PLAN

National Science and Technology Council

Committee on Technology
Subcommittee on the Materials Genome Initiative

AReport by the
‘SUBCOMMITTEE ON THE MATERIALS GENOME INITIATIVE
COMMITTEE ON TECHNOLOGY

ofthe
DECEMBER 2014 NATIONAL SCIENCE AND TECHNOLOGY COUNCIL

November 2021

US NSTC 2011 Holdren et al. 2014 Lander et al. 2021
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ICME applications

Overview — MGl with ICME

Beyond forward ICME models: MGI as inverse problems (MGI in 2020s)

npj ’ [E——

Pablo et al. 2019 Christodoulou et al. 2021 Liu et al. 2018
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ICME appl ns
Overview — MGl with ICME

TMS Studies

ted Computational
Engineering (ICUE):

NEXT GENERATION
MANUFACTURING

o oo oo oEFNG pATHAYS FOR
MATERIALS GENOME INITIATIVE L Ao PO
'WORKFORCE HIGH
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Overview — MGl with ICME

DOE Office of Science / ASCR-BES-FES

Producing and Managing Large
Scientific Data with Artificial
Intelligence and Machine Learning

ENERGY
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ICME apj
Overview — MGl with ICME

Beyond forward ICME models: MGI as inverse problems

U s

4

'
? ! 11 4™ paradigm
H i 1| (ig) data
: 3 paradigm: | N driven science
4 Computational
1+l 2 paradigm: | B science : o o8
[l Model-based 1™ (simulations) 1 D08
The 1*paradigm: | M theoretical | 1 D0 :
G o Empirical 1™ science | 1 OZ8 2%
FOURTH science o w1 ' °
: =Q-W| |
PARADIGM 1 a ! [ Resmrriotoaiyns
4 ! 1 V| Relationship mineg
2 : h [ Doy romcionat | + (RN
4 HIE
. 1| Molecular Dynamics | 1
| | |
+ T

1950 2000

FIG. 1. The four paradigms of science: empirical, theoretical, computational, and data-driven.

The Fourth Paradigm:

Data-Intensive Scientific The four paradigms of science: empirical, theoretical, computational, and
Discovery Hey, Tansley, Al. Agrawal and Choudhary 2016.

Tolle, et al. 2009.

m ICME is the 3™ paradigm,
m Al is the 4" paradigm,
m Is SciML the 57
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ICME applications

Overview — MGl with ICME

Beyond forward ICME models: MGI as inverse problems

Challenges:

m optimization under (microstructure-induced) uncertainty

m small (sparse) + noisy datasets, high-dimensional

® high computational cost for ICME models — sample-efficient
Goals:

m traditional approach: 20+ years

Accelerators:

m accelerate materials design by "2x at a fraction of the cost” (original)
m ICME: experimental?> — computational®
m ML/AIl: computational® — ML*

COMPOSITION PROPERTY PERFORMANCE
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ICME applications

Overview — MGl with ICME

GP advantages

What are Gaussian process regression and Bayesian optimization useful for?

(multiscale) design optimization under microstructure-induced uncertainty, e.g.
manufacturing, chemical processing, AM, materials discovery,

ICME model calibration (e.g. CPFE, DDD, kMC, MD, DFT, PF)
surrogate model (ML) for forward and inverse UQ,

AutoML for materials applications, e.g. tuning other ML hyper-parameters, such as
AdaBoost and RandomForest,

automation, taking human out of the loop, in both experimental and computational
context.

Why are they useful?

flexible — easy to modify to suit your needs,

versatile — solve many problems in theory and practice,

not too many hyper-parameters,

optimization under (microstructure-induced) uncertainty,

rigorous on mathematical ground: analytical convergence rate (both GP and BO),

work well on small datasets with low- to intermediate-dimensional problems.

When is GP not useful?

emulates field responses,

spatial-temporal problems.

Anh Tran (anhtran@sandia.gov) Versatile GPR/BO for Materials Design with Multiscale ICME [37 / 121] MIrACLE Forum


anhtran@sandia.gov

ICME applications

Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

Reference

Anh Tran et al. (2020a). “An active-learning high-throughput
microstructure calibration framework for process-structure linkage in
materials informatics”. In: Acta Materialia 194, pp. 80-92

Problem statement:
m There exists a forward tool f(+) to predict microstructure, u = f(x)
(represented as images)
m Given a target u* (represented as images)
m Task: find x* such that f(x*) =uv" =~ u
~ is defined in the sense of statistical equivalence for microstructures, pp
is the p.d.f. of statistical microstructure descriptors D, i.e.

pp:Q— L' : pp(u™) = pp(u) (10)
d(po(u*), po(u)) < TOL (11)

Hint: quantitatively differentiate microstructures using statistical
microstructure descriptors
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ICME applic

Inverse problems in process-structure (kinetic Monte Carlo)

ons

Inverse problems in process-structure
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initialize by random sampling
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An asynchronous parallel Bayesian optimization workflow for inverse problems in process-structure linkage.
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Reference

An asynchronous parallel constrained Bayesian optimization Anh Tran
et al. (2022). “aphBO-2GP-3B: a budgeted asynchronous parallel
multi-acquisition functions for constrained Bayesian optimization on
high-performing computing architecture”. In: Structural and
Multidisciplinary Optimization 65.4, pp. 1-45.

Dashboard: worker schedule Dashboard: worker schedule and acquisition
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Collecting local and global statistical microstructure
descriptors given a microstructure.

Convert multi-objective optimization to
single-objective optimization by scalarization.

st
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microstructure calibration: convergence plot
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Reverse engineering an AM specimen through kinetic Monte Carlo (SPPARKS).
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(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

Reference

Active learning from chemical composition space to material property
Anh Tran et al. (2020b). “Multi-fidelity machine-learning with uncertainty
quantification and Bayesian optimization for materials design: Application
to ternary random alloys”. In: The Journal of Chemical Physics 153 (7),
p. 074705.

Problem statement:

m Multiple forward ICME models that share the same inputs and
outputs:
B MD-MLIAP: low-fidelity (low accuracy, low cost)

B DFT: high-fidelity (high accuracy, high cost)
m Exploit correlation between low- and high-fidelity models
m Input: chemical composition
m Output/Qol: bulk modulus By

m What chemical composition would optimize the Qol?
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Ab-initio: .
2F 0.2
m DFT implemented in Quantum ok * ok
ESPRESSO e n.né( \ | 0ok
- hlgh COSt + hlgh accuracy _ :J.J 10.0 10.5 9. .5
— high-fidelity [T o2t
Z 0.1k 0.1}
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Kennedy and O'Hagan 2000: a chain of auto-regressive model connecting
across fidelity hierarchy, bottom-up approach.
m Consider s levels of fidelity model {y:(x)}i=; with yi(x) as the lowest
fidelity-level, ys(x) as the highest fidelity-level, the auto-regressive
model assumes:

Ye(x) = pe1ye-1(x) +6:(x), 1<t<s (13)
m Bi-fidelity covariance matrix
o oiKi(x, xi) poi Ki(xc, xn)
K= 2 2 2 2 (14)
o Ki(Xm, x1) p ot Ki(xu, x1) + oo Kp(XH, XH)
m Log marginal likelihood
108 P(§xtny g B) = — 5 (5—) (K7 +021) 7 (§-1m)—  log [K7 + 71|~ "= log (2r)
(15)

m Selection of fidelity-level to query

t* = arg:nin <Ct/XUZ(x)dx) : (16)

C;: computational cost at level t.
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R? = 0.7122: not exactly the same

160 160
150 150
140 140
130 £ 130 K
1209 1209
110 110
r 100 _ 100
Tio 9 18 27 36 15 s ALE90 Tio 9 18 o7 36 15 54 ‘A]M 90
Al atoms Al atoms
Low-fidelity: MD with SNAP potential. Multi-fidelity GP & high-fidelity: DFT.
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MFGP prediction at 0.0K
Nb
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® low-fidelity
m  high-fidelity
Y best-so-far high-fidelity
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ICME appli

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb

® low-fidelity
m  high-fidelity 10
Y best-so-far high-fidelity
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ICME appli

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb

® low-fidelity
m  high-fidelity 10
Y best-so-far high-fidelity
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ICME appli

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb
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Y best-so-far high-fidelity
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ICME appli

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb

® low-fidelity
m  high-fidelity 140
Y best-so-far high-fidelity
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ICME appli

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb

® low-fidelity
m  high-fidelity 140
Y best-so-far high-fidelity
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ICME appli

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb
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ICME appli

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb
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m  high-fidelity 0
Y best-so-far high-fidelity
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ICME appli

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb
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ICME appli

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb
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Y best-so-far high-fidelity
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ICME applications

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb

® low-fidelity
m  high-fidelity
Y best-so-far high-fidelity 10
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ICME applications

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb
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Y best-so-far high-fidelity 10
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ICME applications

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb
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ICME applications

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb

® low-fidelity
m  high-fidelity .
Y best-so-far high-fidelity
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ICME applications

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb

® low-fidelity
m  high-fidelity
Y best-so-far high-fidelity

170

160

150

10

130

120

10

100

Ti Al
Al atoms

Anh Tran (anhtran@sandia.gov) Versatile GPR/BO for Materials Design with Multiscale ICME [107 /121] MIrACLE Forum


anhtran@sandia.gov

ICME applications

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb
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ICME applications

Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb

® low-fidelity
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ICME applications

Inverse problems in structure-property (CPFEM)

Inverse problems in structure-property

(joint work w/ Tim Wildey, Hojun Lim)

Reference

Anh Tran and Tim Wildey (2020). “Solving stochastic inverse problems for
property-structure linkages using data-consistent inversion and machine
learning”. In: JOM 73, pp. 72-89

Ingredients:
Crystal plasticity finite element as forward ICME model

Heteroscedastic Gaussian process as ML model for microstructure -
homogenized materials property relationship

A data-consistent UQ technique (Butler, Jakeman, and Wildey
2018a,b) to solve a stochastic inverse problem (on ML model)
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ICME applications

Inverse problems in structure-property (CPFEM)

Inverse problems in structure-property

(joint work w/ Tim Wildey, Hojun Lim)

Problem statement:

m Given a deterministic or stochastic map (either analytical as
Hall-Petch or numerical ML) from microstructure features to
homogenized materials,

m Given a (target) distribution of homogenized materials properties,

m Task: infer a data-consistent distribution of microstructure features, in
the sense that forward propagation of this microstructure feature
distribution matches the target distribution on homogenized materials

properties
) know“,x’%"t.ochastic forwa;.d'"o.,unknown )
microstructure * properties
TA(A) v ' (Q(A))

Stochastic Forward: given uncertain input A — uncertain output Q()\);
Stochastic Inverse: given uncertain output Q(A) — uncertain input \.
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ICME applications
Inverse problems in structure-property (CPFEM)

Inverse problems in structure-property

(joint work w/ Tim Wildey, Hojun Lim)

microstructure -.... machine learning ... properties

gk machine leaming,. Q(A) eR™

microstructure(generation spatially|average

DAMASK MTEX

DREAM.3D ParaView

crystal plasticity
finite element model
DAMASK
PETSc

Microstructure-homogenized properties map over an ensemble of microstructures
with a heteroscedastic GP.
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ICME applications

Inverse problems in structure-property (CPFEM)

Inverse problems in structure-property

(joint work w/ Tim Wildey, Hojun Lim)

Steps:
Parameterize deterministic \ as microstructure features, e.g. average
grain size, location/scale/shape parameters for Weibull, exponential,
extreme value distribution, etc.

Sample N microstructure RVE (DREAM. 3D)
Run crystal plasticity over an ensemble of RVEs (DAMASK)
Estimate quantities of interest Q(\) by Monte Carlo average
Approximate Q(-) by a heteroscedastic Gaussian process regression
@ Infer the distribution of microstructure features (Butler, Jakeman, and
Wildey 2018a,b)
obs
u ini A
mupdated () — w;t(x)igfmf) ) xen (17)
T (A)

Sample wiP***4()\) by rejection sampling
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ICME applications

Inverse problems in structure-property (CPFEM)
Inverse problems in structure-property
(joint work w/ Tim Wildey, Hojun Lim)

Ensemble average yield stress via Monte Comparison: GP (ML/UQ) and the
Carlo with different grain sizes Hall-Petch (ordinary least square)

Effect of grain size on ensemble average oy <80 Effect of grain size on ensemble average oy

n
| Nsve <

=1 5l
~N=L S g0 o oy =Ngk 2 6V
. OV"Nst’,_zlav i=1

w
S
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—— Predicted mean - OLS: 0y =482.14 + 9550

95% Confidence Interval
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Noise depends on grain size!

Anh Tran (anhtran@sandia.gov) Versatile GPR/BO for Materials Design with Multiscale ICME [114 /121] MIrACLE Forum


anhtran@sandia.gov

ICME applications

Inverse problems in structure-property (CPFEM)

Inverse problems in structure-property

(joint work w/ Tim Wildey, Hojun Lim)

Comparison: Distributions of materials

Initial density and updated density:
properties

normal case

0\lszgification between target and push-forward posterior

Inverse density of up s.t. oy ~ A(540.00, 10.00)
26l —— updated: m"(A) ——- target: n%*
—-- init: mtA) 0.0s. — Push-forward updated: n3“"/(Q(A))
—-- push-forward init: nU"9(Q(A))
0.04-
z
D003
{7
el
0.024
001
o's 10 2.0 25 00055 @75 600 625

15
DREAM.3D: up
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ICME applications

Inverse problems in structure-property (CPFEM)

Inverse problems in structure-property

(joint work w/ Tim Wildey, Hojun Lim)

Comparison: Distributions of materials

Initial density and updated density:
properties

uniform case

Verification between target and push-forward posterior

ZIgverse density of pp s.t. oy ~ 11530.00, 550.00)
—— updated: m?(A) 0071 ==- target: ng>*
—-- init: T(A) —— push-forward updated: n“?(Q(A))
20 0081 —.. push-forward init: I31M(Q(A))
0.05-
15
z Zo0s
0 [ M
i
10 0.03 ) l
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0.02 (Y
05 ' .
= 0.01 l ~ =\
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DREAM.3D: up
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Conclusion

Conclusion

Takeaway message

Gaussian process is a versatile machine learning, uncertainty quantification,
and (global) optimization toolbox for multiscale ICME applications.

In this talk, we:

m introduce a gentle tutorial to Gaussian process and Bayesian
optimization
m demonstrate with multiscale ICME applications (all are open-source)

m density functional theory: Quantum ESPRESSO

m molecular dynamics: LAMMPS

m kinetic Monte Carlo: SPPARKS

m crystal plasticity finite element: DREAM.3D + DAMASK
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Conclusion

Thank you for your time and listening.
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